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ABSTRAK 

Pelekat sintetik yang digunakan dalam industri kayu komposit adalah satu perkara yang 

membimbangkan kerana pelepasan formaldehid gas karsinogenik, peningkatan 

pencemaran alam sekitar dan kehabisan bahan api fosil. Oleh itu, membangunkan pelekat 

bebas formaldehid dan mesra alam yang diperoleh daripada sumber boleh diperbaharui 

adalah penting. Penyelidikan ini memberi tumpuan kepada pembangunan dan 

penggunaan bio-pelekat berdasarkan dua biopolimer: kanji beras bersilang (RS) dan 

lateks getah asli (NRL). Kanji beras telah dikaitkan silang dengan glioksal, polimer 4,4”- 

diphenylmethane diisocyanate (pMDI), dan dimethylol dihydroxy ethylene urea 

(DMDHEU) untuk memperbaiki sifat hidrofiliknya sebelum diadun dengan NRL. 

Interaksi kimia kanji beras dan penghubung silang telah disiasat menggunakan 

spektroskopi inframerah transformasi total dilemahkan-Fourier (ATR-FTIR). 

Hidrofobisiti kanji beras asli dan kanji beras bersilang diukur menggunakan ukuran sudut 

sentuhan. Dengan pengadunan, bio-pelekat dengan kandungan berat berbeza-beza RS 

dan NRL bersilang telah dibangunkan, dan sifat fizikalnya seperti masa gel, kelikatan dan 

kandungan pepejal telah dicirikan. Akibatnya, bio-pelekat yang dirumus digunakan untuk 

pembuatan papan lapis melalui penekanan panas pada 120°C selama 5 minit, dan 

spesimen papan lapis dicirikan secara fizikal dan mekanikal dari segi penyerapan air 

(WA), bengkak ketebalan (TS), modulus pecah (MOR), modulus keanjalan (MOE) dan 

ikatan dalaman (IB). Kestabilan haba dan sifat permukaan papan lapis diperhatikan 

melalui analisis termogravimetrik (TGA) dan mikroskopi elektron pengimbasan (SEM). 

Sifat fizikal dan mekanikal papan lapis diukur mengikut piawaian ASTM, ISO dan IS. 

Perisian pakar reka bentuk DX7 digunakan untuk menganalisis pembolehubah penting 

yang mempengaruhi formulasi bio-pelekat dalam ikatan dalaman papan lapis. ATR-FTIR 

mengesahkan kehadiran fungsi glioksal, isosianat dan DMDHEU dalam makromolekul 

kanji, menghasilkan prestasi bio-pelekat yang dipertingkatkan. Kanji bersilang glioksal, 

mempunyai sifat hidrofobik yang luar biasa, dengan CA 91.45° pada 3 minit. Bio-pelekat 

Iso A didapati mempunyai kelikatan tertinggi 8270 mPa.s. Jenis pelekat bio Gly B 

mempunyai masa gel terpendek 2.80 min dan kandungan pepejal tertinggi sebanyak 46%, 

kandungan pepejal yang lebih tinggi mempercepatkan masa gel. Papan lapis yang diikat 

dengan bio-pelekat Gly B menunjukkan pembengkakan ketebalan (TS) paling rendah 

sebanyak 11% dan penyerapan air (WA) sebanyak 35%. Papan lapis yang diikat dengan 

bio-pelekat Gly B mempunyai modulus pecah (MOR) tertinggi sebanyak 72 MPa, 

modulus keanjalan (MOE) sebanyak 9574 MPa, dan ikatan dalaman (IB) sebanyak 2.2 

MPa sepadan dengan ISO 12466-2-2007 dan keperluan standard IS 303. Tambahan pula, 

analisis haba menunjukkan bahawa papan lapis yang diikat dengan bio-pelekat Gly A 

mempunyai suhu penurunan berat badan yang lebih tinggi, menunjukkan bahawa 

penambahan kanji beras bersilang meningkatkan kestabilan terma oksidatif bio-pelekat. 

Bagi sifat permukaan, papan lapis yang diikat dengan Gly B menunjukkan tompok 

lompang yang kurang dan kelihatan dalam taburan rawak di antara matriks gentian kayu. 

Berdasarkan model regresi RSM-CCD, parameter ideal formulasi bio-pelekat yang 

mempengaruhi ikatan dalaman papan lapis ialah 73.47°C, pH 7.33, dan 0.35% glioksal. 

Menurut penemuan, papan lapis yang diikat dengan bio-pelekat Gly B memberi kesan 

ketara kepada kualiti sifat lekatan berbanding dengan formulasi bio-pelekat yang lain. 

Kajian ini menunjukkan bahawa biopolimer seperti kanji beras silang silang dan NRL 

boleh membantu untuk menghapuskan penggunaan pelekat sintetik berbahaya 

sepenuhnya. 
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ABSTRACT 

Synthetic adhesives used in the composite wood industries are a matter of concern 

due to the emission of carcinogenic gas formaldehyde, increased environmental pollution 

and the depletion of fossil fuels. Therefore, developing a formaldehyde free and eco-

friendly adhesive derived from renewable resources is essential. The present research 

focuses on developing and applying bio-adhesives based on two biopolymers: 

crosslinked rice starch (RS) and natural rubber latex (NRL). The rice starch was 

crosslinked with glyoxal, polymeric 4,4”- diphenylmethane diisocyanate (pMDI), and 

dimethylol dihydroxy ethylene urea (DMDHEU) to improve its hydrophilicity nature 

before blending with NRL. The chemical interaction of rice starch and crosslinkers was 

investigated using attenuated total reflectance-Fourier transform infrared spectroscopy 

(ATR-FTIR). The hydrophobicity of native rice starch and crosslinked rice starch was 

measured using contact angle measurements. By blending, a bio-adhesive with varying 

weight content of crosslinked RS and NRL was developed, and its physical properties 

such as gel time, viscosity, and solid content were characterized. Consequently, 

formulated bio-adhesives were applied for plywood manufacturing via hot pressing at 

120°C for 5 minutes, and plywood specimens were characterized physically and 

mechanically in terms of water absorption (WA), thickness swelling (TS), modulus of 

rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB). The thermal 

stability and surface property of the plywood were observed through thermogravimetric 

analysis (TGA) and scanning electron microscopy (SEM). The physical and mechanical 

properties of the plywood are measured following ASTM, ISO, and IS standards. The 

design expert software DX7 was used to examine the significant variables that influence 

bio-adhesive formulations in plywood internal bonding. ATR-FTIR confirmed the 

presence of glyoxal, isocyanate, and DMDHEU functionalities in starch macromolecules, 

resulting in enhanced bio-adhesive performance. The glyoxal crosslinked starch, has 

outstanding hydrophobic nature, with an CA of 91.45° at 3 minutes. The bio-adhesive Iso 

A was discovered to have the highest viscosity of 8270 mPa.s. The bio-adhesive type Gly 

B has the shortest gel time of 2.80 min and the highest solid content of 46%, the higher 

the solid content, the faster the gel time. The plywood bonded with Gly B bio-adhesive 

shows the lowest thickness swelling (TS) of 11% and water absorption (WA) of 35%. 

Plywood bonded with Gly B bio-adhesive had the highest modulus of rupture (MOR) of 

72 MPa, modulus of elasticity (MOE) of 9574 MPa, and internal bonding (IB) of 2.2 MPa 

corresponded to the ISO 12466-2-2007 and IS 303 standard requirements. Furthermore, 

the thermal analysis showed that plywood bonded with Gly A bio-adhesive has a higher 

weight loss temperature, indicating that the addition of crosslinked rice starch improves 

the oxidative thermal stability of bio-adhesive. As for the surface property, the plywood 

bonded with Gly B showed less void and visible patches in a random distribution in 

between the wood fibres matrices. Based on the RSM-CCD regression model, the ideal 

parameters of bio-adhesive formulation that influence the internal bonding of plywood 

were 73.47°C, pH 7.33, and 0.35% glyoxal. According to the findings, the plywood 

bonded with Gly B bio-adhesive significantly impacted the quality of adhesion properties 

compared to other bio-adhesive formulations. This study shows that biopolymers like 

crosslinked rice starch and NRL can help to eliminate the use of hazardous synthetic 

adhesives completely. 
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