
VIRTUAL VIRUS

(REAL-TIME INTELLIGENT STRATEGY)

MOHAMMAD SOP1AN BIN ABDUL JAMIL

A thesis submitted in fulfillment

of the requirements for the award of the degree of

Bachelor. of Computer Technology .(Software Engineering)

Faculty of Computer System & Software Engineering
\:•••	 'I

University College of Engineering .& Technology Malaysia

PU8TAKAAN
KOLEJ UNIVERSITI

KEJURUTEPA & TEKtOLOQi LAYSIA
oPch	 T Ra

021221
Tzrkh

OCTOBER, 2006

31 JAN 290 7

ABSTRACT

Computer games have grown considerably in scale and complexity since their

humble beginnings in the 1960s. Modem day computer games have reached

incredible levels of realism, especially in areas like graphics, physical simulation,

and artificial intelligence. However, despite significant advances in software

engineering, the development of computer games generally does not employ state-of-

the-art software engineering practices and tools. The goal for this game is to reach

the human-level Al real - time strategy. This system is near to reach Al that can be

reacts with human, example evaluate their resource, enemy unit quantity, position,

etc. This game has its own ability which the selected unit has their own advantages

and disadvantages that can be used if the strategy is well-managed.

V

ABSTRAX

Permainan komputer telah meningkat dengan mendadak dan kesukaran sejak

ianya mula dibina pada tahun 1960-an. Pada zaman moden mi permainan komputer

telah mencapai kemajuan yang menakjubkan dari segi maya, terutama sekali dalarn

bahagian grafik, simulasi fizikal dan kepintaran buatan. Bagaimanapun, kehebatan

pembaharuan dalam kejuruteraan perisian, pembinaannya dalam membina permainan

komputer secara umum tidak mengunakan pakai seni terkini kejuruteraan perisian

kebolehan dan alatan. Objektif permainan mi adalah untuk membina sebuah

permainan perisian yang mengunakan strategi masa sebenar. Sistem mi juga hampir

mencapai taraf kepintaran buatan yang dapat berinteraksi dengan manusia dengan

cara menilai keadaan musuh contohnya sumber, bilangan musuh, kedudukan dan

sebagainya. Permainan mi juga mempunyai keistimewaan tersendiri di mana unit

gnkan da kelebihan down kekurangan yang dapat digunakan sekiranya bijak

dalam mengunakan strategi yang tertentu.

MT

TABLE OF CONTENTS

CHAPTER	 TITLE PAGE

DECLARATION

DEDICATION jjj

ACKNOWLEDGMENT iv

ABSTRACT v

ABSTRAK \1

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xii

LIST OF APPENDICES xiii

INTRODUCTION	 1

1.1 Introduction	 1

1.1.1 Overview Virtual Virus (Real Time Intelligent 	 1

Strategy)

1.2 Problem Statement	 2

1.3 Objectives	 3

1.4 Scope	 3

1.5 Method and Technique	 3

2	 LITERATURE REVIEW	 4

2.1 Definition Real - Time Strategy	 4

2.2 Ai Using the Real - Time Strategy	 5

2.3 Designs in Real-Time Strategy 	 7

2.3.l The Map

vii

viii

2.3.2 Unit Data Structures 	 8

2.4 Developed game using C++	 11

2.4.1 Sprucing Up the Bitmap Class 	 11

2.4.2 Tracking the Mouse	 12

3	 METHODOLOGY 15

3.1 Waterfall Model 15

3.2 Requirement Analysis Definition 16

3.3 Project Analysis 16

3.3.1 Game System 16

3.4 Project Design 18

3.4.1 Strategy game A.I. 18

3.4.1.1 Analysis Module 19

3.4.1.2 Resource Allocation 20

3.4.1.3 High Level Al 20

3.4.1.4 Architecture Game Al 20

3.4.2 Game Play 23

3.4.2.1 Game Balanced 23

3.4.2.2 Game Victory and Losing 24

3.5 Implement and Unit Testing 24

3.6 Integration and System Testing 24

3.7 Maintenance 25

3.8 Hardware and Software Requirements 25

4	 RESULT AND DISCUSSION 27

4.1 Expected Result 27

4.2 Testing Result 27

4.3 Constraint 36

4.4 Further Research 37

ix

CONCLUSION
	

38

5.1 Summary
	

38

5.2 Achieved Objective
	

38

5.3 Lesson Learnt
	

39

REFERENCE
	

40

APPENDIX A	 41

x

LIST OF TABLES

TABLE NO	 TITLE	 PAGE

	

2.1	 Overhead and Angled Isometric Adjacency	 8

	

3.1	 Status every unit in the game
	

23

	

3.2	 Hardware requirement
	

25

	

3.3	 Software requirement	 26

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Artifact's map cell 7

2.2 Artifact's troop structure 10

2.3 A function to transparent bitmap 12

2.4 Mouse move handler 13

3.1 Waterfall Model 15

3.2 Win — win situation 18

3.3 Strategic Al diagram 19

3.4 Flow chart Al every unit 21

3.5 Strength Calculation 22

4.1 Tutorial how to play the game 28

4.2 End of tutorial 29

4.3 Start the game 30

4.4 Base selected 31

4.5 Unit under purchasing 32

4.6 Unit under attack 33

4.7 Group selected 34

4.8 All virus facility has been destroyed 35

4.9 The anti - virus facility has been destroy 36

X1

LIST OF SYMBOLS

RTS -	 Real time strategy

A! -	 Artificial Intelligent

AlP -	 Artificial Intelligent Personality

API -	 Application Program Interface

2D -	 Two Dimension

ID -	 Information Data

xl'

LIST OF APPENDICES

APPENDIX	 TITLE	 PAGE

A	 Project Gantt Chart	 42

xii'

CHAPTER 1

INTRODUCTION

In this chapter, an introduction to real time strategy is presented, followed by

the problem statement, the objective and scope of the project.

1.1	 Introduction

The overview about Virtual Virus, Real Time Strategy, type of unit and the

game play. It also determines how the game can be play and what sides that human

and computer take part.

1.1.1 Overview Virtual Virus (Real Time Intelligent Strategy)

Game Strategy is focusing on the ability to make deal with dynamic

Priorities, typically in a context of resource shortage or typically involve intricate

rule systems where player must master tactics and strategies rather than fast reflexes.

Strategy games may be divided into: Real-time strategy games and turn-based

strategy games. This game is the real time strategy which is a type of computer

strategy game which does not have "turns" like conventional turn-based strategy
video or board games. The name of the game is "Virtual Virus Real - Time

2

Interactive Strategy". This software is about the real time strategy game. it tests the

intelligent and creativity player to defense base and attack enemy territory base.

There are two (2) types of sides: -

1. Virus

2. Antivirus

Player is take part as anti virus that defend the computer from being corrupted

by virus. Anti virus can get the resource from defend the computer by destroyed the

virus. In additional to win the game, anti virus can update the database, allow them to

upgrade and get more powerful to protect the data from being corrupted. Upon

meeting the virus and anti virus begin fight each other until one of sides is totally

extinction. The player can command their unit by issued via mouse-selected icons by

selecting a unit and give an order with their creativity to play until win.

For the game play, the player (human) control the anti-virus unit and the

computer or A! control the virus. In this game, anti-virus has a base which contains a

main building. The main building can build an anti-virus unit. If the main base

destroys, the game is over by player defeated. Virus is created in the certain place

and time to attack the base of the anti-virus. Victory can be archive if the player

destroys the source of where the virus created.

12 Problem Statement

In the past strategy game, the problem was been found. Some of the games

have the problem that makes their game not very interactive, this is because:

1. Most of game strategy does not have good mini map.

2. Many strategy games their GUI is not user friendly.
3. Most of the strategy game, the Artificial Intelligent is bad in decision

making.

3

	

1.3	 Objectives

1. To develop 2d interactive games that shows the role of anti-virus and

virus.

2. To apply some simple Al in the game.

3. To create the engine to running the RTS game.

	

1.4	 Scopes

1. This application played by one person and the opposition is computer.

2. The application simulate in 2d graphic.

3. Computer can interact with player action and the environment of the

game.

4. Using the C++ language with the standard library such as msimg32.lib

and winmm.lib.

1.5 Method and Technique

The project can be developed with C-i--i- and some library needs to compile

this application.

CHAPTER 2

LITERATURE REVIEW

This chapter devoted to a survey of the concept of the real-time strategy game

found in literature which include definition artificial intelligent and design in real

time strategy.

21	 Definition Real Time Strategy

Real-time strategy games ask players to collect and manage resources that

include food, raw materials, and more, research technologies to improve a

civilization, and ultimately control and maneuver armies to battle and take over the

world. Popular real-time strategy games include: Age of Mythology, Rise of Nations,

and Command & Conquer [1]. A real-time strategy (RTS) game is a type of

computer strategy game which does not have turns like conventional turn-based

strategy video or board games. Rather, game time progresses in real time [2].

Because of the generally faster-paced nature (and the usually shallower

learning curve), RTS games have surpassed the popularity of conventional turn-

based strategy computer games. In the past some traditional strategy garners regarded

RTS games as cheap imitations of turn-based games, arguing that RTS games had a

tendency to devolve into clickfests, in which the player who was faster with the

mouse generally won, because they could give orders to their units at a faster rate.

Real-time strategy enthusiasts counter that micromanagement involves not just fast

clicking but also the ability to make sound tactical decisions under time pressure. It is

noteworthy, however, that due to the games being shorter because of the faster pace

of the game and absence of turn switching pauses, RTS games are far more suitable

for Internet play than turn-based games; this is indubitably an important reason for

their popularity. Furthermore, turn-based games are ill-suited to meet the increasing

demand for realism from casual garners and they require a greater time commitment

than real-time strategy games [2].

The more recent generations of RTS games usually have features which

reduce the importance of fast mousework, enabling the player to focus more on

overall strategy. For example, queuing allows the player to put in an order for

multiple units at a single building instead of requiring the player to return to that

building to order the next unit built whenever a unit ordered earlier is completed. The

ability to set waypoints allows the player to give multiple movement commands to a

unit at once. Generally, most RTS games follow the same general pattern:

1. Build up base and forces (the economy).

2. Acquire more resources.

3. Attack the enemy, attempting to deprive him of resources and destroy his

infrastructure [2].

2.2 Ai Using In Real Time Strategy

Real-Time-strategy (RTS) games - such as the million- sellers Starcraft by

Blizzard Entertainment and Age of Empires by Ensemble Studios - can be viewed as

simplified military simulations. Several players struggle over resources scattered

over a 2D terrain by setting up an economy, building armies, and guiding them into

battle in real-time. RTS games offer a large variety of fundamental Al research

problems, unlike other game genres studied by the Al community so far:

Resource management, which mean the players start off by gathering local

resources to build up defenses and attack forces, to upgrade WcaJ)0fl17, and to climb

up the technology tree. Proper resource management is a vital part of any successful

strategy.

Decision making under uncertainty, which mean the players are not aware of

the enemies' base locations and intentions. They have to gather intelligence by

sending out scouts. If no information is available yet, the players must form plausible

hypotheses and act accordingly.

Spatial and temporal reasoning, which mean the static and dynamic terrain

analysis as well as understanding temporal relations of actions, is of utmost

importance in RTS games and yet, current game AIs largely ignore these issues and

fall victim to simple common-sense reasoning

Collaboration in RTS games groups of players can join forces and

intelligence. How to coordinate actions effectively by communication among the

parties is a challenging research problem.

Opponent modeling, Learning is one of the biggest shortcomings of most

(RTS) game Al systems is their inability to learn from experience. Human players

only need a couple of games to spot opponents' weaknesses and to exploit them in

upcoming games. Current machine learning approaches in this area are inadequate.

Adversarial real-time planning is in fine-grained simulations, agents cannot
afford to think in terms of micro actions. Instead, abstractions have to be found

which allow a machine to conduct forward searches in a manageable abstract space
and to translate found solutions back. Because the environment is also dynamic,

hostile, and smart adversarial real-time planning approaches need to be investigated
[3].

23 Designs in Real-Time Strategy

Data structure and coding examples is mostly be taken from the writer

project, Artifact. Artifact is an Internet-based, client-server, multi-player, persistent-

world, real-time strategy game. Artifact is currently in pre-release, with full release

scheduled for Fall 1999 [4].

2.31 The Map

The map is probably the single most important data structure in a game of

this type. The map serves as the central repository of nearly all game data and is the

primary source of information used by the game logic. The various units, "fog of

war", unit Al, and so on, all rely extensively on the map.

The most basic structure of the map is the map cell. A map cell is simply a

single map location. The information that store in a map cell depends on the game

that creating, but there are a few common elements. Such common elements include

an indicator of the type of map cell (for instance, the terrain), the structure (or

structure segment) built on the cell, and a pointer to the first mobile unit on the map.

ii

atruct world atruct

(/* map cell *1

unsigned char reg;

TRP TYPE *trp;

long ore,crops ,wood, stone;

char structure;

facility, 2 artifact STR* */

BDG TYPE bdg;
facility *,

I;

/* raw materials *1
1* bag is a: 0 city, 1

1* pointer to union of city or

Figure 2.1	 Artifact's map cell [4]

8

The straight overhead map and angled isometric map have the simplest

possible scenario: a two-dimensional array of map cells. The layered isometric map

can also use a two-dimensional array ' but there are several complexities. The biggest

difference concerns adjacencies in the map [4].

Table 2.1: Overhead and Angled Isometric Adjacency [4]

Direction Location

North (x,y-l)

Northeast (x+l ,y-l)

East (x+l ,y)

Southeast (x+1 ,y+ l)

South (x,y+l)

Southwest (x- 1 ,y+l)

West (x-1,y)

Northwest (x-1,y-1)

2.3.2 Unit Data Structures

Once have the map structure determined, move on to unit data structures.

There are 2 primary types of unit: mobile and stationary. Mobile units are the

warriors, tanks, aircraft, and so on, that actually move around the map. The

stationary units, on the other hand, are the buildings or building segments that do not

move.

The common elements of mobile and stationary units include an identifier, a

map location, an owner, and so on. These common elements may allow using object-

oriented techniques and creating a common ancestor class for both kind of units, but

that depends on the game and game logic needs.

Stationary units generally do not move around the map. Once a stationary

unit is placed on the map, it stays there until the player removes it or an enemy unit

destroys it This can simplify how to handle stationary units. Since there can only be

one stationary unit per map cell, the map cell needs only to have a pointer to such a

unit. If the pointer is null, then there is no stationary unit occupying that map cell.

Mobile units, unlike stationary units, can move from one map location to

another. They also have another significant difference from stationary units; there is

technically no limit to how many mobile units can be in a single map location. Thus,

it needs to be maintaining a list of all mobile units per map cell. Depending on the

game, it's possible to limit mobile units so that they cannot stack in a single location.

Or it may want to allow stacking only in locations with a special stationary unit (like

a barracks). In this case, the map cell no longer needs to maintain a list, though the

special stationary unit would.

These lists must keep mentioning for mobile units in the same map location

or inside the same stationary unit, do not need to be incredibly complex. A simple

linked list would likely work fine, though it might want to include some form of

sorting to support game logic such as determining which unit in a location takes

damage first or which units can leave first. To further simplify the lists, it could

embed the list information that just a simple next pointer in the actual unit data

structure. If the unit can simultaneously be in multiple lists, however, it may want to

use an actual list container class.

It's important, however, no matter how many different lists a particular unit is

in, that units be stored in a centralized data structure. A one-dimensional array works

quite well for this and even allows for certain performance benefits when processing

all units of a particular type. The unit's position in the array also provides a very

handy identifier for that unit.

The game may have noticed that the unit data structures include the map

location, and that the map cells have a list of units in those cells. This may seem

10

redundant, but is nearly always necessary. If the games are processing the map cell

by cell, it needs a fast way to know which units are in each cell. Conversely, if the

games are processing all units need to know their location without searching the

entire map. This puts a mild burden on the programmer to make sure that the units

always have the correct location and that the map cells they travel through are

correctly updated. Example of information maintained in the unit data structure. The

ID of a troop is simply its position in the single-dimensioned Troops array. The ID is

stored in the troop structure even though it equals the array index because often it's

necessary to know the troop's 11) and only have a pointer to the troop [4].

struot troop struot
I
mt id;
mt owner_id;
short mt x,y;

mt count;	 /* number of members of this troop
*1

short mt morale;	 1* O=worst, 255best */
short mt training;
short mt experience;
short mt fatigue;	 1* 255=worst, 0-best *1

TRP TYPE *fleXt*prev;	 1* linked list for troop
update */

TRP TYPE *next here,*prev here; /* linked list of troops
at an x,y */

TRP TYPE *bt1nezt,*bt1_pv;	 /* linked list for
battles */

i igure 2i	 Artifact's troop structure [4]

The conclusion is the map game going to be the central data structure, with

the arrays of unit data structures providing the necessary details.

11

2.4 Developing game using C++

This topic is describing how to develop this application using the C++. This

includes drawing the graphic object, transparent the graphic and to tracking the

mouse clicked.

2.4.1 Sprucing Up the Bitmap Class

Bitmaps definitely are square graphical objects [5]. Transparency is that can

identify a color as the transparent color, which is then used to indicate parts of a

bitmap that are transparent. When the bitmap is drawn, pixels of the transparent color

aren't drawn, and the background shows through.

From a graphics creation perspective, bitmaps can be created with

transparency by selecting a color that isn't used in the graphics, such as hot purple,

which is also known as magenta. Use magenta to fill areas on the bitmaps that need

to appear transparent. It's then up to the revamped game engine to make sure that

these transparent regions don't get drawn with the rest of the bitmap.

The trick making bitmap transparency work in the game engine is to expand

the existing Bitmap: :Draw 0 method so that it supports transparency. This is

accomplished by adding two new arguments:

1. bTranS—A Boolean value that indicates whether the bitmap should be

drawn with transparency.

2. crlransColor-_-The transparent color of the bitmap.

It's important to try making changes to the game engine that doesn't cause
problems with that already written. Therefore, rather than add these two
arguments to the Draw 0 method and require them of all bitmaps, it's much better to
add and provide default values:

void Draw(HDC hDC, mt x mt y, BOOL blrans = FALSE,

COLORREF crTransColor = RGB(255, 0,255));

Figure 2.3 A function to transparent bitmap [5]

The TransparentBlt 0 function is part of the Win32 API, but it requires the

inclusion of a special library called msimg32.1ib in order for the games to compile

properly. This is a standard library that should be included with the compiler, but

need to make sure that it is linked in with any programs that use the TransparentBlt()

function [5].

2.4.2 Tracking the Mouse

The Win32 API includes a series of mouse messages that are used to convey

mouse events, similar to how keyboard messages convey keyboard events [5]. The

following are the mouse messages used to notify Windows programs of mouse

events:

1. WM_MOUSEMOVE—My mouse movement

2. WMLBUTTONDOWN_Left mouse button pressed

3. WM—LBUTTONUP—Left mouse button released

4. WM_RBUTTONDOWN_...Right mouse button pressed

S . WMJ.BUTFONUP__Right mouse button released

6. WM_MBUTFONDOWNMjdd1C mouse button pressed

7. WM MBUTFO PMjddle mouse button released

The first mouse message, WM..MOUSEMOVE, lets to know whenever the
mouse has been moved. The remaining messages relay mouse button clicks for the
tell,

right, and middle buttons, respectively. A mouse button click consists of a

button press followed by a button release, implement a mouse dragging feature by

12

13

keeping track of when a mouse button is pressed and released and watching for

mouse movement in between.

The mouse cursor position is provided with all the previously mentioned

mouse messages. It's packed into the iParam argument that gets sent to the

GameEngifle:HanE\ h1t 0 method. The following is the prototype for this method

is like below.

LRESULT GameEngifleHand1eEveflt(HWND bWindow, UINT msg,

WPARAM wParam, LPARAM IParain);

The wParani and lParam arguments are sent along with every Windows

message and contain message-specific information. In the case of the mouse

messages, iParam contains the XY position of the mouse cursor packed into its low

and high words. The following is an example of a code snippet that extracts the

mouse position from the iParam argument in a WM MOUSEMOVE message

handler:

case WM_MOUSEMOVE:

WORD x = LOWORD(lParam);

WORD y HIWORD(lParam);

return 0;

Figure 2.4 Mouse move handler [5]

The wParam argument for the mouse messages includes information about

the mouse button states, as well as some keyboard information. More specifically,

wParam lets to know if any of the three mouse buttons are down, as well as whether

the Shift or Control keys on the keyboard are being pressed. The following are the

constants used with the mouse messages to interpret the value of the wParam
argument:

14

1. MK_LBUTTON	 mouse button is down.

2. ,fl(RBUTTON—Right mouse button is down.

3 ,iJ(MBUTTON—Middle mouse button is down.

4. NW—SHIFT—Shift key is down.

5. MK_CONTROL—Control key is down [5].

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

