THE STUDY OF STRESS AND WORK-LIFE BALANCE PROGRAM AT BI TECHNOLOGIES CORPORATION SDN BHD ON COGNITIVE ERGONOMICS FUNCTIONS TO IMPROVE WORK PERFORMANCE

KAMARULZAMAN BIN MAHMAD KHAIRAI

DOCTOR OF PHILOSOPHY UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and, in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor's Signature)

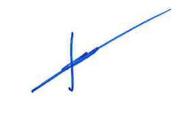
: DR MUHAMMAD NUBLI ABDUL WAHAB Full Name

Position : PROFESOR

Date : 1/08/2022

(Co-supervisor's Signature)

Full Name : DR EZRIN HANI SUKADARIN


Position : PROFESOR MADYA

Date : 1/08/2022

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature)

Full Name : KAMARULZAMAN BIN MAHMAD KHAIRAI

ID Number : PBM19001

Date : 1/08/2022

THE STUDY OF STRESS AND WORK-LIFE BALANCE PROGRAM AT BI TECHNOLOGIES CORPORATION SDN BHD ON COGNITIVE ERGONOMICS FUNCTIONS TO IMPROVE WORK PERFORMANCE

KAMARULZAMAN BIN MAHMAD KHAIRAI

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Human Sciences

Centre of Human Sciences
UNIVERSITI MALAYSIA PAHANG

AUGUST 2022

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt thanks to Allah, the Almighty, for giving me this opportunity and giving me the ability to proceed successfully.

Sincere thanks and gratitude goes to my honourable supervisor, Professor Muhammad Nubli Bin Abdul Wahab for his guidance, patience and good attention to my work, and of course without his support and good advice it would have been impossible to finish this work on time. Also thanks to my co-supervisor Dr Ezrin Hani Sukadarin who helped a lot in this research and also special thanks to Dr Auditya Purwandini Sutarto for her support.

I am thankful to Universiti Malaysia Pahang (UMP) and BI Technologies Corporation for financial support under matching grant RDU192404.

I am indebted to my superior at BI Technologies, Mr. Podzi as Operations Director and Mr. Akhyani as Operational Excellence Manager who allowed me to conduct the research, as well as giving guidance and helping me to finish my thesis. It would have been for impossible for me to obtain real data for this thesis if I had not obtained the support of my supervisor who allowed me to carry out my research in the company in Kuantan.

I owe my deepest appreciation and gratitude to my family for their unflagging love and unconditional support throughout my life and study especially my beloved parents Haji Mahmad Khairai bin Osman, Hajah Zaiton binti Salleh also my lovely beautiful wife Nurul 'Atikah binti Asmuni and our precious princess Zara Zinnirah binti Kamarulzaman who has always been at my side to encourage me in the completion of this thesis.

Special thanks to my friends who gave me their time, moral support, guidance and help to finish my thesis. The support from my friends has been very important for me to complete my thesis in time.

ABSTRAK

Pengendalian tugasan menggunakan manusia sukar dihilangkan kerana terdapat pelbagai jenis tugas yang memerlukan manusia secara terus sebagai sumber utama untuk melaksanakannya Tenaga manusia diperlukan dalam industri hari ini, seperti fungsi kognitif manusia untuk beroperasi dalam bidang pengeluaran.. Kajian ini adalah untuk menangani masalah psikologi di kalangan para pekerja untuk menilai sama ada mereka mempunyai tekanan dan juga kajian tentang "Heart Rate Variability (HRV) coherence ratio", "Satisfaction With Life Scale (SWLS)" dan produktiviti pekerja. Tujuan utama kajian ini adalah untuk membina modul and melihat keberkesanan modul tersebut kepada hasil kerja pekerja dari sudut produktiviti. Modul merangkumi latihan "Heart Rate Variability (HRV)", pengurusan peribadi, pengurusan kerja dan peningkatan kerohanian. Pekerja dipilih berdasarkan "Depression Anxiety Stress Scale (DASS)" untuk sesi intervensi, 36 daripada keseluruhan 319 pekerja dengan stress skor tinggi dan rendah dibahagikan kepada "Treatment Group" dan "Control Group". Modul telah dibangunkan dalam kajian ini untuk memantau "physiological measures", "coherence ratio", "Satisfaction With Life Scale (SWLS)" dan produktiviti pekerja di bahagian pengeluaran. Modul tersebut adalah sebagai alat untuk program pengurusan "Work-Life Balance (WLB)" yang ditubuhkan untuk mengurangkan stres pekerja sambil menyediakan pengurusan tekanan yang mempunyai maklumat berkaitan untuk menggalakkan suasana "Work-Life Balance (WLB)". Pekerja yang terpilih diukur pada sebelum dan selepas pelaksanaan lapan "intervention session" dalam tempoh dua bulan. Setiap minggu mereka akan mengadakan sesi untuk melatih pekerja berkenaaan perlaksanaan modul. Hasilnya menunjukkan bahawa pekerja yang dipilih untuk sesi intervensi berjaya meningkatkan nilai purata skor coherence daripada 0.67 kepada 1.28, mengurangkan nilai purata tekanan dalam DASS daripada 45.9 kepada 29.1, meningkatkan nilai purata skor purata "Satisfaction With Life Scale (SWLB)" daripada 5.57 kepada 6.26 dan meningkatkan produktiviti pekerja dengan membandingkan keadaan sebelum dan selepas. Melalui kajian ini semua pekerja yang terpilih untuk sesi intervensi menunjukkan penambahbaikan dari sudut produktiviti pekerja secara purata sebanyak 10% bagi keseluruhan kilang terhadap tempat kerja mereka. Selepas pekerja memperbaiki fungsi kognitif ergonomic pasca sesi intervensi, bahagian tugasan pemeriksaan mekanikal visual menunjukkan peningkatan produktiviti paling banyak iaitu 13%. Ini membuktikan bahawa modul "Work-Life Balance (WLB)" berkesan untuk memperbaiki hasil kerja pekerja dari sudut produktiviti juga meningkatkan tahap kesejahteraan di antara pekerja kilang.

ABSTRACT

The judgement of human in industry is difficult to eliminate because there are various types of tasks that need human as a main source of performance. Cognitive functions of employees are positively related to stress level, body and mind condition to operate the production line. This study attempts to address the stress problem among operators also a study on Heart Rate Variability (HRV) coherence ratio performance, Work-Life Balance (WLB) and worker's productivity. The main objective of this study is to develop a Work-Life Balance (WLB) module and to study it effectiveness in employee's productivity performance. The Work-Life Balance (WLB) module developed comprises of Heart Rate Variability (HRV) training, personal management, work management, and spiritual enrichment checklist. A group of employees were selected based on the Depression Anxiety Stress Scale (DASS) score for intervention sessions, 36 from total 319 employees with high score and low score were divided into Treatment Group and Control Group. The Work-Life Balance (WLB) module was used to monitor the HRV score, Satisfaction With Life Scale (SWLS), and productivity of employees in production area. The Work-Life Balance (WLB) module was used for employees to reduce stress while providing information to promote a Work-Life Balance (WLB) environment. The selected employees' performances are measured after eight intervention sessions in a 2 month period. Every 2 weeks they will have a session to strengthen the Work-Life Balance (WLB) module implementation. The result shows that employees in the Treatment Group are able to increase HRV coherence ratio score from the mean value of 0.67 to 1.28, reducing stress level from the mean value of 45.9 to 29.1, improve Satisfaction With Life Scale(SWLB) score from the mean value of 5.57 to 6.26 and increase worker's productivity by comparing pre and post-condition. From this study, all employees that were selected for intervention session showed improvement in terms of employee productivity by an average of 10% in overall plant performance in production area. As employees improve their cognitive ergonomics function on post intervention sessions, visual mechanical inspection workstation showed the highest productivity improvement with an average of 13%. The results indicate that the Work-Life Balance (WLB) module can be used in an electronics industry company to improve work performance as well as increasing the wellness level among factory employees.

TABLE OF CONTENT

DEC	LARATION	
TITL	E PAGE	
ACK	NOWLEDGEMENTS	ii
ASBT	ΓRAK	iii
ABST	TRACT	iv
TABI	LE OF CONTENTS	v
LIST	OF TABLES	xi
LIST	OF FIGURES	XV
LIST	OFABBREVIATIONS	XV
LIST	OF APPENDICES	xvii
СНА	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background of Study	3
1.3	Statement of the Problem	8
1.4	Research Objective	13
1.5	Research Questions	13
1.6	Research Hypotheses	13
1.7	Significance of the Study	14
1.8	BI Technologies Research Context	15
1.9	Scope and Limitation	16
1.10	Operational Definition of Key Terms	17
1.11	Summary	19
СНА	PTER 2 LITERATURE REVIEW	20

2.1	Introduction		20	
2.2	Ergon	Ergonomics in Industry		
2.3	Cogni	Cognitive Ergonomics		
2.4	Stress	at Workplace	23	
2.5	Stress	Management at Workplace	25	
2.6	Biofee	edback for Performance Enhancement	26	
	2.6.1	Heart Rate Variability Measurement for Self-Improvement	27	
2.7	Breath	ning Exercise for Stress Management	30	
	2.7.1	Resonant Frequency Breathing for Vagal Tone Exercise	30	
	2.7.2	Relationship between HRV Spectrum Score and Breathing Exercise	31	
	2.7.3	The Effect of Respiratory Sinus Arrhythmia (RSA) with Heart		
		Rate Variability (HRV) Spectrum Score	32	
	2.7.4	Advantages of Resonant Breathing	33	
2.8	Relati	onship between Work Performance and HRV Score	34	
	2.8.1	Coherence Ratio	37	
2.9	Work	-Life Balance Program at Workplace	38	
	2.9.1	Work-Life Balance (WLB) for Banking Sector	38	
2.10	Islami	c Approach for Work-Life Balance	40	
	2.10.1	Dzikir	42	
2.11	Conce	eptual Framework of the Study	43	
	2.11.1	The Stress and Productivity Level	43	
	2.11.2	2 The relationship between HRV Frequency Range and Productivity	44	
	2.11.3	Relationship between Work-Life Balance (WLB) program and Work Performance	45	
	2.11.4	Employee Productivity and Efficiency	47	

2.12	Summ	ary	48
СНА	PTER 3	3 METHODOLOGY	49
3.1	Introd	uction	49
3.2	Resear	rch Design	49
3.3	Instrui	ments	52
	3.3.1	Survey Instrument	52
	3.3.2	HRV-Biofeedback Instrument	52
	3.3.3	The Interview Instrument	54
3.4	Prelim	ninary Study	55
	3.4.1	Sampling	55
	3.4.2	Results of Pilot Study	56
3.5	Resear	rch Participants	58
	3.5.1	Reliability	60
	3.5.2	Validity of Work-Life Balance (WLB) module and Expert Review	60
3.6	Data C	Collection Method	63
3.7	Popula	ation, Sampling and Participants	64
	3.7.1	Participants	64
	3.7.2	DASS-42 items Survey for Objective 1	65
	3.7.3	EmWave Pro Device and Script for Objective 2	66
	3.7.4	Resonant Breathing in Work-Life Balance (WLB) module	70
	3.7.5	Satisfaction With Life Scale (SWLS) Questionnaire	71
3.8	Devel	opment of Work-Life Balance (WLB) module for Objective 3	72
	3.8.1	ADDIE Model	72
	3.8.2	Design and Biofeedback Protocol for Work-Life Balance (WLB) module	73

3.9	Proced	lure and Training Session for Work-Life Balance (WLB) module	77
	3.9.1	Work-Life Balance (WLB) module Procedure	77
	3.9.2	Work-Life Balance (WLB) module Training Session	80
	3.9.3	Data Analysis Method for Objective 4	81
3.10	Design	n and Analysis	83
	3.10.1	Quantitative Study	83
3.11	Summ	ary	84
СНА	PTER 4	WORK-LIFE BALANCE (WLB) MODULE	85
4.1	Introd	uction	85
	4.1.1	Work-Life Balance (WLB) Module Aim	86
	4.1.2	Work-Life Balance (WLB) Module Scope	87
4.2	Work-	Life Balance (WLB) Module Flow	87
	4.2.1	Meet and Greet Session	88
	4.2.2	Heart Rate Variability (HRV) Training	88
	4.2.3	Bonding Session	89
	4.2.4	Resonant Breathing Training	90
	4.2.5	Personnel Management Checklist	91
	4.2.6	Work Management Checklist	92
	4.2.7	Islamic Spiritual Enrichment	97
4.3	Work-	Life Balance (WLB) module Assessment	98
4.4	Biofee	edback Script for Intervention Session	99
4.5	Perfor	mance Team	103
	4.5.1	Team Function	103
	4.5.2	The Flow of Performance Team	104
	4.5.3	Organisation Chart	105

	4.5.4	Intervention Process of the Team to the Worker	106
4.6	Sumn	nary	108
СНА	PTER :	5 RESULTS AND FINDINGS	109
5.1	Introd	luction	109
5.2	Profil	e of Respondents	109
5.3	Findir	ng Objective 1	111
5.4	Findir	ng Objective 2	115
5.5	Work	-Life Balance (WLB) Data Processing	121
5.6	Stress	, Depression and Anxiety	129
5.7	Emplo	oyee Physiological Measures	130
5.8	Satisf	action With Life Scale (SWLS)	131
5.9	Produ	ctivity Measures	131
5.10	Hypot	theses Finding	134
5.11	Resea	rch Hypothesis Summary	136
5.12	Sumn	nary	141
СНА	PTER (6 DISCUSSION AND CONCLUSION	142
6.1	Introd	luction	142
6.2	Discu	ssion and Conclusion of Research Finding	142
	6.2.1	Discussion and Conclusion for Objective 1	142
	6.2.2	Discussion and Conclusion for Objective 2	144
	6.2.3	Discussion and Conclusion for Objective 3	146
	6.2.4	Discussion and Conclusion for Objective 4	147
	6.2.5	Research Conclusion on Relationship of Stress and Work Performance	149

6.3	Recapitulation of Study	151
6.4	Intervention Session and its Contribution to Improve Employees' Productive	ity
		152
6.5	Implications of Study	153
	6.5.1 Theoretical Implication	153
	6.5.2 Practical Implication	153
6.6	Limitation of the Study and Suggestion for Future Research	154
6.7	Summary	155
REFI	ERENCES	158
LIST	OF PUBLICATIONS	253

LIST OF TABLES

Table 2.1	Dimensions of Work Performance	35
Table 3.1	Result of a preliminary survey of DASS-42	56
Table 3.2	DASS Score for High and Low Score Employees	57
Table 3.3	HRV Score for High and Low Score Employees	57
Table 3.4	Descriptives statistics of HRV and DASS variables	57
Table 3.5	Demographic Characteristics	59
Table 3.6	Work-Life Balance (WLB) Module Revision	63
Table 3.7	Demographic Characteristics of the Study Sample	65
Table 3.8	Cut-off Score for Depression, Anxiety and Stress Scale in	
	DASS-42	66
Table 3.9	Biofeedback Script for Objective 2	69
Table 3.10	Example of Protocol in Biofeedback Script	73
Table 3.11	Work-Life Balance (WLB) module Comparison	76
Table 3.12	Session Allocation	79
Table 4.1	Biofeedback Script for Activity 1	99
Table 4.2	Biofeedback Script for Activity 2	99
Table 4.3	Biofeedback Script for Activity 3	100
Table 4.4	Biofeedback Script for Activity 4	100
Table 4.5	Biofeedback Script for Activity 5	100
Table 4.6	Biofeedback Script for Activity 6	101
Table 4.7	Biofeedback Script for Activity 7	101
Table 4.8	Biofeedback Script for Activity 8	101
Table 4.9	Biofeedback Script for Activity 9	102
Table 4.10	Biofeedback Script for Activity 10	102
Table 4.11	Biofeedback Script for Activity 11	103
Table 4.12	Biofeedback Script for Activity 12	103
Table 5.1	Profile of Respondents	110
Table 5.2	Percentage of respondents experiencing each the	
	negative emotion	111
Table 5.3	Demographic data of respondents experiencing one or more	

	emotional symptoms and High DASS - Frequency	113
Table 5.4	Respondents' demographic data which fall under category Depression, Anxiety, Stress and High DASS - Percentage	114
Table 5.5	DASS-42 item Mean Score for Treatment and Control Group of Respondents	115
Table 5.6	HRV Score for Treatment Group Employees	116
Table 5.7	HRV Score for Control Group Respondents	117
Table 5.8	Descriptive Statistics of HRV and DASS-42 item variable	118
Table 5.9	Productivity Calculation	122
Table 5.10	Cycle Time and Productivity – Pre and Post Treatment Group	123
Table 5.11	Satisfaction With Life Scale (SWLS) – Pre and Post	
	Treatment Group	124
Table 5.12	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption	127
Table 5.13	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption	128
Table 5.14	Mean, standard deviation, median and 25 – 75 Quartile for the	
	DASS Scores from Pre to Post	129
Table 5.15	Mean and Standard Deviation of Coherence Ratio by	
	Group Pre-post Training	130
Table 5.16	Mean and Standard Deviation of Cycle time and Percentage	
	of Productivity From Pre to Post	132
Table 5.17	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption on Stress	137
Table 5.18	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption on Depression	138
Table 5.19	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption on Anxiety	139
Table 5.20	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption on Coherence Ratio	139
Table 5.21	Kolmogorov-Smirnov Statistics of Normality Distribution	
	Assumption on Coherence on SWLS	140

Table 5.22 Kolmogorov-Smirnov Statistics of Normality Distribution
Assumption on Coherence on Productivity 141

LIST OF FIGURES

Figure 2.1	Interaction of the Dimension of Work Performance	35
Figure 2.2	Details about HRV Power Spectrum	37
Figure 2.3	Benefit of Work-Life Balance	42
Figure 2.4	Stress and Productivity Level	44
Figure 2.5	The Relationship Between Outcomes of Good HRV and Productivity	45
Figure 2.6	Proposed Contribution of This Study	46
Figure 3.1	Research Methodology Procedure	50
Figure 3.2	Overview of the Process of the Research Methodology	51
Figure 3.3	The Structure of Participants Selection	55
Figure 3.4	CTRT Total Behaviour	58
Figure 3.5	Flowchart of Validation Process	61
Figure 3.6	EmWave Pro device flowchart	66
Figure 3.7	EmWave Pro device	67
Figure 3.8	Ear Sensor	68
Figure 3.9	Screen EmWave Pro Device	68
Figure 3.10	Relationship Between Individual Breathing cycle, BP and HR	71
Figure 3.11	Model ADDIE	73
Figure 3.12	Biofeedback Process Development	75
Figure 3.13	Experimental Procedure of Intervention Session	80
Figure 4.1	Work-Life Balance (WLB) module relationship	86
Figure 4.2	Work-Life Balance (WLB) module Flow for Intervention Session	88
Figure 4.3	EmWavePro Screenshot	89
Figure 4.4	Paced Breathing Screen	90
Figure 4.5	The Urgent/Important Matrix	93
Figure 4.6	Flow of Performance Team	104
Figure 4.7	Organisation Chart	105
Figure 4.8	Performance Team	106
Figure 4.9	Fill-in Questionnaire Session	107
Figure 4.10	Biofeedback Session	107

Figure 5.1	Percentage of Respondents of DASS-42 item results	111
Figure 5.2	Distribution of Coherence Ratio in Treatment Group	119
Figure 5.3	Distribution of Coherence Ratio in Control Group	120
Figure 5.4	Satisfaction With Life Scale (SWLS) – Description	127
Figure 5.5	DASS-42 item Score	129
Figure 5.6	Coherence at Pre and Post Training By Groups	131
Figure 5.7	Comparison of respondents Satisfaction With Life Scale (SWLS)	
	on Pre and Post Training	131
Figure 5.8	Cycle Time Pre and Post Training	132
Figure 5.9	Productivity Measures at Pre and Post Training	132
Figure 5.10	Percentage of employees' Productivity Pre and Post	133
Figure 6.1	Factors Contribute to Occupational Stress among Assembly	
	Line Operators	150

LIST OF ABBREVIATIONS

HRV Heart Rate Variability

DASS Depression Anxiety Stress Scale

WLB Work-Life Balance (WLB)

SOP Standard Operating Procedure

EES Employee Engagement Survey

WMSDs Work-related Musculoskeletal Disorders

ULF Ultra-Low-Frequency

VLF Very-Low-Frequency

LF Low-Frequency

HF High-Frequency

FFT Fast Fourier Transformation

PNS Parasympathetic Nervous System

SNS Sympathetic Nervous System

BP Blood Pressure

HR Heart Rate

RSA Respiratory Sinus Arrhythmia

RF Respiratory Frequency

TG Treatment Group – High Stress Employee

CG Control Group – Low Stress Employee

CTRT Choice Theory Reality Therapy

ADDIE Analysis, Design, Development, Implementation, Evaluation

LIST OF APPENDICES

APPENDIX 1: Expert Validation Form	177
APPENDIX 2: Satisfaction With Life (SWLS) Questionnaire	184
APPENDIX 3: Informed Consent Form	189
APPENDIX 4: Assessment Form	193
APPENDIX 5: Biofeedback Script For Intervention Session (Malay)	213
APPENDIX 6: Data Analysis	217
APPENDIX 7: Depression Anxiety Stress Scale (Dass) Survey	229
APPENDIX 8: Training Attendance Record	241

REFERENCES

- Abbas, J., Aqeel, M., Abbas, J., Shaher, B., A., J., Sundas, J., and Zhang, W. (2019). The moderating role of social support for marital adjustment, depression, anxiety, and stress: Evidence from Pakistani working and nonworking women. *Journal of Affective Disorders*, 244(August 2018), 231–238. https://doi.org/10.1016/j.jad.2018.07.071
- Abu-Saad, I. (2016). Individualism and Islamic Work Beliefs. Journal of Cross-Cultural Psychology, 29(2), 377-383. doi:10.1177/0022022198292007
- Aidoo, B. (2012). An examination of mature interpersonal relationships among international and American college students. Ph.D. Thesis. The University of Southern Mississippi, USA.
- American Psychological Association. Stress: The different kinds of stress. [online] Available at: http://www.apa.org/helpcenter/stresskinds. aspx [Accessed 15 Feb. 2018].
- Appelhans, B.M. and Luecken, L.J. (2006) 'Heart rate variability as an index of regulated emotional responding', *Review of General Psychology*, Vol. 10, No. 3, pp.229–240, DOI:10.1037/1089-2680.10.3.229.
- Association of Employees' Compensation Board of Canada, 2013. 2013 Injury Statistics. [online] Available at: http://awcbc.org/?page_id=14 [Accessed October, 2019].
- A. T. Manshor, "Sources of stress at the work place", Academy of Strategic and Organizational Leadership Journal, vol. 4, no. 2, pp. 91-97, 2000
- Australian Psychological Society. Stress APS. [online] Available at: https://www.psychology.org.au/for-the-public/Psychology-Topics/Stress [Accessed 15 Feb. 2018].
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders.

 4th ed. Washington (DC): American Psychiatric Association; 1984
- Anderson, J. (2005). Cognitive Psychology and its Implications. New York: Worth Publishers.

- Appelhans, B.M. and Luecken, L.J. (2006) 'Heart rate variability as an index of regulated emotional responding', Review of General Psychology, Vol. 10, No. 3, pp.229–240, DOI:10.1037/1089-2680.10.3.229.
- Bali, A. and Jaggi, A.S. (2015) 'Clinical experimental stress studies: methods and assessment', *Reviews in the Neurosciences. De Gruyter*, Vol. 26, No. 5, pp.555–579, DOI: https://doi.org/10.1515/revneuro-2015-0004.
- Brogdon, S.G. (2008). Relationships between perceptions of personal ownership of laptop computers and attitudes toward school. Ph.D. Thesis. University of North Texas, USA.
- Brown, J. and Brown, J. (2006). China, Japan, Korea Culture and Customs. North Charleston: BookSurge.
- Bridger, R.S., (2003). Introduction to ergonomics 2nd ed. Taylor and Francis. New York, United States.
- Barrios-Choplin, B., McCraty, M., Joseph Sundram, J. and Atkinson, M. 1999. *The Effect of Employee Self-Management Training on Personal and Organisational Quality*. (Publication No. 99-083, 1999). Boulder Creek, CA: HeartMath Research Center, Institute of HeartMath. [online] Available at: http://www.heartmath.org/templates/ihm/section_includes/research/rese archpapers/cal-employee-training.pdf [Accessed 15 November 2007]
- Behrmann, M. (2015), Associations of heart rate variability and the work ability index:

 A study on finding objective mental health measures for employees'health surveillance programs, Thesis. Kristianstad University Sweden.
- Berntson, G.G., Bigger, J.T., Eckberg, D.L., Grossman, P., Kaufmann, P.G., Malik, M., Nagaraja, H.N., Porges, S.W., Saul, J.P., Stone, P.H., and van Der Molen, M.W. 1997. Heart Rate Variability: origins, methods, and interpretive cavats. *Psychophysiology.* **34**: 623-648

- Ben Piven . 2019. San Diego, Portland, San Fran top US list for work-life balance [online]

 Available at: https://www.aljazeera.com/ajimpact/san-diego-portland-san-frantop-list-work-life-balance-190806194535217.html [Accessed Dec 2019]
- Berry ME, Chapple IT, Ginsberg JP, Gleichauf, KJ, Meyer, JA and Nagpal ML Non-pharmacological Intervention for chronic pain in veterans: A pilot study of heart rate variability biofeedback Global Advances in Health and Medicine.:Improving Healthcare Outcomes Worldwide, 2014; 3(2): 28–33
- Bhui, K., Dinos, S., Galant-Miecznikowska, M., de Jongh, B., and Stansfeld, S. (2016). Perceptions of work stress causes and effective interventions in employees working in public, private and non-governmental organisations: a qualitative study. *BJPsych Bulletin*, 40(6), 318–325. https://doi.org/10.1192/pb.bp.115.050823
- Bickman, L. and Rog, D.J. (2009). Apractical apparoach: Planning applied socialresearch. In L.Bickman and D. J. Rog (Eds.), *Applied Social Research Methods* (pp. 3-43). London, UK: Sage.
- Birnbaum, H.G., Kessler, R.C., Kelley, D., Ben-Hamadi, R., Joish, V.N., Greenberg, P.E.,
 2010. Employer burden of mild, moderate, and severe major depressive disorder: mental health services utilization and costs, and work performance. Depress. Anxiety
 27 (1), 78–89.
- Burch J B, Melannie A, Pallavi B, Jameson S, James W, Venkat K, Ginsberg J P 2019 Shift Work and Heart Rate Variability Coherence: Pilot Study Among Nurses Applied Psychophysiology and Biofeedback 2019; 44(1): 21-30
- Bourne LE Jr, Yaroush RA. Stress and cognition: a cognitive psychological perspective (Final report). 2003. Retrieved October 12, 2012, from: http://humansystems.arc.nasa.gov/eas/download/non_EAS/Stress_and_Cognition.pdf

- Carolan, S., Harris, P.R., Cavanagh, K., 2017. Improving employee well-being and effectiveness: systematic review and meta-analysis of web-based psychological interventions delivered in the workplace. J. Med. Internet Res. 19 (7), e271. http://dx.doi.org/10.2196/jmir.7583.
- Cattell J. M. (1886). The time it takes to see and name objects. Mind. 11: 53–65.
- Cartwright S, Cooper CL. Managing Workplace Stress. London, England: Sage Publications; 1997.
- Creswell, J.W. and Plano Clark, V.L. (2007). *Designing and conducting mixed methods research*. Thousand Oaks, CA: Sage.
- Creswell, J. W. (2008). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (3rd ed.). New Jersey: Pearson Education, Inc.
- D. Barlow, P. M. P. Lehrer, R. R. L. Woolfolk, W. E. Sime, and P. M. P. Lehrer, Principles and practice of stress management, vol. 17, no. 3. 2007.
- Derks, Y.P.M.J. et al. (2017) 'mHealth in mental health: how to efficiently and scientifically create an ambulatory biofeedback e-coaching app for patients with borderline personality disorder', *International Journal of Human Factors and Ergonomics*, Inderscience Publishers (IEL), Vol. 5, No. 1, pp.61–92.
- De Witte, N.A.J., Buyck, I. and Van Daele, T. (2019) 'Combining biofeedback with stress management interventions: a systematic review of physiological and psychological effects', *Applied Psychophysiology Biofeedback*, Springer US, Vol. 44, No. 2, pp.71–82, DOI: 10.1007/s10484-018-09427-7.
- Deros, B., Khamis, N.K., Ismail, A.R., Jamaluddin, H., Adam, A.M., Rosli, S., 2011. An ergonomics study on assembly line workstation design. Am. J. Appl. Sci. 8 (11),

1195-1201.

- Delecta, P, (2011). Work-Life Balance (WLB). International Journal of current Research, 3(4), 186-188.
- DeFrank RS, Cooper CL. Worksite stress management interventions: their effectiveness and conceptualisation. J Manage Psychol. 1987;2: 4–10.
- Dewa, C.S., Hoch, J.S., 2015. Barriers to mental health service use among employees with depression and work productivity. J. Occup. Environ. Med. 57 (7), 726–731. [online] Available at: http://dx.doi.org/10.1097/JOM.0000000000000472. [Accessed Jan 2020]
- D.Babin Dhas. 2015. A Report On The Importance Of Work-Life Balance. International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 9 (2015) pp. 21659-21665
- Doherty, L., Manfredi, S., Rollin, H. (2000) The Family-Friendly Workplace? British and European Perspectives, in Dark, J., Ledwith S., Woods, R. (eds.), Women and the City, New York: Palgrave
- Edimansyah, B. A. et al. (2008), Self-perceived Depression, Anxiety, Stress and Their Relationships with Psychosocial Job Factors in Male Automotive Assembly Workers, Industrial Health, 46(1), 90-100.
- Elbay, R. Y., Kurtulmuş, A., Arpacıoğlu, S., and Karadere, E. (2020). Depression, anxiety, stress levels of physicians and associated factors in Covid-19 pandemics. *Psychiatry Research*, 290(May), 1–5. https://doi.org/10.1016/j.psychres.2020.113130
- Elola, L.N., Clara, A., Tejedor, P., 1996. New methods of evaluating physical demand at work areas. Technovation 16 (10), 595–599.

- Erik Hollnagel, 2010 Cognitive ergonomics: it's all in the mind, pages 1170, 2010.

 [online] Accessed at:

 http://www.tandfonline.com/doi/pdf/10.1080/001401397187685?need

 Access=true [Accessed 23 April 2020]
- Eviatiwi Kusumaningtyas Sugiyanto, Taufikur Rahman, Aprih Santoso, 2020. Islamic Work Ethics in Building Work Life Balance to Achieve Islamic Job Satisfaction, http://inferensi.iainsalatiga.ac.id
- Ezra M, Deckman M, (2006). Balancing Work and Family Responsibilities: Flextime and Child Care in the Federal Government. Jstor, 56(2), 174-179
- Ezrin Hani Sukdarin, Baba Md Deros, Jaharah A. Ghani, Nur Syazwani Mohd Nawi and Ahmad Rasdan Ismail (2016) Postural assessment in pen-and-paper-based observational methods and their associated health effects: a review. International Journal of Occupational Safety and Ergonomics, 22(3):398-398.
- Ezrin Hani Sukdarin, Nooraphat Uttraphan PIM, Junaidah Zakaria, Baba Md Deros and Nur Syazwani Md Nawi (2016). Malaysian Journal of Human Factors and Ergonomics. 1(1): 40-44.
- Fairbrother, K., & Warn, J. (2003). Workplace dimensions, stress & job satisfaction. Journal of Managerial Psychology, 18 (1), 8-21.
- Friedli K, King MB, Lloyd M, Horner J. Randomised controlled assessment of non-directive psychotherapy versus routine general-practitioner care. Lancet. 1997;350:1662–1665.
- Fujimura T, Okanoya K. Heart Rate Variability Predicts Emotional Flexibility in Response to Positive Stimuli, Science Research, 2012; 3: 578-82
- Camm, A. J. et al. (1996), Heart rate variability: standards of measurement, physiological interpretation and clinical use, Circulation, 93, 1043-1065.

- Greenbaum, H. H. and White, N. D. (1976). Biofeedback at the organisational level: the communication audit. Journal of Business Communication, 13(4):3-16.
- Garver R. B. (1977). The enhancement of human performance with hypnosis through neuromotor facilitation and control of arousal level. American Journal of Clinical Hypnosis. 19(2): 177-181.
- Gibbert, M., W. Ruigrok et al. (2008). "What passes as a rigorous case study?" Strategic Management Journal, 29(13), 1465-1474.
- Golabchi, A., Han, S., Seo, J., Han, S., Lee, S., Al-Hussein, M., 2015. An automated biomechanical simulation approach to ergonomic job analysis for workplace design. J.Construct. Eng. Manag. 141 (8), 4015020.
- Gould D., Hodge K., Petlichkoff L., and Simons J. (1990). Evaluating the effectiveness of a psychological skills educational workshop. The Sport Psychologist. 4: 249-260.
- Hajar Opir (2006), "Metodologi Pembangunan Akhlak di Kalangan Pelajar Sekolah Menengah: Kajian Khusus di SMI Al-Amin Gombak, Selangor." (Disertasi Sarjana Usuluddin, Akademi Pengajian Islam, Universiti Malaya). h. 49.
- Haji Muhammad Zakaria (2009). How to self-management? [online] Available at: http://hajimuhammadzakaria.blogspot.com/2009/07/bagaimana-mengurus-diri.html [Accessed 10 April 2020]
- Hart KE. Introducing stress and stress management to managers. Journal of Managerial Psychology. 1990;5(2):9–16.
- Hart, L. and Petty, T. (2017). Taming the tiger: Developing a valid and reliable assessment system in partnership with faculty. Paper presented at 2017 Fall CAEPCon, Washington, D.C.

- Hancock PA, Warm JS. A dynamic model of stress and sustained attention. Hum Factors. 1989;31(5):519–31.
- Hansen A.L., Johnsen B.H. and Thayer J.F. 2003. Vagal influence on working memory and attention. *International Journal of Psychophysiology*. **48**: 263–274
- Hansen, A.L., Johnsen, B.H., Sollers, J.J., Stenvik, K. and Thayer, J.F. (2004). Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining. *Eur J Appl Physiol*, 93(3), 263–72.
- HSE, 2016. Work related stress, anxiety and depression statistics in Great Britain. [online] Available at: http://www.hse.gov.uk/statistics/causdis/stress/, [Accessed date: 3 July 2017]
- HeartMath.org (2016). emWave® Desktop: Destress Rejuvenate Perform. [online] Available at: http://www.beyondthebarriers.co.uk/business/heartmath/heartmath-products/emwave-desktop/ [Accessed date: 3 July 2019]
- Hochschild, Arlie R. 1997. *The Time Bind: When Work Becomes Home and Home Becomes Work*. New York: Metropolitan Books.
- Ian Robinson Why Stress Is Not That Bad for Your Productivity at Work? [online]

 Available at: https://www.actitime.com/productivity/employee-productivity-atwork/ [Accessed date: 4 May 2020]
- ILO (2016) Workplace stress: a collective challenge. Labour Administration, Labour Inspection and Occupational Safety and Health, Turin, Italia
- Ivancevich JM, Matteson MT, Freedman SM, Phillips JS. Worksite stress management interventions. Am Psychol. 1990;45:252–261.
- Jandt, F.E. (1973). Biofeedback as intrapersonal communication. International Communication Assn (Motareal). State University College Press, NY, USA.
- Janice Johnson, (2004). Flexible working: Changing the Manager's role. Management Decision, 42(6), 721-725.

- Jacob, K.K. (2010). Separating attention from arousal during TV viewing: using heart rate variability to track variations in sympathetic and parasympathetic activation. Ph.D. Thesis. Indiana University, USA.
- Järvelin-pasanen, S., Sinikallio, S. and Tarvainen, M.P. (2018) 'Heart rate variability and occupational stress systematic review', *Industrial Health*, Vol. 56, No. 56, pp.500–511.
- Joe, F. H. J., Marko, S., Lucas, H., and Volker, G. K. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. doi:doi:10.1108/EBR-10-2013-0128
- Järvelin-pasanen, S., Sinikallio, S. and Tarvainen, M. P. (2018), Heart rate variability and occupational stress systematic review, Industrial Health, 56(6), 500-511.
- Karasek, R. and Theorell, T. (1990), Healthy Work: Stress, Productivity, and the Reconstruction of Working Life, Basic Books, New York, USA.
- Kassel, S. C. and LeMay, J. (2015). Interpersonal biofeedback: Biofeedback in a relationship context. Biofeedback, 43 (4), 153-157.
- K. Hnsel, Wearable and ambient sensing for well-being and emotional awareness in the smart workplace, Proc. 2016 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. Adjun. UbiComp 16, pp. 411416, 2016.
- K. Hnsel, Wearable and ambient sensing for well-being and emotional awareness in the smart workplace, Proc. 2016 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. Adjun. - UbiComp 16, pp. 411416, 2016.
- Kim IJ (2015) Knowledge Gaps and Research Challenges in the Contemporary Ergonomics. J Ergon 5:2

- Kim, H. et al. (2018) 'Stress and heart rate variability: a meta-analysis and review of the literature', Psychiatry Investigation, Vol. 15, No. 3, pp.235–245, DOI: https://doi.org/10.30773/pi.2017.08.17.
- Kumar, C. and Tripathi, S. (2016) 'Evaluation of cardiac responses to stress in healthy individuals a non invasive evaluation by heart rate variability and Stroop test', *International Journal of Scientific Research*, Vol. 5, No. 7, pp.286–289.
- Lazarus, R.S. (1990) 'Theory-based stress measurement', Psychological Inquiry, Taylor and Francis, Vol. 1, No. 1, pp.3–13.
- Lehrer, PM, Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 2014; 5
- Lehrer, P.M. and Vaschillo, E.G. 2003. Heart Rate Variability Biofeedback" A New Tool for Improving Autonomic Homeostasis and Treating Emotional and Psychosomatic Diseases. *Japanese Journal Biofeedback* Research. **30**: 7-16
- Lee SH, Ahn SC, Lee YJ, et al.: Effectiveness of a meditation-based management program as an adjunct to pharmacotherapy in patients with anxiety disorder. J Psychosom Res, 2007, 62: 189–195
- Limm, H. et al. (2010), Self-perceived stress reactivity is an indicator of psychosocial impairment at the workplace, BMC Public Health, 10(252), 14-18.
- Lovibond, S.H., and Lovibond, P. F. (1995). Manual for the Depression Anxiety Stress impact of a neW emotional self-management program on stress, emotions, heart rate variability. Integrative Physiological and Behavioral Science. 33(2): 151.
- Lovibond, S.H., and Lovibond, P. F. (1995). Manual for the Depression Anxiety Stress impact of a neW emotional self-management program on stress, emotions, heart rate variability. Integrative Physiological and Behavioral Science. 33(2): 151.

- Low A, McCraty R. Heart rate variability: New perspectives on assessment of stress and health risk at the workplace, Heart and Mind, 2018; 2:16-27.
- Lehrer, P.M. (2003) 'Heart rate variability biofeedback increases Baroreflex gain and peak expiratory flow', Psychosomatic Medicine, Vol. 65, No. 5, pp.796–805, DOI: 10.1097/ 01.PSY.0000089200.81962.19.
- Lehrer, P.M. 2007. Biofeedback training to increase heart rate variability. In *Principles and Practice of Stress Management*, (3rd ed), pp. 227 248. P.M. Lehrer, R.L.Woolfolk and W.E. Sime. NewYork: The Guilford Press
- Marchand, A., Demers, A. and Durand, P. (2005), "Does work really cause distress? The contribution of occupational structure and work organisation to the experience of psychological distress", Social Science and Medicine, Vol. 61 No. 1, pp. 1-14.
- Matt Middlesworth, 2015. Cognitive Ergonomics 101: Definition, Applications, and Disciplines. [online] Available at: https://ergo-plus.com/cognitive-ergonomics/ [Accessed 13 March 2020]
- Mauss, D. and Jarczok, M.N. (2016) 'The streamlined Allostatic load index: a replication of study results the streamlined Allostatic load index: a replication of study results', Stress, Vol. 19, No. 6, pp.1–20, DOI: 10.1080/10253890.2016.1219718.
- Murphy LR. Stress management in working settings: a critical review of the health effects. *AmJ Health Promotion*. 1996;11:112–135.
- Mustafa Tahan (2006), *Al-Tarbiyyah Wa Dauruha Fi Tashkil Al-Suluk*, Dar Al-Wafa": Al-Mansurah. h. 271
- Megaw, E. D. (1979). Factors affecting visual inspection accuracy. Applied Ergonomics, (July), 27–32. doi:10.1016/0003-6870(79)90006-1

- Melo, J.L., (2009). Ergonomia práctica, guía para la evaluación ergonómica de un puesto de trabajo. Ed. Fundación Mapfre. España.
- Marksberry, K. Stress Effects. [online] The American Institute of Stress. [online] Available at: https://www.stress.org/stress-effects/ [Accessed 15 Feb.2018].
- Marksberry, K. Stress Effects. [online] The American Institute of Stress. [online] Available at: https://www.stress.org/stress-effects/ [Accessed 15 Feb 2018].
- Marsudi, Febriani, R., Sa'diyah, C., and Pratika, Y. (2019). The Implementation of Islamic Values in Improving the Quality of Employee Performance in Workplace. KnE Social Sciences, 3(13). doi:10.18502/kss.v3i13.4231
- Murphy LR. Stress management in working settings: a critical review of the health effects. Am J Health Promotion. 1996;11:112–135.
- McCraty R, Childre, D, Coherence: bridging personal, social, and global health.

 Alternative Therapy Health Medicine, 2010;16:10–24
- McCraty R. and Tomasino, D. 2004. *Heart Rhythm Coherence Feedback: A New Tool for Stress Reduction, Rehabilitation, and Performance Enhancement*. Paper presented at the First Baltic Forum on Neuronal Regulation and Biofeedback, Riga, Latvia, 2-5 November 2004. (online) Available at: http://www.heartmath.com/health/professional/hrv_biofeedback.pdf (Accessed 30 October 2018)
- McCraty R, Shaffer F. Heart rate variability: new perspectives on physiologi-cal mechanisms, assessment of self-regulatory capacity, and health risk. *Glob Adv Health Med* (2015) 4:46–61. doi:10.7453/gahmj.2014.073
- McCraty, R. et al. (2014) 'Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being', *Frontiers in Psychology*, September, Vol. 5, pp.1–13, DOI:
 - 10.3389/fpsyg.2014.01090.
- Middlesworth, M., 2012. A Step-by-step Guide to the Rapid Entire Body Assessment

- (REBA) Tool. Ergonomics Plus. [online] Available at: www.ergo.plus.com [Accessed January, 2016]
- Monteze, N.M. et al. (2015) Heart Rate Variability in Shift Workers: Responses to Orthostatism and Relationships with Anthropometry, Body Composition and Blood Pressure', BioMedResearch International, DOI: http://dx.doi.org/10.1155/2015/329057.
- Moss, D. and Shaffer, F. (2017) 'The application of heart rate variability biofeedback to medical and mental health disorders', *Biofeedback*, The Association for Applied Psychophysiology and Biofeedback, Vol. 45, No. 1, pp.2–8.
- Ngambi H.C, (2004). Job Sharing and Employee Productivity: Two for the Price of One?

 Southern African Business Review, 8(2), 16-30
- Nick Bloom, Tobias Kretschmer, John Van Reenan. Work-Life Balance, Management Practices and Productivity. [online] Available at: http://www.nber.org/chapters/c0441 (p. 15 54) [Accessed January, 2016]
- NDSU (2008) Ergonomics safety policy and standard operating procedure. [online]
 Available at: https://www.ndsu.edu/fileadmin/policesafety/sop/Ergonomics.pdf.
 [Accessed On: 13 November 2017]
- Newman JE, Beehr TA. Personal and organisational strategies for handling job stress: a review of research and opinion. Personnel Psychol. 1979;32:1–43.
- Nuruzzakiyah MI, Ezrin Hani S, Hanida. A. A. (2020). Original Article the Correlation Between Psychosocial Risk Factors and Work. *Malaysian Journal of Public Health Medicine*, (1), 23–29.
- Ontario Safety Association for Community and Healthcare, 2010. Musculoskeletal Disorders Prevention Series Part 1: MSD Prevention Guideline for Ontario. [online] Available at: http://www.osach.ca/misc_pdf [Accessed October, 2019]

- Panari, C. et al. (2012) 'Assessing and improving health in the workplace: an integration of subjective and objective measures with the STress Assessment and Research Toolkit

 (St.A.R.T.) method', Journal of Occupational Medicine and Toxicology. Journal of
- Occupational Medicine and Toxicology, Vol. 7, No. 1, p.1, DOI: 10.1186/1745-6673-7-18.
- Paul M. Lehrer, Robert L. Woolfolk, Wesley E. Sime. Principles and Practice of Stress Management, Third Edition, page 11, 16 August 2007
- Peter Berg, Arnel L. Kallerberg and Eileen Appelbaum, 2003, Balancing Work and Family: The Role of High-Commitment Environments INDUSTRIAL RELATIONS, Vol. 42, No. 2 (April 2003).
- Peter Budnick and Rachel Michael What is Cognitive Ergonomics? Cognitive Ergonomics and Engineering Psychology which appeared in Ergonomics Today(TM)on June 11, 2001.
- Porges, S.W. (2007) 'The polyvagal perspective', Biological Psychology, Vol. 74, No. 2, pp.116–143.
- Pyle, A.S. (2014). Intercultural emergency communication: making sense of intercultural communication competence in emergency response contexts. Ph.D. Thesis. George Mason University, USA.
- Ross, M.W. (2011). The evolution of education: Use of biofeedback in developing heart intelligence in a high school setting. Ph.D. Thesis. University of Calgary, USA.
- Robinson, L., Smith, M. and Segal, R., Stress Management: Using Self-Help Techniques for Dealing with Stress, [online] Available at:

- https://www.helpguide.org/articles/stress/stress-management.htm [Accessed 17 Feb. 2018].
- Ramos-galarza, C., and Acosta-rodas, P. (2018). *Stress and productivity in employees of textile companies*. [online] Available at: https://doi.org/10.1108/JFMM-02-2018-0030. [Accessed 20 Jan. 2019].
- Riffe, D., Lacy, S., and Fico, F.G. (2005). Analyzing media messages: Using quantitative content analysis in research. Mahwah, NJ: Lawrence Erlbaum Associates.
- Peter Vink, Ernst A.P. Koningsveld, Johan F. Molenbroek (2006) Positive outcomes of participatory ergonomics in terms of greater comfort and higher productivity. Applied Ergonomics. 37: 537-546
- Reynard A, Gevirtz R, Rustin B, Milton B, Kerri B, Heart rate variability as a marker of self-regulation, Applied Psychophysiology and Biofeedback, 2011; 36(3) 209-215
- Reyes, F.J. (2014). Implementing heart rate variability biofeedback groups for veterans with posttraumatic stress disorder. *Biofeedback*, 42 (4), 137-142.
- Reiner R 2008 Integrating a portable biofeedback device into clinical practice for patients with anxiety disorders: Results of a pilot study, Applied Psychophysiology and Biofeedback, 2008; 33(1) 55–61
- Ross, M.W. (2011). *The evolution of education: Use of biofeedback in developing heart intelligence in a high school setting*. Ph.D. Thesis. University of Calgary, USA.
- Sanne, B. et al. (2003), Occupational dfferences in levels of anxiety and depression: the Hordaland Health Study, Journal of Occupational Environmental Medicine, 45(6), 628-638.
- Sanderson, K., Andrews, G., 2006. Common mental disorders in the workforce: recent

- findings from descriptive and social epidemiology. Can. J. Psychiatr. 51 (2), 63–75.
- Sehrish, Kiran, Rabia, Syed. (2015). Impact of Work-Life Balance (WLB) on Employee Productivity: An Empirical Investigation from the Banking Sector of Pakistan
- Sekaran, U., and Bougie, R. (2009). Research methods for business: A skill building approach (5th ed.). West Sussex, United Kingdom: John Willey and Sons Ltd.
- Shaffer, F., McCraty, R. and Zerr, C.L. (2014) 'A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability', Frontiers in Psychology, September, Vol. 5, pp.1–19, DOI: 10.3389/fpsyg.2014.01040.
- Sherina, M., Rampal, L., and Kaneson, N. (2004). Psychological Stress Among Undergraduate Medical Students. *Med J Malaysia*, 59(2), 207–2011. https://doi.org/10.1176/ajp.128.3.366
- Simonetta Manfredi and Michelle Holliday. (2004). Work-Life Balance (WLB), An audit of staff experience at Oxford Brookes University
- S. Leka, A. Griffiths, and T. Cox, Work Organisation and Stress, J. Vocat. Behav., no. 3, pp. 126, 2004.
- Snelgrove, S.r. (1998). Occupational stress and job satisfaction: A comparative study of health visitors, districts nurses and community psychiatric nurses. Journal of Nursing Management, 6(2), 97-104.
- Sutarto, A. P. (2011). The effect of heart rate variability biofeedback training for improving cognitive performance among female manufacturing operators. Ph.D. Thesis. University Malaysia Pahang, Malaysia.
- Sutarto, A P, Wahab M N A, Mat Zin N, Resonant Breathing Biofeedback Technique for Stress Reduction Among Manufacturing Operators International Journal of Occupational Safety and Ergonomics, 2012; 18(4): 549-61

Sutarto, A.P. and Abdul Wahab, M.N. 2008. The Development of Heart Rate Variability (HRV) -Biofeedback Training Protocol to Improve Visual Inspection Performance.

Proceeding Malaysian Technical Universities Conference on Engineering and Technology (MUCET) 2008, Perlis, Malaysia

Sutarto, A.P. and Abdul Wahab, M.N. 2008. Biofeedback Technique for Improving Human

Operator's Cognitive Performance. International Cyber Ergonomics Conference 2008 (CD Rom, University of Malaysia Sarawak, 15 September-15 October 2008

- Sutarto, A. P., Wahab, M. N. A. and Zin, N. M. (2013), Effect of biofeedback training on operator's cognitive performance, Work: A Journal of Prevention, Assessment and Rehabilitation, 44(2), 231-243.
- Sutherland VJ, Cooper CL. Stress prevention in the offshore oil and gas exploration and production industry (Publication No. CONDI/T/WP.1/1996). Geneva, Switzerland: International Labour Office; 1996.
- Swanson, V., Power, K., & Simpson, R. (1998). A comparison of stress and job satisfaction in female and male GPs and consultants. Stress Medicine, 12(1), 17-26.
- Taelman, J. et al. (2011) 'Time-frequency heart rate variability characteristics of young adults

during physical, mental and combined stress in laboratory environment', in *Annual*

International Conference of the IEEE Engineering in Medicine and Biology Society 2011,pp.1973–1976.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability. Standards of

- measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381
- Tengku Fatimah. Working Women and the Islamic Work-Life Balance Concept. (2019): International Journal of Academic Research in Business and Social Sciences.
- Thornbury, B. (1997). The folk performing arts: Traditional culture in contemporary Japan. Albany: State University of New York
- Thayer, JF, Åhs F, Fredriksonc M, Sollers JJ, Wager TD. Meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 2012; 36: 747-756
- Thayer, J. F. (2007). What the heart says to the brain (and vice versa) and why we should listen. Psychological Topics, 16 (2), 241-250.
- Thayer, J.F. et al. (2009) 'Heart rate variability, prefrontal neural function and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health', *Annals of Behavioral Medicine*, Vol. 37, No. 2, pp.141–153, DOI: 10.1007/s12160-009-9101-z.
- Thayer, J.F. and Lane, R.D. (2000) 'A model of neurovisceral integration in emotion regulation and dysregulation', *Journal of Affective Disorders*, Vol. 61, No. 3, pp.201–216.
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. 1996. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal. 17(3): 354–381

- Tashakori, A. and Teddlie, C. (2009). Integrating Qualitative and Quantitative Approaches to Research. In L. Bickman, and D. J. Rog (Eds.), *Applied Social Research Methods* (pp. 283-317). London, UK: Sage.
- Thurber M.R. 2006. Effects of Heart-Rate Variability Biofeedback Training on Music Performance Anxiety in University Students. Ph.D. Thesis. University of North Texas, USA. (online) http://www.heartmath.org/templates/ihm/research/researchd issertations/ Music_Performance_Anxiety_in_University_Students.pdf (31 October 2017)
- Tiina Hofman. 2019. What Is Heart Rate Variability (HRV) and Why Does It Matter? [online]

Available at: https://www.firstbeat.com/en/blog/what-is-heart-rate-variability-hrv/

[Accessed 21 Oct 2020]

- U.S. Department of Labor Occupational Safety and Health Administration. (2000). Ergonomics: The Study of Work. U.S. Department of Labor Occupational Safety and Health Administration
- Vartika Kashyap (2019). How to bring your team work management on top [online]

 Available at: https://www.proofhub.com/articles/what-is-work-management

 [Accessed 10 April 2020]
- Vaschillo, E. G., Vaschillo, B. and Lehrer, P. M. (2006) 'Characteristics of resonance in heart rate variability stimulated by biofeedback, Applied Psychophysiology and Biofeedback, 31(2), 129–142.
- Wooden, M. et al. (2017), Mental health and productivity at work: does what you do matter?, Labour Economics, 46, 150-165
- Woolfolk, R. L. (1998). The cure of souls: Science, values and psychotherapy. San Francisco: Jossey-Bass

- Wecker N.S., Kramer J.H., Wisniewski A, Delis D. C., Kaplan E. (2000). Age effects on executive ability. Neuropsychology. 14: 409-414.
- WebMD. Stress Symptoms: Effects of Stress on the Body. [online] Available at: http://www.webmd.com/balance/stress-management/stresssymptoms- effects of-stress-on-the-body#2 [Accessed 15 Feb. 2018].
- Wiersma, W. and Jurs, S.G. (2005). Research methods in education (8th ed.). Boston, MA: Pearson Education.
- Wheat, A.L. and Larkin, K.T. (2010) 'Biofeedback of heart rate variability and related physiology: a critical biofeedback of heart rate variability and related physiology: a critical review', Applied Psychophysiology and Biofeedback, Vol. 35, pp.229–242, DOI: 10.1007/s10484-010-9133-y.
- Wubbolding, R. E. et al. (2004), Reality Therapy: a global perspective, International Journal for the Advancement of Counselling, 26(3), 219–228
- Young, H.A. and Benton, D. (2018) 'Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health?', Behavioural Pharmacology, Vol. 29, pp.140–151, DOI: 10.1097/FBP.000000000000383.
- Yu, B. et al. (2018), Biofeedback for everyday stress management: a systematic review, Frontiers in ICT, 5(23)
- Zauszniewski, J. A., Au, T. and Musil, C. M. (2013), Heart rate variability biofeedback in grandmothers raising grandchildren: effects on stress, emotions, and cognitions, Biofeedback, 41(3), 144–149
- Zheng, C. S. et al. (2015), Impact of individual coping strategies and organisational work life balance programmes on Australian employee wellbeing, The International Journal of Human Resource Management, 27(5), 501-526