

Techno-economics and Life Cycle Assessment of Bioreactors Post-Covid19 Waste Management Approach

Edited by:

Puranjan Mishra, Lakhveer Singh and Pooja Ghosh

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-89848-5

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Susan Dennis Editorial Project Manager: Lena Sparks Production Project Manager: Bharatwaj Varatharajan

Cover Designer: Mark Rogers

Typeset by MPS Limited, Chennai, India

Contents

List	ist of contributors		
		Bioreactors: Current status, recent trends hallenges	1
1.	ma	pact of COVID-19 on waste and resource nagement practices am Thakur	3
	1.1	Introduction	3
	1.2	Types of waste	2
		1.2.1 Waste generation during COVID-19 pandemic	4
		Impact of COVID-19 on waste management	5
	1.4	The unique challenge with SARS CoV-2 and waste management	6
		1.4.1 Waste management strategies	7
		Policy and regulatory approaches	Ç
		WHO guidelines on waste management	10
	1.7	Conclusion and future perspective	10
	Refe	erences	11
2.		obic and anaerobic bioreactor systems for stewater treatment	13
		nika Jain, Smita S. Kumar and Lalit Goswami	
	2.1	Introduction	13
	2.2	Bioreactor and different configurations	15
	2.3	Continuous stirred tank bioreactor	15
	2.4	Airlift bioreactors	16
	2.5	Anaerobic fluidized bed bioreactors	16
	2.6	Packed bed (fixed bed) bioreactors	17
	2.7	Membrane bioreactors	18
	2.8	Upflow anaerobic sludge blanket reactor	19
	2.9	Conclusion	20
	Ackı	nowledgment	21
	Refe	erences	21

	are perspective	
Mar	nta Devi Sharma, Swati Sharma, Puranjan Mishra	
	Saurabh Kulshrestha	
5.1	Introduction	
5.2	Directives of economic analysis	
	Cost analysis	
	5.3.1 Capital costs	
	5.3.2 Production costs	
	5.3.3 Materials and utilities	
5.4	Cost analysis for bioreactors applied for waste management	
	Cost evaluation of submerged anaerobic membrane bioreactor for	
	municipal secondary wastewater treatment	
5.6	Monte Carlo cost estimation method for wastewater treatment	
	membrane bioreactors	
5.7	Cost analysis for aerobic fermenters	
	5.7.1 Stirred tank reactor and bubble column reactor cost analysis	
5.8	Future perspectives	
Refe	erences	
ıan	dfill management and efficacy of anaerobic reactors in the	
	dfill management and efficacy of anaerobic reactors in the atment of landfill leachate	
trea Imra	·	
trea Imra	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan,	
trea Imra Iwai 6.1	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah	t
trea Imra Iwai 6.1 6.2	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction	t
trea Imra Iwai 6.1 6.2	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment	t
trea Imra Iwai 6.1 6.2 6.3	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process	t
trea Imra Iwai 6.1 6.2 6.3	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate	t
trea Imra Iwai 6.1 6.2 6.3	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor	t
trea Imra Iwai 6.1 6.2 6.3	an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor	t
trea Imra Iwai 6.1 6.2 6.3	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor	t
trea Imra Iwai 6.1 6.2 6.3	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor	t
trea Imra Iwai 6.1 6.2 6.3 6.4	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor	t
trea Ilmra Ilwai 6.1 6.2 6.3 6.4	an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox)	t
trea Imra Iwai 6.1 6.2 6.3 6.4	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) Combined anaerobic technologies	t
trea Imra Iwai 6.1 6.2 6.3 6.4 6.5 6.6 Acki	atment of landfill leachate an Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, moto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah Introduction Advantages of biological treatment over physical and chemical treatment Advantages of anaerobic process over aerobic process Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) Combined anaerobic technologies Conclusion	t

oi bioi	reactors	93
	hnoeconomics and lifecycle assessment of bioreactors	s:
was	tewater treatment plant management	95
Tarni	ima Warda Andalib, Zaied Bin Khalid and Puranjan Mishra	
7.1	Introduction	95
7.2	Concepts of techno-economy analyses	97
7.3	Methodology of techno-economic analysis	99
	7.3.1 Static cost—benefit assessment	99
	7.3.2 Annuity method	99
	7.3.3 Net cash flow	101
	7.3.4 Net present value	101
	7.3.5 Internal rate of return	102
7.4	Techno-economic analysis models	102
7.5	Techno-economic paradigm	102
7.6	Techno-economic innovations	105
7.7	Environmental impact assessment	106
7.8	Environmental impact assessment methodology	107
7.9	Bioreactors, categorization, and sustainable factors	108
7.10	Types of bioreactor	109
	7.10.1 Osmotic membrane bioreactors	110
	7.10.2 Integrated two-phase fixed-film baffled bioreactor	110
	7.10.3 High-solid anaerobic membrane bioreactor	111
	7.10.4 Solar assisted bioreactor	112
	7.10.5 Anaerobic landfill bioreactors	112
	7.10.6 Microbial fuel cells	113
7.11	Technological impact assessment of bioreactors on WWTP	114
7.12	Economical impact assessment of bioreactors on WWTP	115
7.13	Challenges in dealing with waste water treatment plant	115
	7.13.1 Upgraded biocrude-HTL configuration process and the	eory 117
7.14	Feedstock and plant scale	117
7.15	Hydrothermal liquefaction	119
7.16	Hydrothermal liquefaction aqueous phase treatment by catalythydrothermal liquefaction/gasification	tic 119
7.17	Sludge hydrothermal liquefaction oil upgrading	119
7.18	Conclusion	120
7.19	Contribution of authors	121
Ackn	nowledgment	122
Refer	rences	122

Stra	ategie	s toward sustainable management of organic waste	131
Ren	u and I	Puranjan Mishra	
8.1	Introd	uction	131
8.2	Activit	ies for solid waste management	134
8.3	Strate	gies for waste management	135
	8.3.1	Prevention of waste generation	136
	8.3.2	Minimization	136
	8.3.3	Reuse	137
	8.3.4	Recycling	137
	8.3.5	Biological treatment	138
	8.3.6	Incineration	139
	8.3.7	Landfill disposal	139
	8.3.8	Sanitary landfill	140
	8.3.9	Municipal solid waste landfills	140
	8.3.10	Construction and demolition waste landfills	140
	8.3.11	Industrial waste landfills	140
	8.3.12	Hazardous waste landfills	141
8.4	Conclu	usion	141
Ackı	nowled	gment	142
Refe	rences		142
		on of matrices for the development of next-gen	145
		ors from COVID-19 waste management prospects	145
		Bishwajit Singh Kapoor, Shubha Rani Sharma Kumar Nigam	
9.1	Introd	uction	145
9.2	Emerg	ging trends in bioreactors with respect to matrix	
	and a	pplications	146
	9.2.1	Monoclonal antibodies production	146
	9.2.2	Wastewater treatment	150
	9.2.3	Application of fixed-film microbial reactors for the treatment of effluents	152
	9.2.4	Abatement of air pollutants	154
		Matrix design and development for cell cultivation	154
	9.2.6	Advancement in the development of photobioreactor	155
		Immobilization and the role of matrices in the improvement of bioreactor function	156
	9.2.8	Other applications	158
9.3		cation of matrices-based bioreactors in COVID-19	.30
		management	158

	9.4	Conclusio	on	158
	Refer	ences		161
	Furth	er readin	ng	165
10	٠.,			
10.			engineering of food waste into high-quality I using a drying technology	167
	Purai Shaz	njan Misl win Mat	shnan, Nur Shahidah, Mohd Fadhil Bin Md Din, hra, Mohd Nasrullah, Abudukeremu Kadier, Taib, Mohd Hafiz Bin Puteh, Norahim bin Ibrahim, d Rusli, Fadzlin Md Sairan and Lakhveer Singh	
	10.1	Introdu	ction	167
	10.2	Applied	processing for food waste into animal feed	169
		10.2.1	Drying technology	170
		10.2.2	Solar drying	172
		10.2.3	Oven	172
	10.3	Results	and discussion	173
		10.3.1	Effectiveness of conventional fan	173
		10.3.2	Effectiveness of solar drying	173
		10.3.3	Effectiveness of oven drying	174
		10.3.4	Improvement of the drying process	175
		10.3.5	Moisture content	175
		10.3.6	Analysis of protein content	177
		10.3.7	Analysis of Escherichia coli	179
	10.4	Conclus	sions	181
	Ackn	owledgm	nents	182
	Refer	ences		183
11.	Envi	ronmer	ntal and economic life cycle assessment of biochar	
	use	in anae	robic digestion for biogas production	185
			alid, Ahasanul Karim, Pramod Jadhav, Puranjan Mishra, n Abd Wahid and Mohd Nasrullah	
	11.1	Introdu	ction	185
	11.2	Life cyc	le assessment technology	187
		11.2.1	Life cycle assessment—based methodology	188
		11.2.2	Life cycle assessment evaluation measures	192
		11.2.3	Life cycle cost assessment	194
	11.3	Life cyc	le assessment studies in anaerobic digestion for	
		biogas	production	196
	11.4	Challen	ges for life cycle assessment technology	199
	11.5	Conclud	ding remarks and recommendations	200

	11.7		wledgment ation of competing interest	202 202 203
12.	of e i	nginee i od Jadh	and emerging approaches in life cycle assessment red nanomaterials usage in anaerobic bioreactor nav, Zaied Bin Khalid, Puranjan Mishra, n Abd Wahid and Mohd Nasrullah	207
	12.1	Introdu	action	207
	12.2	Anaero	bic digestion process in the bioreactor	208
		12.2.1	Hydrolysis	208
		12.2.2	Acidogenesis	208
		12.2.3	Acetogenesis	209
		12.2.4	Methanogenesis	209
	12.3	Engine	ered nanoparticles in the anaerobic digestion process	210
		12.3.1	Interaction of nanoparticles in the anaerobic digestion process	210
		12.3.2	Engineered nanoparticles in bioreactor	211
	12.4		nges and assessment of engineered nanoparticles in bioreactor	214
		12.4.1	Techno-economic analysis of engineered nanoparticles in the anaerobic digestion process	214
		12.4.2	Challenges of engineered nanoparticles	215
	12.5	Conclu		216
	Ackno	owledgr	nent	216
			f competing interest	217
		ences		217
Inde	X			223

Contents

χi

Sustainable engineering of food waste into high-quality animal feed using a drying technology

Santhana Krishnan^{1,2}, Nur Shahidah^{1,5}, Mohd Fadhil Bin Md Din^{1,5}, Puranjan Mishra³, Mohd Nasrullah³, Abudukeremu Kadier⁴, Shazwin Mat Taib^{1,5}, Mohd Hafiz Bin Puteh⁶, Norahim bin Ibrahim⁷, Nurfarhain Md Rusli^{1,5}, Fadzlin Md Sairan^{1,5} and Lakhveer Singh⁸

10.1 Introduction

Management of solid waste has become a serious concern as well as a major challenge for developing and developed countries throughout the world. The rate of waste generation is increasing every day due to the significant growth of the world population (Woon & Lo, 2013). Moreover, the increasing rate of waste generation may also be influenced by higher economic development and the rate of urbanization. It is estimated that by 2100, the amount of waste generation will be three times greater than the current amount (Villalba et al., 2002). In Malaysia, total estimated municipal solid waste (MSW) generation had increased from 1998 to 2010 which is 8 million tons per year and the amount is estimated to be nearly 10 million tons per year by 2020 (Johari et al., 2012). Due to the amount of waste that produces increases, it causes the capacity of solid waste to be disposed of increases and the space and lifespan of the landfill will be decreased

¹Department of Water and Environmental, Centre for Environmental Sustainability and Water Security (IPASA), Research Institute of Sustainable Environment (RISE), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia

²PSU Energy Systems Research Institute, Department of Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, Thailand

³Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Pahang, Malaysia ⁴Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, PR. China

⁵Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia

⁶Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia

⁷Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia

Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, India

Universiti Teknologi Malaysia (UTM) is one of the institutes in Malaysia that facilitates the initiative from food waste to animal feedstock. The process of food waste into animal feed has been carried out inside UTM's Waste Hub, named as Bio-Recycling Waste. Food waste will be processed every day to feed the animals inside the UTM's orchard. In addition, the main source of the food waste is from the food court in UTM which is called Arked Meranti (rebranding as Kafe Lestari). The bins which contain raw food waste is collected every day and sent to the UTM orchard for processing purpose. However, the safety of animal feeds is in doubt due to the presence of bacteria during the processes such as *E. coli*. Hence, this research will describe the effective method to reduce the presence of pathogens in food waste during the process of recycling. The outcomes of the chapter will provide an idea to reduce the pathogens present in food waste as well as increase the safety of using food waste to feed the animals.

UTM is one of the institutes in Malaysia that facilitates the initiative from food waste to animal feedstock. The process of food waste into animal feed has been carried out inside UTM's Waste Hub, named as Bio-Recycling Waste. Food waste will be processed every day to feed the animals inside the UTM's orchard. In addition, the main source of food waste is from the food court in UTM which is called Arked Meranti (rebranding as Kafe Lestari). The bins which contain raw food waste is collected every day and sent to the UTM orchard for processing purpose. However, the safety of animal feeds is in doubt due to the presence of bacteria during the processes such as E. coli. Hence, this research will describe the effective method to reduce the presence of pathogens in food waste during the process of recycling. The outcomes of the study will help to reduce the pathogens as well as increase the safety of using food waste to feed the animals. The specific objectives are to investigate the effectiveness of conventional fan drying method of food waste at the UTM processing site based on the quality of its end product, to evaluate the quality of end product by alternative drying method of heat treatment by the oven and solar, and to compare the number of bacteria present in the end product of fan and heat treatment which is solar and oven.

10.2 Applied processing for food waste into animal feed

The processing site of the production of animal feeds was located at "UTM Bio-Recycling Waste Hub." Firstly, this process used food waste is collected from Kafe Lestari, one of the student food courts in UTM.

Every day, the bins full of raw food wastes at Kafe Lestari were collected and sent to the Bio-Recycling Waste Hub for the food waste-animal feeds processing. The waste generated was in wet conditions since it is raw waste mixed with other waste like plastics, straws, toothpicks, and so on. Then, wastes from the bins were poured on a dripping table for segregation purposes. Food waste was segregated manually from the other waste. This is because food waste is the only source that can be used as raw materials in the preparation of animal feeds. In addition, a dripping table is used to collect the leachate from the wastes. After the segregation process, the wet food waste was left for a day on a dripping table for natural drying purposes. Further, food wastes were mixed with coconut husk as it helps to smoothen the grinding process due to food wastes containing objects which hard to have grinned like chicken bones. Coconut husks also help to provide the additional protein content in the food waste. During the process, food wastes were sprayed 5-6 times a day by using in-house effective microorganism (EM) products. This is to avoid odor problems and prevent the flies from alighted on the food wastes as it might be the cause of the development and presence of pathogens. This process might take up several days to reduce the moisture content in the

food waste by removing any leftover water content. The targeted maximum percentage of moisture content during the process is 20% which is anticipated to be more effective for further processing.

The mixture of coconut husk with food waste was further grounded using the grinder machine. The longest time taken for the grinding process is 1 h. After that, the ground food wastes were undergone for the drying process. The drying method is used to reduce again the moisture content and presence of bacteria as drying is considered as one of the simplest processes to remove excess water from the food waste (2015). Further, the grounded food wastes were dried for 2 days by using a modulated fan. A drying table was used to carry out this process. However, the drying process might cause nutrient losses in food waste. Finally, after 2 days of drying, the end products are ready to be used as animal feedstock. Fig. 10.1 shows the pictorial chart of food waste-animal feeds conversion.

10.2.1 Drying technology

The drying method was used in the process of recycling food waste into animal feeds at the UTM farm to reduce moisture content and the presence of pathogens in the animal feeds. Regulated fan, oven, and solar

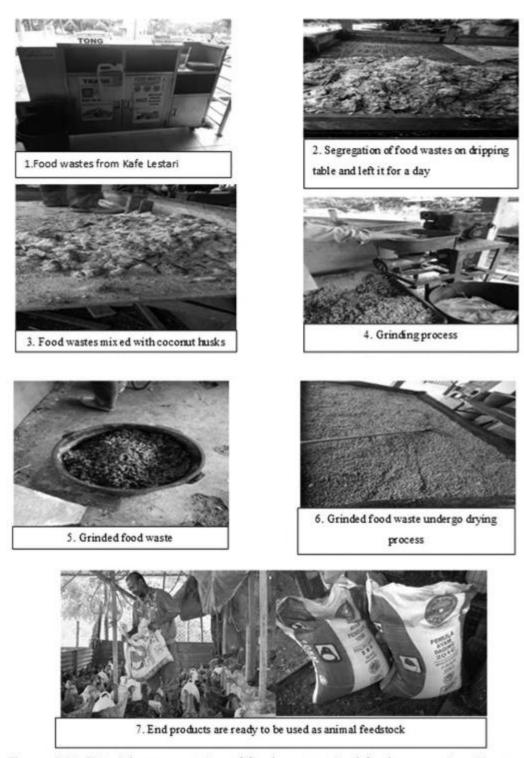


Figure 10.1 Pictorial representation of food waste-animal feeds conversion. No permission required.

Index

Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

A	methanogenesis of, 209-210
Acetogenesis, AD process, 209	process stages of, 210f
Acidogenesis, AD process, 208–209	Anaerobic fermentation process, 208
Aerobic and anaerobic bioreactor systems	Anaerobic fixed bed reactor, 81
for wastewater treatment	Anaerobic fluidized bed bioreactors, 16-17
airlift of, 16	Anaerobic landfill bioreactors, 112–113
continuous stirred tank, 15-16	Anaerobic membrane bioreactor,
and different configurations, 15	43-44, 79
fluidized bed, 16–17	Anaerobic process over aerobic process
membrane of, 18–19	advantages of, 77
packed bed of, 17-18	simplification of, 78f
upflow anaerobic sludge blanket, 19-20	Anaerobic reactors treating landfill leachate
Aerobic fermenters	ABR, schematic diagram of, 82f
aeration and mixing functions, 64	ammonium oxidation, 83
annual expenditure for, 64t	baffled of, 82–83
Aspen Capital Cost Estimator cost, 65t	contact of, 81-82
bubble column reactor cost analysis,	fixed bed of, 81
64-65	latest development of, 78–83
cost analysis for, 63-65	membrane of, 79
stirred tank reactor, 64-65	UASB, schematic diagram of, 80f
Airlift bioreactors, 16	upflow sludge blanket, 79–81
Air pollutants, abatement of, 154	Arked Meranti, 167–169
Anaerobic ammonium oxidation, 83	
Anaerobic baffled reactor, 82-83	В
Anaerobic contact reactor, 81-82	Biocrude-HTL configuration process and
Anaerobic digestion for biogas production	theory, 117
life cycle assessment	Biodegradable waste, 131
challenges for, 199-200	Biological treatment, 73–77, 138–139
study in, 196-199	Bioreactors, development of
technology of, 187-196	applications, 46–48
Anaerobic digestion process	biotransformation processes, 31t
in biogas production, engineered	bubble column, 39–42
nanomaterials, 213t	COVID waste management in the
engineered nanoparticles, 210-213	pandemic times, 48–50
in bioreactor, 211–213	for improved waste valorization, 29–30
ENPs interaction with microbes in, 211f	membrane of, 42–46
nanoparticles in, interaction of, 210-211	stirred tank, 38–39
Anaerobic digestion process in bioreactor	types of, 46–48
acetogenesis of, 209	Bioreactors types
acidogenesis of, 208-209	denitrification, 48
hydrolysis of, 208	,

Bioreactors types (Continued)	Continuous stirred tank bioreactor, 15-16
disposable, 48	Cost analysis
fixed bed, 46	aspects affecting, 58f
hanging sponge, 46-48	basic features, 57
integrated membrane, 46-48	CAPEX and OPEX relationship, 60
Bioreactor systems, emerging trends in	capital costs, 57
current, 30-32	materials and utilities of, 58
fixed bed, 26-27	production of, 57
fluidized-bed reactor, 25-26	system performance expenditure,
improved waste valorization,	classification of, 58f
development for, 29–30	waste management, applied for, 58-60
its geometry, 27-29	COVID-19 on waste and resource
research and development component	management
of, 30–32	impact of, 5–6
stirred tank system, 23-25	and challenges, 6f
theory of, 27–29	policy and regulatory approaches, 9-10
Bioreactor theory	types of, 4–5
and its geometry, 27-29	during COVID-19 pandemic, 4-5
laboratory-scale arrangement, 28f	unique challenge with SARS, 6-9
Bioreactor types, techno-economics	different stages of, 7f
anaerobic landfill, 112–113	strategy of, 7–9
high-solid anaerobic membrane,	WHO guidelines on, 10
111-112	COVID waste management in pandemic
integrated two-phase fixed-film baffled,	times, 48–50
110-111	Cryogel bioreactors, 149
microbial fuel cells, 113-114	
osmotic membrane, 110	D
solar assisted, 112	_
Bubble column reactors, 39-42	Denitrification bioreactors, 48
advances in, 39-41	Disposable bioreactors, 48
of in-situ product recovery	Drying technology, 170–172
technology, 40-41	
miniature, development of, 39-40	E
basic structure of, 40f	Economic aspects of bioreactors
in waste management, 41-42	aerobic fermenters, cost analysis for,
	63-65
C	cost analysis of, 56-58
~	directives of, 56
Cell tank biography 150	Monte Carlo cost estimation method,
Chama state labe stirred tanks 25	61-63
Chemo-stats, labs stirred tanks, 25 Clinical waste, 133	for municipal secondary wastewater
· · · · · · · · · · · · · · · · · · ·	treatment, 60
Combined anaerobic technology	waste management, cost analysis for,
ABR with aerobic reactor, 84f	58-60
UASB-SAS reactor, 85f	Emerging trends in bioreactors
Composition of landfill leachate age, 72t	air pollutants, abatement of, 154
Construction and demolition waste landfills, 140	and applications, 146-158
ianums, ito	

applications of, 152t, 158 cell cultivation, development for, 154–155 conventional methods of, 147t of effluents treatment, 152–154 of fixed-film microbial reactors, 152–154 function improvement of, 156–158 immobilization and role of, 156–158 limitations of, 147t matrix design of, 154–155	moisture content, 175–177 oven, 172–173 drying, effectiveness of, 174–175, 175f protein content, analysis of, 177–179 results and discussion of, 173–181 conventional fan, effectiveness of, 173 UTM farm, conventional fan at, 174f solar drying, 172 cabinet, 174f effectiveness of, 173–174
monoclonal antibodies production, 146–150 cell tank bioreactors, 150 cryogel bioreactors, 149 cryogels matrices, 149	Garbage dump, 139–140 Growth processes, 110–111
high-density cell culture systems, 148–149 photobioreactor, development of, 155–156, 159t wastewater treatment of, 150–152 Engineered nanoparticles in bioreactor assessment challenges, 214–216 for safe ENPs principles, 215 techno-economic analysis of, 214–215 Environmental impact assessment, 106–107 Environmental impact assessment methodology, 107–108	H Hazardous waste landfills, 141 High-density cell culture systems, 148–149 High-quality animal feed using drying technology food waste, applied processing for, 169–173 results and discussion, 173–181 High-solid anaerobic membrane bioreactor, 111–112 Hollow fiber bioreactors, 148 HTL biocrude hydrotreating process diagram, 121f Hydrolysis, AD process, 208 Hydrothermal liquefaction, 119
Fixed bed bioreactors, 46 Fluidized bed bioreactors, 23–27 Food waste, applied processing for into animal feed, 169–173 Arked Meranti, 169 drying methods end products from, 177f improvement of, 175 protein content from, 178f protein content in end products, 179f drying technology, 170–172 conventional fan, 172 end products by batch, 176f Escherichia coli, analysis of, 179–181, 180t of feeds conversion, 171f	Hydrothermal liquefaction, 119 Hydrothermal liquefaction aqueous phase treatment by catalytic gasification, 119 CHG process diagram, 120f I Incineration, thermal waste treatment technique, 139 Industrial waste landfills, 140 Integrated two-phase fixed-film baffled bioreactor, 110–111 L Lag phase, 109 Landfill disposal, 139–140

Life cycle assessment-based methodology, 188–192	Membrane bioreactors, 18–19, 42–46 anaerobic, 43–44
Life cycle assessment evaluation measures,	in waste management, 47 <i>t</i>
192–194	COVID viral load, removal of, 50
Life cycle assessment of engineered	features of, 44 <i>t</i>
nanomaterials in anaerobic	fouling of, 45–46
bioreactor	SAnMBR, treatment performance in, 45
anaerobic digestion process, 208–210	schematic arrangement of, 43f
challenges and assessment of ENPs,	Methanogenesis, AD process, 209–210
214-216	Microbial fuel cells, 113–114
engineered nanoparticles in anaerobic	Monoclonal antibodies production,
digestion process, 210–213	146-150
Life cycle assessment study	Monte Carlo cost estimation method
aerated wetlands, environmental	deterministic model of, 62f
implications of, 198-199	stochastic model of, 63f
in anaerobic digestion for biogas	for wastewater treatment membrane
production, 196–199	bioreactors, 61-63
for biogas yield technology, 197–198	Municipal solid waste landfills, 140
biological and thermal bio waste	_
treatments, 196–197	0
LCA/CE approaches, 191, 196-197	Osmotic membrane bioreactors, 110
waste-to-methane scenario's	
nonrenewable energy, 197	Oxygen transfer rate, 64–65
Life cycle assessment technology	
challenges, 199-200	Р
cost of, 194-196	Packed-bed biofilm bioreactors, 23-27
evaluation measures, 192-194	Packed bed bioreactors, 17–18
allocation of, 194	Plant scale
functional units of, 192-193	feedstock and, 117-119
system boundary of, 193–194	thermophilic anaerobic digestion, 118f
temporal units of, 193	Policy and regulatory approaches
methodology, 188-192, 188f	accountability of, 9
bioenergy production, eco-efficiency	communication of, 9
of, 191–192	COVID-19 plastic waste avoiding, 9–10
environmental impact assessment of,	governance of, 9
190-191	technological intervention, 10
goal of, 189–190	Pulp, 138
inventory of, 190	
scope of, 189–190	S
study boundary of, 189–190, 189f	Sanitary landfill, 140
	Secure landfills, 140
M	Sludge hydrothermal liquefaction oil
Matrices-based bioreactors in COVID-19	upgrading, 119-120
waste management, 158	Solar assisted bioreactor, 112
Matrices for the development of next-gen	Solar drying, 172
bioreactors	Solid waste management, activity for
and applications, 146–158	collection of, 134
in COVID-19 waste management, 158	disposal of, 135

igm of, 102–105 scale, 117–119 e hydrothermal liquefaction oil upgrading, 119–120 of, 100 <i>t</i> nable factors of, 108 e water treatment plant, 115–117 TP, economical impact assessment of, 115
anaerobic sludge blanket reactor, 19–20, 79–81
nanagement strategy gical treatment of, 138–139 ruction and demolition waste landfills, 140 dous waste landfills, 141, 142f rehy of, 135, 136f eration of, 8, 139 trial waste landfills, 140 fill disposal of, 8, 139–140 mization of, 136–137 cipal solid landfills, 140 ention of, 136 ling of, 8, 137–138 vironmental benefits of, 137–138 ge of, 8, 137 ry landfill, 140, 140f boort of, 7 ment of, 7–8 fater treatment, 150–152 vater treatment plant ude-HTL configuration process and theory, 117 enges in, 115–117 and crude upgrading process, 116f