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1. INTRODUCTION 

In today’s competitive world, where jobs are processed largely by machines, the requirement for smart 

organization becomes an essential need.  

If we take into account the fact that the resources, we rely on are scarce, the need has become more urgent. 

Moreover, since one of the aims of the commercial sector aims is to turn a profit, then this profit could be increased if 

the manufacturing facilities were operating at their peak efficiency This problem arises in a variety of industry 

environments, including auto factories and food processing, among others. It is reasonable to expect that a variety of 

jobs will be processed by a variety of parallel machines, under a variety of specific circumstances, and with a variety of 

specific objectives. Considered scheduling jobs on parallel machines as a process involves two steps:  the first is which 

jobs are to allocate to which machines and the second is the order of the jobs thar are to allocated to each of these 

machines.  

The regular scheduling problem of the unrelated parallel machine (UPM) can be described as the processing some 

jobs on some parallel machines. The widely known objective is to minimize the maximum completion time of job. 

According to [1-5], UPM problem is “A set of n jobs has to be processed on exactly one machine out of a set of m 

machines. In this variant of the problem, processing times of the jobs differ according to the machine the job is 

assigned to”.  

UPM that considers limited resources is named as UPMR. The importance of the UPMR comes from the wealth of 

applications; they are applicable to engineering or scientific situations where it is needed to present the best sequence in 

a convincing period of time within limited number of resources. This paper shows some of the latest studies and related 

literature in the context of unrelated parallel machine scheduling problems with additional resources (UPMR) to ensure 

our research direction and many techniques have been applied for solving this problem. 

ABSTRACT: This study deals with an unrelated parallel machine scheduling problem with additional resources 

(UPMR). That is one of the important sub-problems in the scheduling. UPMR consists of scheduling a set of jobs 

on unrelated machines. In addition to that, a number of one or more additional resources are needed. UPMR is very 

important and its importance comes from the wealth of applications; they are applicable to engineering and 

scientific situations and manufacturing systems such as industrial robots, nurses, machine operators, bus drivers, 

tools, assembly plant machines, fixtures, pallets, electricity, mechanics, dies, automated guided vehicles, fuel, and 

more. The importance also comes from the concern about the limitation of resources that are dedicated for the 

production process. Therefore, researchers and decision makers are still working on UPMR problem to get an 

optimum schedule for all instances which have not been obtained to this day. The optimum schedule is able to 

increase the profits and decrease the costs whilst satisfying the customers’ needs. This research aims to review and 

discuss studies related to unrelated parallel machines and additional resources. Overall, the review demonstrates 

the criticality of resolving the UPMR problem. Metaheuristic techniques exhibit significant effectiveness in 

generating results and surpassing other algorithms. Nevertheless, continued improvement is essential to satisfy the 

evolving requirements of UPMR, which are subject to operational changes based on customer demand.  
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 In today's highly competitive world, the use of machines for job processing has become essential in various 

industries. As resources become scarce, optimizing scheduling is crucial to boosting profits in fields like auto factories 

and food processing. Scheduling jobs on parallel machines involves two primary steps: allocating jobs to machines and 

determining the order of jobs on each machine. The unrelated parallel machine (UPM) scheduling problem aims to 

minimize the job completion time by scheduling some jobs on parallel machines. However, real-world scenarios often 

require additional resources, leading to the UPMR problem. This problem is significant in engineering and scientific 

contexts where efficient resource allocation is crucial. This paper reviews recent studies and related literature on the 

UPMR scheduling problem, providing insights into the techniques used to solve the problem and identifying potential 

areas for future research. We survey four major categories of papers, including machine environment, supplemental 

resources, objective functions, and approaches to problem-solving. 

 

 

2. DEFINITIONS AND ASSUMPTIONS 

In the era of automation and intelligence systems, the production process plays a crucial part in increasing the 

profits, decreasing the costs whilst satisfying the users. This has attracted the attention of many researches into 

developing an optimum scheduling for the production process. Production scheduling involves assigning jobs to 

machines to optimize performance metrics. One important sub-problem in scheduling is the unrelated parallel machine 

scheduling (UPM) problem, which involves scheduling jobs on machines to minimize the time needed to complete all 

jobs (makespan). However, to execute a job on a machine, a set of resources is required. When additional resources are 

taken into account, the problem is referred to as UPMR. In an UPM problem, the order in which jobs are scheduled on 

each machine does not affect the makespan. In contrast, in UPMR, the sequence of job assignments to machines affects 

the makespan, as different sequences imply different execution times due to limited resources. Several assumptions for 

the UPMR problem have been proposed in recent studies (e.g., [6-10]) which includes: 

 

• Only one machine processes one job. 

• One job at a time can be processed by each machine. 

• Any job processing, that was already initiated, must be fulfilled and finished uninterruptedly (non-preemptively).  

• Every job requires a number of additional resources during their entire process not exceeding the Rmax at any time. 

• The precedence constraints are sometimes possible between two jobs.  

 

 

3. A CLASSIFICATION OF SCHEDULING PROBLEMS 

A classification scheme for parallel machine scheduling problem introduced by [11-13]. This scheme could 

employ a three-field problem classification α | β | γ. 

 

• Machine environment characteristics (α) 

• Job characteristics and constraints (β) 

• Global optimality criterion (Objective functions γ) 

 

 

3.1 MACHINE ENVIRONMENT CHARACTERISTICS 

The characteristics of machine environments can be categorized into two groups: machine variety and machine 

environment. Concerning the variety of machines, the regular parallel machine scheduling problem addresses 

independent tasks that must be processed by a set of parallel machines non-preemptively to achieve a specific 

performance measure [14]. The majority of studies focus on more than three machines, while some suggest that the 

number of machines may vary as part of the input [9]. In terms of the machine environment, the parallel machine 

scheduling problem (PMSP) can be classified into three types that are based on the machines' nature: identical, 

uniform, and unrelated [15-17]. However, previous studies employed a classification scheme that distinguished five 

sub-cases of parallel machines based on their environment [11, 12]. These sub-cases are: single machine (Ø), parallel 

dedicated machines (PD), identical parallel machines (P), uniform parallel machines (Q), and unrelated parallel 

machines (R). 

Single machine refers to a production system that has only one machine for processing jobs or tasks. The machine 

is capable of performing a specific operation or a sequence of operations that are required to complete a job. Parallel 

dedicated machines, is a type of manufacturing system that consists of several dedicated machines that are used to 

produce a specific product or set of products. The machines are dedicated to the production of the product(s) and are 

arranged in parallel, where they operate simultaneously to produce the required output. Each machine in the parallel 

dedicated system performs a specific task in the production process. For example, in a parallel dedicated system for 

automobile manufacturing, there may be dedicated machines for welding, painting, and assembly.  
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Identical parallel machines, is a type of production system in which a set of machines is available to process a set 

of jobs, and all the machines are identical in terms of their processing capabilities, capacities, and speed [18]. In other 

words, each machine in this production system is interchangeable with any other machine, and they can all perform the 

same tasks with the same level of efficiency. Uniform parallel machines, is a type of  production system in which a set 

of machines is available to process a set of jobs, and all the machines have uniform or identical processing capabilities, 

but may have different processing speeds or capacities [19]. In other words, the machines in the production system 

have the same processing capabilities and, thus, they can perform the same tasks, but they may process those tasks at 

different rates. 

 

Unrelated parallel machines, on the other hand, is a type of production system in which a set of machines is 

available to process a set of jobs, and each machine has a unique processing capability or specialization [8]. In other 

words, the machines in the system are not identical and have different processing capabilities or functions [20]. The 

unrelated parallel machine is further divided into three sub-cases: regular UPM, with sequence-dependent setup time 

UPMSP, and with resources UPMR. 

 

• Regular unrelated parallel machine  

In regular unrelated parallel machine problems, the concept of unrelated parallel machines refers to a situation 

where a set of jobs must be processed on a specific machine from a group of parallel machines that are not 

related to each other. Each job must have a processing time assigned to it, and the processing should begin at 

time zero. 

 

• Unrelated parallel machine with sequence dependent setup time  

In unrelated parallel machines with sequence-dependent setup times, an additional constraint is introduced, 

which is the time required to prepare the machine for a specific job. The setup times are dependent on both the 

job sequence and the machine used, and each machine has its own matrix of setup times. This creates a more 

complex scheduling problem where the optimal distribution of jobs among machines must be determined, and 

the best order for each machine must be established to ensure that the resource restrictions are met at all times. 

One example of this type of scheduling problem is RM |Sjkm|Cmax [3, 21]. 

 

• Unrelated parallel machine with resources 

In the case of unrelated parallel machines with resources (UPMR), a renewable resource is required for each job 

within its processing time set, and only a limited amount of the resource is available at any given time. The 

scheduling problem involves assigning the jobs to the machines, determining the start and completion times, and 

ensuring that the machines are never stopped between the completion of one job and the start of another. This 

version of the problem is more complex due to the additional constraint of resource availability and may result in 

idle times if the machines are unable to process the next job due to a lack of resources [9]. 

 

Considering the importance of resource constraints in industrial settings, the UPMR problem is a crucial factor that 

must be taken into account when determining the optimal scheduling solution. 

 

 

3.2 JOB CHARACTERISTICS AND CONSTRAINTS 

A great reference of the characteristics and constraints of a job, including processing times, preemptions, and 

resource constraints, can be referred to [11, 12, 22-24]. It should be noted that the resource consumption and processing 

times of a job can vary depending on the machine that is allocated to process the job. This is particularly important in 

real manufacturing environments where different machines may need to be used simultaneously. In such cases, the 

processing time or resource consumption of a job on an old machine may differ significantly from that on a new 

machine, as noted in references [9, 10]. Thus, it is essential to carefully consider the characteristics of each machine 

and allocate jobs accordingly to optimize scheduling and resource utilization. 

 

 

3.2.1 Processing times  

The processing time of a job in a parallel application is significantly impacted by the machines to which it is 

assigned. As such, the allocation of jobs to machines is a critical factor that can greatly affect system performance and 

efficiency. To describe the processing times of jobs, the parameter β5 ∈ [Ø, pj = p] is used. Two possible values for β5 

are: 

• β5 = Ø: This indicates that the processing times of jobs are arbitrary, and the parameter pj may or may not be used 

to represent these times. 

• β5 = (pj = p): This means that all jobs have the same processing time, which is equal to p units. 
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3.2.2 Possibility of preemptions 

The processing of jobs can be interrupted or uninterrupted based on the allowance of preemptions. When 

preemptions are not allowed, the processing of any job must continue uninterruptedly until it is finished. However, in 

the case of preemptions, any operation's processing can be stopped and resumed later, even on a different machine. To 

determine whether preemption is possible or not, parameter β1 ∈ [Ø, pmtn] is used, where: 

• β1 = Ø: no preemption is allowed. 

• β1= pmtn: preemption is allowed. 

 

 

3.2.3 Machine eligibility restrictions (Job-machine assignment) 

The assignment of the job to machine could be done in two ways: assigning jobs to unspecified or specified 

machines means a specific issue of the unrelated parallel machine environment. β7 ∈ [Ø, Mj]: means the eligibility 

restrictions of machines: 

• β7 = Ø: all machines are eligible for all jobs (unspecified). 

• β7 = Mj: the processing of job j can only be carried out by a specific machine subset Mj of M machines 

(specified). 

 

 

3.2.4 Additional Resource constraints 

In some studies of parallel machine scheduling, machines are considered as a resource. However, in real-world 

manufacturing settings, jobs often require additional resources like automated guided vehicles, machine operators, 

tools, pallets, dies, and industrial robots for their handling and processing [12, 25, 26]. These resources have various 

characteristics that must be taken into account while solving the UPMR problem (refer to Fig. 1). 

 

 

 
 

FIGURE 1. - Classification of additional resources 

 

a) To characterize additional resources, Parameter β2 is used, which belongs to the range [Ø, resλσδ] [22, 23]. The 

different values of β2 are defined as follows: 

 

• β2 = Ø, then no additional resources are present. 

• β2 = resλσδ, then specified resource constraints exist. λ, σ, and δ are described below: 

- If λ is a positive integer, it represents a constant variety of resource types that are equivalent to λ. If λ = ., it 

represents a part of the input, and its value is arbitrary. 

- If σ is a positive integer, then all resource sizes, or resource limits, are constant and equal to σ. If σ = ., then all 

resource sizes are characterized as arbitrary. 

- If δ is a positive integer, then all resource requirements have a constant upper bound that is equal to δ. If δ = ., 

then such bounds are not specified. 

 

b) The additional resources are categorized into three classes based on their resource constraints [23, 25]: 

• If a resource is used for a job, after being released from this job it may be used again for other job. This type of 

resources is called renewable [9, 10]. 
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• If a resource has already been used for one job, then it cannot be used for another job. This type of resources is 

named nonrenewable [27]. 

• If both renewable resources and nonrenewable resources are used in the same time, this type is called doubly 

constrained [28].  

 

c) In the resource divisibility, additional resources can be categorized into two classes, as per references [23, 25]. 

These classes are: 

• Discrete resources, which refer to the distribution of jobs in separate amounts from a specific, finite variety of 

possible allocations. These allocations may consist of just one element [20].  

• Continuous resources, which may be allocated to jobs in random, a priori unknown amounts from predetermined 

intervals. A significant amount of research on continuous resources is available [29]. 

 

d) The additional resources can be classified into two categories from the perspective of job processing [7]: 

• Processing resources: These are resources that are needed for processing a given job set on a specific machine. 

• Input-output resources: These are resources that are required either before or after the processing of a job [7, 23, 

30, 31]. 

 

e) The allocation of resources to machines must be carefully considered, and there are two classes of allocation 

methods as described in [17]: 

• Static allocation: the resource allocation remains fixed throughout the schedule, and the additional resource 

cannot be switched to other machines. 

• Dynamic allocation: the assignment and non-assignment of resources are based on the type of job, and the 

additional resource can be switched among machines during the schedule. 

 

 

3.3 GLOBAL OPTIMALITY CRITERION 

There exist several types of objective functions used in the parallel machine scheduling problem. In constructing 

optimality criteria (refer to Table 1) [32], the following elementary functions are considered: 

 

Table 1. - The objective function for PMS 

Measure Symbol Formula 

Flow time 𝐹𝑗 𝐹𝑗 = 𝐶𝑗 −  𝑟𝑗 

Lateness 𝐿𝑗 𝐿𝑗 = 𝐶𝑗 −  𝑑𝑗 

Tardiness 𝑇𝑗 𝑚𝑎𝑥  [ 𝐶𝑗 − 𝑑𝑗 , 0] 

Earliness 𝐸𝑗 𝑚𝑎𝑥  [ 𝑑𝑗 −  𝐶𝑗 , 0] 

Total completion time 𝐶𝑗 ∑ 𝐶𝑗
𝐽
𝑗=1   

Total weighted completion time 𝑤𝑗𝐶𝑗 ∑ 𝑤𝑗𝐶𝑗
𝐽
𝑗=1   

Total flow time 𝐹𝑗 ∑ 𝐹𝑗
𝐽
𝑗=1   

Total weighted flow time 𝑤𝑗𝐹𝑗 ∑ 𝑤𝑗
𝐽
𝑗=1 𝐹𝑗  

Total tardiness 𝑇𝑗 ∑ 𝑇𝑗
𝐽
𝑗=1   

Total weighted tardiness 𝑤𝑗𝑇𝑗 ∑ 𝑤𝑗𝑇𝑗
𝐽
𝑗=1   

Number of tardy jobs  𝑈𝑗 ∑ 𝑈𝑗
𝐽
𝑗=1   

Weighted number of tardy jobs 𝑤𝑗𝑈𝑗 ∑ 𝑤𝑗𝑈𝑗
𝐽
𝑗=1   

Maximum lateness  𝐿𝑚𝑎𝑥 𝑚𝑎𝑥𝑗𝐿𝑗 

Maximum tardiness  𝑇𝑚𝑎𝑥 𝑚𝑎𝑥𝑗𝑇𝑗 

Makespan  𝐶𝑚𝑎𝑥 𝑚𝑎𝑥𝑗𝐶𝑗 

 

 

This review paper focuses on a particular type of objective function utilized in parallel machine scheduling studies, 

which aims to minimize the makespan criterion. The makespan is responsible for balancing the machines based on their 

loads, leading to optimal machine utilization [6]. Furthermore, the makespan can be defined as the time when the last 

job is completed [33, 34], and a minimum makespan usually indicates efficient machine handling [32]. 
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4. RELATED WORK 

This section presents a review of the approaches used to solve the dynamic unrelated parallel machine scheduling 

problem, both specified and unspecified versions. According to the literature, these approaches can be classified into 

four categories: exact methods, ρ-approximation algorithms, problem-based heuristics, and metaheuristics. Scholars 

have explored and studied specified dynamic (sd) versions for UPMR problem. For example, [35] proposed a heuristic 

approach with secondary resource constraints to minimize makespan for specified dynamic UPMR. The results obtained 

by the computational processes indicate that the presented heuristic performs better than the simulated annealing. [36] 

presented an effective heuristic approach based on threshold-accepting method, tabu lists, and improvement steps with 

assistant equipment constraints as secondary resource constraints, for the specified dynamic unrelated parallel machine 

to minimize total tardiness. Computational experiences point out the capability of the suggested heuristic to gain the 

best solutions for the problems of small size, and considerably outperforms an ATCS procedure and a SA for the large-

size instances.  

Constraint programming (CP), integer programming (IP), and integrated IP/CP models were proposed by [37] to 

minimize Cmax for specified dynamic UPMR, and the combined IP/CP model obtained the best results in most 

instances. [38] have developed approaches of IP/IP and IP/CP models to minimize the makespan for specified dynamic 

unrelated parallel machine. They reported that better results are offered by IP/IP than IP when the constraints of 

resources are loose. Additionally, IP/CP model outperforms CP model when the constraints of the resource were tight.  

Much literature on unspecified dynamic (ud) UPMR has also been presented in earlier studies. For example, [39] 

proposed 2-approximation, 3/2-approximation and 4-approximation approach so that to the Cmax and wjCj are minimized 

for unspecified dynamic UPMR. The 4-approximation method are rendered better than the other two methods. [40] 

made development on 3.75-approximation approach through the use of the rounding procedure which is utilized to 

solve ud-UPMR by the means of minimizing the makespan. As it can be seen, the results, obtained through the 

application of the model in question, outperform 4-approximation and 6.83-approximation.  

A Lagrangian-based CP method has been suggested by the way of keeping the resource constraints relaxed [41]. 

The results of this method have been compared to the results of IP and CP approaches for the sake of discovering the 

fact that the method of the proposed Lagrangian-based CP presents results that are really considered effective. An 

integer programming (IP) model has been proposed by [42] to solve dynamic UPMR problems which is defined as a 

relaxed IP based CP method used for the purpose solving the large-sized instances for dynamic UPMR and IP/CP 

model. To go further. This model, additionally, performs better than the IP model and obtains near-best solutions for 

problems characterized as being of large sizes. [20] study the scheduling problem of the unspecified dynamic UPMR. 

The aim of this study is oriented to scheduling jobs in parallel machines as a step to minimize the makespan. Two 

approaches have been presented by those two scholars: one is an integer linear programming ILP program and the other 

is a two-phase approach based on solutions, named the fixing algorithm. The fixing algorithm outperforms the ILP 

program.  

L. Fanjul Peyro et al. investigated unspecified dynamic UPMR goal to minimize the makespan [9]. The resources 

were very limited and unchanged in terms of their availability within the production aspect. The number of resources is 

based on the job in addition to the machine. They formulate this problem via two mixed integer linear programming 

MILPs. Of these approaches is one that was based on a model previously reported by [42] and referred to by UPMR-S. 

The second approach takes into account the aspect of resemblance to the strip packing problem (referred to by UPMR-

P). Additionally, three techniques, matheuristic in nature, were also reported by those scholars. These included “Job-

machine reduction JMR, Machine-assignment fixing MAF and Greedy-based fixing GBF” which have been used in 

each one of the aforementioned methods (UPMR-P and UPMR-S) and resulted JMR-P, MAF-P, GBF-P, JMR-S, MAF-

S, and GBF-S. The JMR-P approach, thus, performs better than all other approaches in most instances.  

CP model has been presented to solve the unspecified dynamic unrelated parallel machine for the aim of 

minimizing the Cmax [17]. The CP model, as shown by the results, outperforms the heuristic and exact methods in the 

earlier studies (UPMR-P, UPMR-S, MAF-P and MAF-S) for all instances used in the research. [43] has also suggested 

two approaches for the sake of solving the unrelated parallel machine scheduling problem with a renewable resource 

constraint to minimize the makespan. As such, the methods, in question, are MILP for two machines and MILP/CP 

model for more than two machines. If the solution of the MILP/CP model is not characterized as being the optimal, 

then, the solution of the problem is carried out by the use of a CP model. The MILP/CP outperforms CP model for a 

problem of a large size.  

Multi-pass heuristics and local search methods (NEHst, NEHres and SWA) have been proposed by [10] for the sake 

of minimizing the makespan for unspecified dynamic UPMR. As for small instances, the best results were obtained by 

NEHres; in medium and large instances, the optimal results went to the M4 and M5 respectively. [44] suggested four 

approaches (RLS, SS, ESS and EIG) to minimize Cmax for unspecified dynamic unrelated parallel machines with 

additional resources. The results of the Enriched iterated greedy perform better than the methods that are related to 

instances of small, medium and large sizes.  

Recently two works are applied to solve ud-UPMR: guided genetic algorithm (GGA) [45] and hybrid guided 

genetic algorithm (GGA-GD, GGA-TS and GGA-VNS) [46]. Table 2 illustrates the strengths and limitations for the 

methods that are applied on the unspecified dynamic UPMR. 
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Table 2. - Strengths and limitations of the methods that applied on the ud-UPMR 

Technique   Strengths   Limitations 

2-

approximation 

algorithm [39] 

- It is often faster and easier to implement 

than exact optimization algorithms, which 

can be computationally expensive and 

time-consuming. 

- It is often simple to understand and 

interpret, making them useful for 

applications where complex algorithms 

may not be necessary. 

- It does not provide the optimal solution to an 

optimization problem, which can be a 

disadvantage for applications where exact 

solutions are necessary. 

- It may not scale well to very large 

optimization problems, as the size of the 

problem can increase the computational 

complexity of the algorithm. 

- The quality of the approximation provided by 

a 2-approximation algorithm may depend on 

the specific instance of the optimization 

problem, and some instances may require a 

larger approximation factor than 2. 

3/2-

approximation 

algorithm [39] 

- It guarantees that the solution it finds is no 

worse than 3/2 times the optimal solution, 

which can provide confidence in the 

quality of the solution. 

- It can often be implemented with relatively 

low computational overhead, making it a 

practical choice for many optimization 

problems. 

- It is not guaranteed to find the optimal 

solution, and in some cases, it may produce 

solutions that are significantly worse than the 

optimal solution. 

- It can be sensitive to the specific problem 

instance and input data, and may not perform 

well for all problems. 

- The solutions produced by the 3/2-

approximation algorithm may be difficult to 

interpret or explain, particularly if the 

algorithm involves complex optimization 

techniques or heuristics. 

4-

approximation 

algorithm [39] 

- It is often much faster than exact 

algorithms, as they do not need to explore 

the entire solution space. 

- It is often robust to changes in the problem 

formulation, input data, or algorithm 

parameters. 

- It may produce suboptimal solutions, 

meaning that the solution may not be as good 

as the optimal solution. 

- It may not be appropriate for some problems 

where a higher degree of accuracy is required. 

- The quality of the solution produced by a 4-

approximation algorithm depends on the 

problem structure, and in some cases, the 

solution produced may be significantly worse 

than the optimal solution. 

6.83-

approximation 

algorithm [40] 

- The algorithm provides a solution that is 

guaranteed to be no worse than 6.83 times 

the optimal solution, which is a strong 

performance guarantee. 

- It is relatively simple to implement and 

understand, which makes it accessible to a 

wide range of users. 

- It can handle large-scale instances of the 

Euclidean TSP problem, making it suitable 

for real-world applications. 

- It may not always provide a solution that is 

close to optimal, particularly for difficult 

instances of the Euclidean TSP problem. 

- It is designed specifically for the Euclidean 

TSP problem and may not be applicable to 

other types of optimization problems. 

- The performance of the algorithm can be 

sensitive to the distribution of the input data, 

and it may not perform well for certain types 

of distributions. 

3.75-

approximation 

algorithm [40] 

- The algorithm guarantees that the size of 

the independent set it produces is within a 

factor of 3.75 of the optimal solution, 

providing a good trade-off between 

solution quality and computational 

efficiency. 

- It is relatively simple to implement and 

requires only basic graph operations, 

making it a practical choice for many 

applications. 

- It has a polynomial time complexity, 

making it computationally efficient for 

large-scale graphs. 

- It may not always produce a good 

approximation for certain types of graphs, 

particularly those with complex structures or 

low-density graphs. 

- It may require careful tuning of its 

parameters, such as the threshold used to 

identify candidate independent set vertices, to 

achieve good performance on a particular 

graph. 

- It may not scale well to very large graphs or 

those with high degrees of connectivity, as it 

relies on a greedy approach to select 

independent set vertices. 
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table 2 continued 

Technique   Strengths   Limitations 

Integer 

Programming 

IP [41, 42] 

- IP provides exact solutions to optimization 

problems, making it suitable for 

applications where accuracy is crucial. 

- IP can handle various types of constraints 

such as inequality, equality, and logical 

constraints. This makes it a versatile tool 

for solving optimization problems. 

- IP can solve complex problems faster than 

other optimization techniques. 

- IP can become computationally intractable 

for larger problems, meaning the amount of 

time required to solve the problem grows 

exponentially with problem size. 

- The restriction that the decision variables 

must be integers can make it difficult to 

obtain feasible solutions for some problems. 

- Developing an IP model can be a time-

consuming and challenging process, as it 

requires a good understanding of the problem 

and its constraints. 

Lagrangian-

based CP 

approach [41] 

- LCP approach can quickly find good 

quality solutions to optimization problems, 

even in cases where traditional CP or 

mathematical programming methods fail. 

- It is able to handle large-scale optimization 

problems with thousands of variables and 

constraints. 

- It is a flexible approach that can handle a 

wide range of problems, including mixed-

integer and nonlinear optimization 

problems. 

 

- LCP can be computationally expensive, 

especially when solving large-scale problems, 

and may require high-performance computing 

resources. 

- It may not always converge to an optimal 

solution, especially when the relaxation 

parameters are not properly tuned. 

- The Lagrangian function in LCP can become 

quite complex, making it difficult to interpret 

the results and identify the sources of any 

errors or inaccuracies. 

- LCP often requires the tuning of parameters, 

such as the penalty function coefficients and 

Lagrange multipliers, which can be a time-

consuming process. 

IP/CP 

approach [42] 

- IP/CP can handle a wide range of 

constraints, including both linear and 

nonlinear functions. 

- It can be very efficient in solving 

problems, particularly for small to 

medium-sized problems. 

- It can provide optimal solutions to complex 

problems that other methods may not be 

able to solve accurately 

- IP/CP is based on linear programming, and it 

may not be suitable for non-linear problems 

or problems with continuous variables. 

- IP/CP problems can be computationally 

complex, particularly for large-scale 

problems, leading to slow or inefficient 

solutions. 

- Although IP/CP provides an exact solution, it 

may not always be practical and an 

approximate solution may be more efficient. 

- Sometimes, IP/CP may fail to find a feasible 

solution, resulting in an infeasible problem. 

ILP program 

[20] 

- ILP program can be applied to a wide 

range of problems, including scheduling, 

network optimization, and supply chain 

management, among others 

- It can handle problems with complex 

constraints and objectives, making them a 

flexible and powerful tool for optimization 

- ILP relies on linear equations, which may not 

accurately represent some real-world 

problems. Thus, there may be situations 

where the optimal solution obtained may not 

be the best solution in practice. 

- Solving ILP problems can be computationally 

intensive, especially for large-scale problems. 

The computational complexity of ILP 

increases exponentially with the number of 

decision variables and constraints 

Fixing 

algorithm [20] 

- Fixing algorithm is relatively easy to 

implement and do not require extensive 

mathematical modeling or programming 

knowledge. 

- It can be adapted to handle a wide range of 

optimization problems and can be easily 

modified to accommodate different 

constraints and objectives. 

- Fixing algorithm does not guarantee optimal 

solutions to the optimization problem. They 

may only provide good-quality solutions that 

are close to the optimal solution. 

- It may not be suitable for some types of 

optimization problems, especially those with 

complex constraints or objectives. 

- It may not be able to solve very large 

optimization problems due to computational 

limitations. 
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table 2 continued 

Technique   Strengths   Limitations 

MILP model 

[9, 43] 

 

- MILP is an efficient algorithm for solving 

optimization problems that have linear 

constraints and integer variables 

- It can be applied to many types of problems, 

including resource allocation, scheduling, 

logistics, and financial planning 

- MILP can become computationally expensive 

as the problem size increases, making it 

difficult to solve large-scale problems. 

- It is not suitable for non-linear optimization 

problems, which may require different 

techniques such as non-linear programming or 

heuristics. 

- It produces discrete solutions, which may not 

be suitable for problems that require 

continuous values. 

Matheuristic 

strategies [9] 

- Matheuristic strategies are highly flexible 

and can be adapted to different types of 

optimization problems. 

- They can often achieve high levels of 

accuracy in finding solutions, especially 

when compared to pure heuristic 

approaches. 

- They can solve complex optimization 

problems that are often intractable for 

mathematical programming or heuristic 

methods alone. 

- Matheuristic strategies can be complex and 

difficult to implement, requiring specialized 

knowledge and expertise. 

- They often require careful parameter tuning to 

ensure optimal performance. This can be a 

time-consuming process. 

- They often lack theoretical guarantees of 

finding optimal solutions or bounds on their 

performance. 

- They may not always be applicable to all 

optimization problems. They may require a 

significant amount of problem-specific 

knowledge to be effective. 

Constraint 

programming 

CP [17, 41, 

43]  

 

- CP can solve large-scale optimization 

problems with many constraints efficiently. 

- It can handle non-linear functions in the 

objective function and constraints, making it 

suitable for more complex problems. 

- It can handle complex constraints such as 

global constraints, symmetry-breaking 

constraints, and soft constraints. 

- CP solutions can be less accurate than IP 

solutions, particularly in problems with many 

constraints. 

- It can require exploring a large search space to 

find optimal solutions, which can make it 

slower than other optimization techniques for 

some problems 

- Developing a CP model can be more 

challenging than developing an IP model, 

particularly for problems with complex 

constraints. 

MILP/CP [43] - MILP/CP combines the advantages of both 

MILP and CP, which can lead to better 

performance and higher-quality solutions. 

- It is well-suited for problems that have a 

mix of linear and non-linear constraints. 

- It can handle complex real-world problems 

that involve both discrete and continuous 

decision variables. 

- MILP/CP is more complex than MILP, 

requiring expertise in both MILP and CP 

techniques. 

- The additional overhead of the CP solver can 

make MILP/CP slower than MILP for small-

scale problems. 

- MILP/CP problems can still be 

computationally challenging, especially when 

the problem size increases. 

Multi-pass 

heuristics 

algorithms 

[10] 

- Multi-pass heuristics can improve the 

quality of the solution by refining the initial 

solution obtained from the first pass. 

- They can handle large-scale optimization 

problems with thousands of variables and 

constraints. 

- They can be used to solve a wide variety of 

optimization problems, including those with 

complex constraints and objectives. 

- Multi-pass heuristics can be computationally 

expensive, particularly if each pass requires a 

significant amount of computation. 

- They may get trapped in a local optimum if the 

initial solution obtained from the first pass is 

not diverse enough. 

- They require careful tuning of parameters such 

as the number of iterations and the stopping 

criteria. 

- They may not always converge to the optimal 

solution and may require additional 

optimization techniques to improve 

convergence. 
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table 2 continued 

Technique   Strengths   Limitations 

NEHst [10] - NEHst is a relatively simple algorithm that 

is easy to implement and understand. 

- It can produce high-quality solutions for 

permutation flow shop scheduling 

problems, often outperforming other 

heuristic algorithms. 

 

- NEHst is only applicable to permutation flow 

shop scheduling problems, and may not be 

useful for other types of scheduling problems. 

- NEHst time complexity can be high, 

particularly for large-scale scheduling 

problems. 

- It may not always produce optimal solutions, 

particularly if the input data or problem 

parameters are uncertain or variable. 

- It is sometimes trapped in local optima and 

may not explore a diverse range of solutions. 

NEHres [10] - NEHres can be used with a variety of 

objective functions, including makespan, 

total flow time, and total tardiness. 

- It can be used to solve large-scale 

scheduling problems with hundreds or even 

thousands of jobs and machines. 

- It can be applied to a wide variety of 

scheduling problems, including those with 

multiple objectives and constraints. 

- NEHres performance can be sensitive to the 

order in which the jobs are processed, which 

can make it difficult to achieve optimal results. 

- It only explores a limited search space, which 

can prevent it from finding globally optimal 

solutions in certain cases. 

- It is a rigid algorithm that does not allow for 

easy modification or customization, which can 

limit its usefulness in certain applications. 

SWA [10] - SWA can often converge to a high-quality 

solution relatively quickly. 

- It is a relatively simple heuristic algorithm 

that is easy to implement and understand. 

- SWA performance can be sensitive to the 

order in which the jobs are processed, which 

can be a disadvantage if the input data is 

poorly structured. 

- It is only applicable to scheduling problems, 

and may not be useful for other problems. 

- It occasionally sticks in local optima and 

might not explore a wide variety of solutions. 

Enriched 

scatter search 

ESS [44] 

- ESS can find high-quality solutions to 

complex optimization problems  

- It can be used to solve a wide range of 

optimization problems, including both 

continuous and discrete problems. 

- It can converge to the global optimum of the 

problem. 

- ESS can be computationally expensive and 

time-consuming, especially for large-scale 

optimization problems. 

- The performance of this algorithm can be 

sensitive to the choice of the parameters  

- The convergence rate of the algorithm can be 

slow, especially for problems with complex 

solution spaces. 

Enriched 

iterated 

greedy EIG 

[44] 

- EIG is often able to find high-quality 

solutions quickly, even for large and 

complex problems 

- It can be applied to a wide range of 

optimization problems, including both 

continuous and discrete problems 

- It can be scaled up to large problem sizes 

with a large number of variables 

- EIG can become trapped in local optima due to 

its lack of diversity in its search 

- The performance of the algorithm can be 

sensitive to the choice of the parameters  

- There is no guarantee that the algorithm will 

find the optimal solution to a given problem 

 GGA [45] - GGA is capable of searching for the global 

optimum of a function in a large solution 

space, making it useful for problems with 

multiple local optima. 

- It can handle a wide range of optimization 

problems with different types of constraints 

and objective functions. 

- It can be easily parallelized, which can help 

reduce the optimization time for large-scale 

problems. 

- It does not require any knowledge of the 

gradients of the objective function, making 

it suitable for non-differentiable or complex 

gradients problems. 

- GGA requires careful parameter tuning to 

achieve good performance, such as population 

size, mutation rate, and crossover rate. 

- It may converge to a suboptimal solution if the 

population diversity is not maintained or the 

genetic operators are not properly 

implemented. 
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table 2 continued 

Technique   Strengths   Limitations 

GGA-GD 

[46] 

- GGA-GD provides a good balance between 

exploration and exploitation, allowing the 

algorithm to search a wide range of 

potential solutions. 

- The Great Deluge algorithm can help the 

algorithm to converge more quickly towards 

the optimal solution, particularly in cases 

where the search space is narrow or the 

optimization landscape is complex. 

- It is often robust to changes in the problem 

formulation, input data, or algorithm 

parameters. 

- It can be designed to handle large-scale 

optimization problems with thousands or 

even millions of variables 

- GGA-GD often requires careful tuning of 

algorithm parameters to achieve good 

performance, which can be time-consuming 

and difficult. 

- It requires a more complex implementation 

than either GA or GDA alone, which can be 

challenging for some users 

GGA-TS [46] - GGA-TS can effectively explore a large 

search space and avoid local optima, 

resulting in better global optimization 

performance. 

- It can be customized to fit a wide range of 

optimization problems, and it can 

incorporate different variations of the 

genetic and tabu search algorithms. 

- It can efficiently explore the solution space 

and quickly converge to a good solution, 

especially for complex optimization 

problems. 

- It can handle noisy or uncertain input data 

and can adapt to changes in the problem 

formulation or search space. 

- GGA-TS requires careful tuning of various 

parameters, such as the population size, 

crossover rate, and tabu search parameters, to 

achieve good performance. 

- It may not provide an easy-to-interpret 

solution, as the optimal solution may be a 

combination of the genetic and tabu search 

components. 

- It may struggle to converge to an optimal 

solution, particularly if the optimization 

landscape is complex or poorly understood. 

GGA-VNS 

[46] 

- GGA-VNS can maintain diversity by using 

the genetic algorithm to explore a wide 

range of solutions and the variable 

neighborhood search algorithm to refine 

promising solutions. 

- It is flexible and can be easily adapted to 

different optimization problems by 

modifying the genetic algorithm or variable 

neighborhood search algorithm parameters. 

- It can find good quality solutions quickly by 

using the genetic algorithm to explore the 

search space and the variable neighborhood 

search algorithm to refine the solutions. 

- GGA-VNS may not always converge to an 

optimal solution, particularly if the 

optimization landscape is complex or poorly 

understood. 

- It can be complex and difficult to implement, 

particularly if the optimization problem 

involves complex constraints or objectives. 

- It requires careful tuning of parameters to 

achieve good performance, which can be time-

consuming and difficult. 

 

 

In summary, careful consideration of the advantages and disadvantages of different approaches is essential before 

selecting an optimization technique. Exact methods such as Integer Programming, Lagrangian-based CP approach, 

IP/CP approach, ILP program, fixing algorithm, MILP model, Constraint programming, and MILP/CP provide a 

flexible framework for modeling various types of optimization problems. However, they may be computationally 

complex and sensitive to problem formulation. On the other hand, heuristic algorithms like NEHst are simple and 

effective for permutation flow shop scheduling problems but may not be suitable for other types of scheduling 

problems and may be sensitive to input data. Multi-pass heuristics, such as M1, M2, M3, M4, and M5, require careful 

design and parameter tuning for good performance and may be computationally expensive, produce complex solutions 

that are difficult to interpret, and get trapped in local optima. Approximation algorithms like the 2-approximation 

algorithm, 3/2-approximation algorithm, 4-approximation algorithm, 6.83-approximation algorithm, and 3.75-

approximation algorithm are simple, efficient, and robust. However, they may not produce the optimal solution, lack 

flexibility, and their performance may be sensitive to input characteristics. Metaheuristic algorithms, such as Enriched 

scatter search, enriched iterated greedy, guided genetic algorithm, and hybrid guided genetic algorithm, have their 
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advantages and disadvantages. It is important to carefully evaluate the problem and the available algorithms to 

determine the best approach for finding the optimal solution. Matheuristic strategies such as JMR-P, MAF-P, GBF-P, 

JMR-S, MAF-S, and GBF-S are powerful tools that can solve complex optimization problems, but they require careful 

consideration and expertise to use effectively. 

 

 

5. CONCLUSION 

Viewed as a decision-making form, scheduling is seen as a crucial dimension in most forms of manufacturing, 

production and information processing situations and contexts. In addition, scheduling is also vital in situations 

involving transportation, distribution and service-related industries. Over the past 70 years, researchers in management, 

industrial engineering, operations research, and computer science have examined scheduling extensively. Today, there 

is an amazing body of information in this area. The investigation of UPMR is rendered an important area of research. 

After presenting the key definitions of concepts, assumptions, and categorizations in this article, the relevant studies 

were reviewed and organized into an effective framework according to the machine environments, objective functions, 

additional resource characteristics, complexity, and solution approaches. Next, for the PMS problem, a few model 

extensions have been revealed and explained. It has been shown the majority of the problems, in question, have been 

faced in actual-world problems and call for the use of industrial-sized data in order for them to be solved, but nearly no 

one study in the survey addresses these problems. This is an important point to note in addition to the vital features of 

the articles revealed above. 
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