

*Corresponding author: munt1979@yahoo.com
http://journal.esj.edu.iq/index.php/IJCM

224

Iraqi Journal for Computer Science and Mathematics

Journal Homepage: http://journal.esj.edu.iq/index.php/IJCM

e-ISSN: 2788-7421 p-ISSN: 2958-0544

Review on unrelated parallel machine scheduling problem

with additional resources

Munther H. Abed *, Mohd Nizam Mohmad Kahar

Faculty of Computing, University Malaysia Pahang, Pahang, Malaysia

*Corresponding Author: Munther H. Abed and Mohd Nizam Mohmad Kahar

DOI: https://doi.org/10.52866/ijcsm.2023.02.02.020

Received March 2023; Accepted April 2023; Available online May 2023

1. INTRODUCTION

In today’s competitive world, where jobs are processed largely by machines, the requirement for smart

organization becomes an essential need.

If we take into account the fact that the resources, we rely on are scarce, the need has become more urgent.

Moreover, since one of the aims of the commercial sector aims is to turn a profit, then this profit could be increased if

the manufacturing facilities were operating at their peak efficiency This problem arises in a variety of industry

environments, including auto factories and food processing, among others. It is reasonable to expect that a variety of

jobs will be processed by a variety of parallel machines, under a variety of specific circumstances, and with a variety of

specific objectives. Considered scheduling jobs on parallel machines as a process involves two steps: the first is which

jobs are to allocate to which machines and the second is the order of the jobs thar are to allocated to each of these

machines.

The regular scheduling problem of the unrelated parallel machine (UPM) can be described as the processing some

jobs on some parallel machines. The widely known objective is to minimize the maximum completion time of job.

According to [1-5], UPM problem is “A set of n jobs has to be processed on exactly one machine out of a set of m

machines. In this variant of the problem, processing times of the jobs differ according to the machine the job is

assigned to”.

UPM that considers limited resources is named as UPMR. The importance of the UPMR comes from the wealth of

applications; they are applicable to engineering or scientific situations where it is needed to present the best sequence in

a convincing period of time within limited number of resources. This paper shows some of the latest studies and related

literature in the context of unrelated parallel machine scheduling problems with additional resources (UPMR) to ensure

our research direction and many techniques have been applied for solving this problem.

ABSTRACT: This study deals with an unrelated parallel machine scheduling problem with additional resources

(UPMR). That is one of the important sub-problems in the scheduling. UPMR consists of scheduling a set of jobs

on unrelated machines. In addition to that, a number of one or more additional resources are needed. UPMR is very

important and its importance comes from the wealth of applications; they are applicable to engineering and

scientific situations and manufacturing systems such as industrial robots, nurses, machine operators, bus drivers,

tools, assembly plant machines, fixtures, pallets, electricity, mechanics, dies, automated guided vehicles, fuel, and

more. The importance also comes from the concern about the limitation of resources that are dedicated for the

production process. Therefore, researchers and decision makers are still working on UPMR problem to get an

optimum schedule for all instances which have not been obtained to this day. The optimum schedule is able to

increase the profits and decrease the costs whilst satisfying the customers’ needs. This research aims to review and

discuss studies related to unrelated parallel machines and additional resources. Overall, the review demonstrates

the criticality of resolving the UPMR problem. Metaheuristic techniques exhibit significant effectiveness in

generating results and surpassing other algorithms. Nevertheless, continued improvement is essential to satisfy the

evolving requirements of UPMR, which are subject to operational changes based on customer demand.

Keywords: Makespan, Resource constraints, Scheduling problems, Unrelated parallel machine

http://journal.esj.edu.iq/index.php/IJCM
https://orcid.org/0000-0002-0010-9765
https://orcid.org/0000-0003-0811-0856

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 225

 In today's highly competitive world, the use of machines for job processing has become essential in various

industries. As resources become scarce, optimizing scheduling is crucial to boosting profits in fields like auto factories

and food processing. Scheduling jobs on parallel machines involves two primary steps: allocating jobs to machines and

determining the order of jobs on each machine. The unrelated parallel machine (UPM) scheduling problem aims to

minimize the job completion time by scheduling some jobs on parallel machines. However, real-world scenarios often

require additional resources, leading to the UPMR problem. This problem is significant in engineering and scientific

contexts where efficient resource allocation is crucial. This paper reviews recent studies and related literature on the

UPMR scheduling problem, providing insights into the techniques used to solve the problem and identifying potential

areas for future research. We survey four major categories of papers, including machine environment, supplemental

resources, objective functions, and approaches to problem-solving.

2. DEFINITIONS AND ASSUMPTIONS

In the era of automation and intelligence systems, the production process plays a crucial part in increasing the

profits, decreasing the costs whilst satisfying the users. This has attracted the attention of many researches into

developing an optimum scheduling for the production process. Production scheduling involves assigning jobs to

machines to optimize performance metrics. One important sub-problem in scheduling is the unrelated parallel machine

scheduling (UPM) problem, which involves scheduling jobs on machines to minimize the time needed to complete all

jobs (makespan). However, to execute a job on a machine, a set of resources is required. When additional resources are

taken into account, the problem is referred to as UPMR. In an UPM problem, the order in which jobs are scheduled on

each machine does not affect the makespan. In contrast, in UPMR, the sequence of job assignments to machines affects

the makespan, as different sequences imply different execution times due to limited resources. Several assumptions for

the UPMR problem have been proposed in recent studies (e.g., [6-10]) which includes:

• Only one machine processes one job.

• One job at a time can be processed by each machine.

• Any job processing, that was already initiated, must be fulfilled and finished uninterruptedly (non-preemptively).

• Every job requires a number of additional resources during their entire process not exceeding the Rmax at any time.

• The precedence constraints are sometimes possible between two jobs.

3. A CLASSIFICATION OF SCHEDULING PROBLEMS

A classification scheme for parallel machine scheduling problem introduced by [11-13]. This scheme could

employ a three-field problem classification α | β | γ.

• Machine environment characteristics (α)

• Job characteristics and constraints (β)

• Global optimality criterion (Objective functions γ)

3.1 MACHINE ENVIRONMENT CHARACTERISTICS

The characteristics of machine environments can be categorized into two groups: machine variety and machine

environment. Concerning the variety of machines, the regular parallel machine scheduling problem addresses

independent tasks that must be processed by a set of parallel machines non-preemptively to achieve a specific

performance measure [14]. The majority of studies focus on more than three machines, while some suggest that the

number of machines may vary as part of the input [9]. In terms of the machine environment, the parallel machine

scheduling problem (PMSP) can be classified into three types that are based on the machines' nature: identical,

uniform, and unrelated [15-17]. However, previous studies employed a classification scheme that distinguished five

sub-cases of parallel machines based on their environment [11, 12]. These sub-cases are: single machine (Ø), parallel

dedicated machines (PD), identical parallel machines (P), uniform parallel machines (Q), and unrelated parallel

machines (R).

Single machine refers to a production system that has only one machine for processing jobs or tasks. The machine

is capable of performing a specific operation or a sequence of operations that are required to complete a job. Parallel

dedicated machines, is a type of manufacturing system that consists of several dedicated machines that are used to

produce a specific product or set of products. The machines are dedicated to the production of the product(s) and are

arranged in parallel, where they operate simultaneously to produce the required output. Each machine in the parallel

dedicated system performs a specific task in the production process. For example, in a parallel dedicated system for

automobile manufacturing, there may be dedicated machines for welding, painting, and assembly.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 226

Identical parallel machines, is a type of production system in which a set of machines is available to process a set

of jobs, and all the machines are identical in terms of their processing capabilities, capacities, and speed [18]. In other

words, each machine in this production system is interchangeable with any other machine, and they can all perform the

same tasks with the same level of efficiency. Uniform parallel machines, is a type of production system in which a set

of machines is available to process a set of jobs, and all the machines have uniform or identical processing capabilities,

but may have different processing speeds or capacities [19]. In other words, the machines in the production system

have the same processing capabilities and, thus, they can perform the same tasks, but they may process those tasks at

different rates.

Unrelated parallel machines, on the other hand, is a type of production system in which a set of machines is

available to process a set of jobs, and each machine has a unique processing capability or specialization [8]. In other

words, the machines in the system are not identical and have different processing capabilities or functions [20]. The

unrelated parallel machine is further divided into three sub-cases: regular UPM, with sequence-dependent setup time

UPMSP, and with resources UPMR.

• Regular unrelated parallel machine

In regular unrelated parallel machine problems, the concept of unrelated parallel machines refers to a situation

where a set of jobs must be processed on a specific machine from a group of parallel machines that are not

related to each other. Each job must have a processing time assigned to it, and the processing should begin at

time zero.

• Unrelated parallel machine with sequence dependent setup time

In unrelated parallel machines with sequence-dependent setup times, an additional constraint is introduced,

which is the time required to prepare the machine for a specific job. The setup times are dependent on both the

job sequence and the machine used, and each machine has its own matrix of setup times. This creates a more

complex scheduling problem where the optimal distribution of jobs among machines must be determined, and

the best order for each machine must be established to ensure that the resource restrictions are met at all times.

One example of this type of scheduling problem is RM |Sjkm|Cmax [3, 21].

• Unrelated parallel machine with resources

In the case of unrelated parallel machines with resources (UPMR), a renewable resource is required for each job

within its processing time set, and only a limited amount of the resource is available at any given time. The

scheduling problem involves assigning the jobs to the machines, determining the start and completion times, and

ensuring that the machines are never stopped between the completion of one job and the start of another. This

version of the problem is more complex due to the additional constraint of resource availability and may result in

idle times if the machines are unable to process the next job due to a lack of resources [9].

Considering the importance of resource constraints in industrial settings, the UPMR problem is a crucial factor that

must be taken into account when determining the optimal scheduling solution.

3.2 JOB CHARACTERISTICS AND CONSTRAINTS

A great reference of the characteristics and constraints of a job, including processing times, preemptions, and

resource constraints, can be referred to [11, 12, 22-24]. It should be noted that the resource consumption and processing

times of a job can vary depending on the machine that is allocated to process the job. This is particularly important in

real manufacturing environments where different machines may need to be used simultaneously. In such cases, the

processing time or resource consumption of a job on an old machine may differ significantly from that on a new

machine, as noted in references [9, 10]. Thus, it is essential to carefully consider the characteristics of each machine

and allocate jobs accordingly to optimize scheduling and resource utilization.

3.2.1 Processing times

The processing time of a job in a parallel application is significantly impacted by the machines to which it is

assigned. As such, the allocation of jobs to machines is a critical factor that can greatly affect system performance and

efficiency. To describe the processing times of jobs, the parameter β5 ∈ [Ø, pj = p] is used. Two possible values for β5

are:

• β5 = Ø: This indicates that the processing times of jobs are arbitrary, and the parameter pj may or may not be used

to represent these times.

• β5 = (pj = p): This means that all jobs have the same processing time, which is equal to p units.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 227

3.2.2 Possibility of preemptions

The processing of jobs can be interrupted or uninterrupted based on the allowance of preemptions. When

preemptions are not allowed, the processing of any job must continue uninterruptedly until it is finished. However, in

the case of preemptions, any operation's processing can be stopped and resumed later, even on a different machine. To

determine whether preemption is possible or not, parameter β1 ∈ [Ø, pmtn] is used, where:

• β1 = Ø: no preemption is allowed.

• β1= pmtn: preemption is allowed.

3.2.3 Machine eligibility restrictions (Job-machine assignment)

The assignment of the job to machine could be done in two ways: assigning jobs to unspecified or specified

machines means a specific issue of the unrelated parallel machine environment. β7 ∈ [Ø, Mj]: means the eligibility

restrictions of machines:

• β7 = Ø: all machines are eligible for all jobs (unspecified).

• β7 = Mj: the processing of job j can only be carried out by a specific machine subset Mj of M machines

(specified).

3.2.4 Additional Resource constraints

In some studies of parallel machine scheduling, machines are considered as a resource. However, in real-world

manufacturing settings, jobs often require additional resources like automated guided vehicles, machine operators,

tools, pallets, dies, and industrial robots for their handling and processing [12, 25, 26]. These resources have various

characteristics that must be taken into account while solving the UPMR problem (refer to Fig. 1).

FIGURE 1. - Classification of additional resources

a) To characterize additional resources, Parameter β2 is used, which belongs to the range [Ø, resλσδ] [22, 23]. The

different values of β2 are defined as follows:

• β2 = Ø, then no additional resources are present.

• β2 = resλσδ, then specified resource constraints exist. λ, σ, and δ are described below:

- If λ is a positive integer, it represents a constant variety of resource types that are equivalent to λ. If λ = ., it

represents a part of the input, and its value is arbitrary.

- If σ is a positive integer, then all resource sizes, or resource limits, are constant and equal to σ. If σ = ., then all

resource sizes are characterized as arbitrary.

- If δ is a positive integer, then all resource requirements have a constant upper bound that is equal to δ. If δ = .,

then such bounds are not specified.

b) The additional resources are categorized into three classes based on their resource constraints [23, 25]:

• If a resource is used for a job, after being released from this job it may be used again for other job. This type of

resources is called renewable [9, 10].

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 228

• If a resource has already been used for one job, then it cannot be used for another job. This type of resources is

named nonrenewable [27].

• If both renewable resources and nonrenewable resources are used in the same time, this type is called doubly

constrained [28].

c) In the resource divisibility, additional resources can be categorized into two classes, as per references [23, 25].

These classes are:

• Discrete resources, which refer to the distribution of jobs in separate amounts from a specific, finite variety of

possible allocations. These allocations may consist of just one element [20].

• Continuous resources, which may be allocated to jobs in random, a priori unknown amounts from predetermined

intervals. A significant amount of research on continuous resources is available [29].

d) The additional resources can be classified into two categories from the perspective of job processing [7]:

• Processing resources: These are resources that are needed for processing a given job set on a specific machine.

• Input-output resources: These are resources that are required either before or after the processing of a job [7, 23,

30, 31].

e) The allocation of resources to machines must be carefully considered, and there are two classes of allocation

methods as described in [17]:

• Static allocation: the resource allocation remains fixed throughout the schedule, and the additional resource

cannot be switched to other machines.

• Dynamic allocation: the assignment and non-assignment of resources are based on the type of job, and the

additional resource can be switched among machines during the schedule.

3.3 GLOBAL OPTIMALITY CRITERION

There exist several types of objective functions used in the parallel machine scheduling problem. In constructing

optimality criteria (refer to Table 1) [32], the following elementary functions are considered:

Table 1. - The objective function for PMS

Measure Symbol Formula

Flow time 𝐹𝑗 𝐹𝑗 = 𝐶𝑗 − 𝑟𝑗

Lateness 𝐿𝑗 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗

Tardiness 𝑇𝑗 𝑚𝑎𝑥 [𝐶𝑗 − 𝑑𝑗 , 0]

Earliness 𝐸𝑗 𝑚𝑎𝑥 [𝑑𝑗 − 𝐶𝑗 , 0]

Total completion time 𝐶𝑗 ∑ 𝐶𝑗
𝐽
𝑗=1

Total weighted completion time 𝑤𝑗𝐶𝑗 ∑ 𝑤𝑗𝐶𝑗
𝐽
𝑗=1

Total flow time 𝐹𝑗 ∑ 𝐹𝑗
𝐽
𝑗=1

Total weighted flow time 𝑤𝑗𝐹𝑗 ∑ 𝑤𝑗
𝐽
𝑗=1 𝐹𝑗

Total tardiness 𝑇𝑗 ∑ 𝑇𝑗
𝐽
𝑗=1

Total weighted tardiness 𝑤𝑗𝑇𝑗 ∑ 𝑤𝑗𝑇𝑗
𝐽
𝑗=1

Number of tardy jobs 𝑈𝑗 ∑ 𝑈𝑗
𝐽
𝑗=1

Weighted number of tardy jobs 𝑤𝑗𝑈𝑗 ∑ 𝑤𝑗𝑈𝑗
𝐽
𝑗=1

Maximum lateness 𝐿𝑚𝑎𝑥 𝑚𝑎𝑥𝑗𝐿𝑗

Maximum tardiness 𝑇𝑚𝑎𝑥 𝑚𝑎𝑥𝑗𝑇𝑗

Makespan 𝐶𝑚𝑎𝑥 𝑚𝑎𝑥𝑗𝐶𝑗

This review paper focuses on a particular type of objective function utilized in parallel machine scheduling studies,

which aims to minimize the makespan criterion. The makespan is responsible for balancing the machines based on their

loads, leading to optimal machine utilization [6]. Furthermore, the makespan can be defined as the time when the last

job is completed [33, 34], and a minimum makespan usually indicates efficient machine handling [32].

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 229

4. RELATED WORK

This section presents a review of the approaches used to solve the dynamic unrelated parallel machine scheduling

problem, both specified and unspecified versions. According to the literature, these approaches can be classified into

four categories: exact methods, ρ-approximation algorithms, problem-based heuristics, and metaheuristics. Scholars

have explored and studied specified dynamic (sd) versions for UPMR problem. For example, [35] proposed a heuristic

approach with secondary resource constraints to minimize makespan for specified dynamic UPMR. The results obtained

by the computational processes indicate that the presented heuristic performs better than the simulated annealing. [36]

presented an effective heuristic approach based on threshold-accepting method, tabu lists, and improvement steps with

assistant equipment constraints as secondary resource constraints, for the specified dynamic unrelated parallel machine

to minimize total tardiness. Computational experiences point out the capability of the suggested heuristic to gain the

best solutions for the problems of small size, and considerably outperforms an ATCS procedure and a SA for the large-

size instances.

Constraint programming (CP), integer programming (IP), and integrated IP/CP models were proposed by [37] to

minimize Cmax for specified dynamic UPMR, and the combined IP/CP model obtained the best results in most

instances. [38] have developed approaches of IP/IP and IP/CP models to minimize the makespan for specified dynamic

unrelated parallel machine. They reported that better results are offered by IP/IP than IP when the constraints of

resources are loose. Additionally, IP/CP model outperforms CP model when the constraints of the resource were tight.

Much literature on unspecified dynamic (ud) UPMR has also been presented in earlier studies. For example, [39]

proposed 2-approximation, 3/2-approximation and 4-approximation approach so that to the Cmax and wjCj are minimized

for unspecified dynamic UPMR. The 4-approximation method are rendered better than the other two methods. [40]

made development on 3.75-approximation approach through the use of the rounding procedure which is utilized to

solve ud-UPMR by the means of minimizing the makespan. As it can be seen, the results, obtained through the

application of the model in question, outperform 4-approximation and 6.83-approximation.

A Lagrangian-based CP method has been suggested by the way of keeping the resource constraints relaxed [41].

The results of this method have been compared to the results of IP and CP approaches for the sake of discovering the

fact that the method of the proposed Lagrangian-based CP presents results that are really considered effective. An

integer programming (IP) model has been proposed by [42] to solve dynamic UPMR problems which is defined as a

relaxed IP based CP method used for the purpose solving the large-sized instances for dynamic UPMR and IP/CP

model. To go further. This model, additionally, performs better than the IP model and obtains near-best solutions for

problems characterized as being of large sizes. [20] study the scheduling problem of the unspecified dynamic UPMR.

The aim of this study is oriented to scheduling jobs in parallel machines as a step to minimize the makespan. Two

approaches have been presented by those two scholars: one is an integer linear programming ILP program and the other

is a two-phase approach based on solutions, named the fixing algorithm. The fixing algorithm outperforms the ILP

program.

L. Fanjul Peyro et al. investigated unspecified dynamic UPMR goal to minimize the makespan [9]. The resources

were very limited and unchanged in terms of their availability within the production aspect. The number of resources is

based on the job in addition to the machine. They formulate this problem via two mixed integer linear programming

MILPs. Of these approaches is one that was based on a model previously reported by [42] and referred to by UPMR-S.

The second approach takes into account the aspect of resemblance to the strip packing problem (referred to by UPMR-

P). Additionally, three techniques, matheuristic in nature, were also reported by those scholars. These included “Job-

machine reduction JMR, Machine-assignment fixing MAF and Greedy-based fixing GBF” which have been used in

each one of the aforementioned methods (UPMR-P and UPMR-S) and resulted JMR-P, MAF-P, GBF-P, JMR-S, MAF-

S, and GBF-S. The JMR-P approach, thus, performs better than all other approaches in most instances.

CP model has been presented to solve the unspecified dynamic unrelated parallel machine for the aim of

minimizing the Cmax [17]. The CP model, as shown by the results, outperforms the heuristic and exact methods in the

earlier studies (UPMR-P, UPMR-S, MAF-P and MAF-S) for all instances used in the research. [43] has also suggested

two approaches for the sake of solving the unrelated parallel machine scheduling problem with a renewable resource

constraint to minimize the makespan. As such, the methods, in question, are MILP for two machines and MILP/CP

model for more than two machines. If the solution of the MILP/CP model is not characterized as being the optimal,

then, the solution of the problem is carried out by the use of a CP model. The MILP/CP outperforms CP model for a

problem of a large size.

Multi-pass heuristics and local search methods (NEHst, NEHres and SWA) have been proposed by [10] for the sake

of minimizing the makespan for unspecified dynamic UPMR. As for small instances, the best results were obtained by

NEHres; in medium and large instances, the optimal results went to the M4 and M5 respectively. [44] suggested four

approaches (RLS, SS, ESS and EIG) to minimize Cmax for unspecified dynamic unrelated parallel machines with

additional resources. The results of the Enriched iterated greedy perform better than the methods that are related to

instances of small, medium and large sizes.

Recently two works are applied to solve ud-UPMR: guided genetic algorithm (GGA) [45] and hybrid guided

genetic algorithm (GGA-GD, GGA-TS and GGA-VNS) [46]. Table 2 illustrates the strengths and limitations for the

methods that are applied on the unspecified dynamic UPMR.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 230

Table 2. - Strengths and limitations of the methods that applied on the ud-UPMR

Technique Strengths Limitations

2-

approximation

algorithm [39]

- It is often faster and easier to implement

than exact optimization algorithms, which

can be computationally expensive and

time-consuming.

- It is often simple to understand and

interpret, making them useful for

applications where complex algorithms

may not be necessary.

- It does not provide the optimal solution to an

optimization problem, which can be a

disadvantage for applications where exact

solutions are necessary.

- It may not scale well to very large

optimization problems, as the size of the

problem can increase the computational

complexity of the algorithm.

- The quality of the approximation provided by

a 2-approximation algorithm may depend on

the specific instance of the optimization

problem, and some instances may require a

larger approximation factor than 2.

3/2-

approximation

algorithm [39]

- It guarantees that the solution it finds is no

worse than 3/2 times the optimal solution,

which can provide confidence in the

quality of the solution.

- It can often be implemented with relatively

low computational overhead, making it a

practical choice for many optimization

problems.

- It is not guaranteed to find the optimal

solution, and in some cases, it may produce

solutions that are significantly worse than the

optimal solution.

- It can be sensitive to the specific problem

instance and input data, and may not perform

well for all problems.

- The solutions produced by the 3/2-

approximation algorithm may be difficult to

interpret or explain, particularly if the

algorithm involves complex optimization

techniques or heuristics.

4-

approximation

algorithm [39]

- It is often much faster than exact

algorithms, as they do not need to explore

the entire solution space.

- It is often robust to changes in the problem

formulation, input data, or algorithm

parameters.

- It may produce suboptimal solutions,

meaning that the solution may not be as good

as the optimal solution.

- It may not be appropriate for some problems

where a higher degree of accuracy is required.

- The quality of the solution produced by a 4-

approximation algorithm depends on the

problem structure, and in some cases, the

solution produced may be significantly worse

than the optimal solution.

6.83-

approximation

algorithm [40]

- The algorithm provides a solution that is

guaranteed to be no worse than 6.83 times

the optimal solution, which is a strong

performance guarantee.

- It is relatively simple to implement and

understand, which makes it accessible to a

wide range of users.

- It can handle large-scale instances of the

Euclidean TSP problem, making it suitable

for real-world applications.

- It may not always provide a solution that is

close to optimal, particularly for difficult

instances of the Euclidean TSP problem.

- It is designed specifically for the Euclidean

TSP problem and may not be applicable to

other types of optimization problems.

- The performance of the algorithm can be

sensitive to the distribution of the input data,

and it may not perform well for certain types

of distributions.

3.75-

approximation

algorithm [40]

- The algorithm guarantees that the size of

the independent set it produces is within a

factor of 3.75 of the optimal solution,

providing a good trade-off between

solution quality and computational

efficiency.

- It is relatively simple to implement and

requires only basic graph operations,

making it a practical choice for many

applications.

- It has a polynomial time complexity,

making it computationally efficient for

large-scale graphs.

- It may not always produce a good

approximation for certain types of graphs,

particularly those with complex structures or

low-density graphs.

- It may require careful tuning of its

parameters, such as the threshold used to

identify candidate independent set vertices, to

achieve good performance on a particular

graph.

- It may not scale well to very large graphs or

those with high degrees of connectivity, as it

relies on a greedy approach to select

independent set vertices.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 231

table 2 continued

Technique Strengths Limitations

Integer

Programming

IP [41, 42]

- IP provides exact solutions to optimization

problems, making it suitable for

applications where accuracy is crucial.

- IP can handle various types of constraints

such as inequality, equality, and logical

constraints. This makes it a versatile tool

for solving optimization problems.

- IP can solve complex problems faster than

other optimization techniques.

- IP can become computationally intractable

for larger problems, meaning the amount of

time required to solve the problem grows

exponentially with problem size.

- The restriction that the decision variables

must be integers can make it difficult to

obtain feasible solutions for some problems.

- Developing an IP model can be a time-

consuming and challenging process, as it

requires a good understanding of the problem

and its constraints.

Lagrangian-

based CP

approach [41]

- LCP approach can quickly find good

quality solutions to optimization problems,

even in cases where traditional CP or

mathematical programming methods fail.

- It is able to handle large-scale optimization

problems with thousands of variables and

constraints.

- It is a flexible approach that can handle a

wide range of problems, including mixed-

integer and nonlinear optimization

problems.

- LCP can be computationally expensive,

especially when solving large-scale problems,

and may require high-performance computing

resources.

- It may not always converge to an optimal

solution, especially when the relaxation

parameters are not properly tuned.

- The Lagrangian function in LCP can become

quite complex, making it difficult to interpret

the results and identify the sources of any

errors or inaccuracies.

- LCP often requires the tuning of parameters,

such as the penalty function coefficients and

Lagrange multipliers, which can be a time-

consuming process.

IP/CP

approach [42]

- IP/CP can handle a wide range of

constraints, including both linear and

nonlinear functions.

- It can be very efficient in solving

problems, particularly for small to

medium-sized problems.

- It can provide optimal solutions to complex

problems that other methods may not be

able to solve accurately

- IP/CP is based on linear programming, and it

may not be suitable for non-linear problems

or problems with continuous variables.

- IP/CP problems can be computationally

complex, particularly for large-scale

problems, leading to slow or inefficient

solutions.

- Although IP/CP provides an exact solution, it

may not always be practical and an

approximate solution may be more efficient.

- Sometimes, IP/CP may fail to find a feasible

solution, resulting in an infeasible problem.

ILP program

[20]

- ILP program can be applied to a wide

range of problems, including scheduling,

network optimization, and supply chain

management, among others

- It can handle problems with complex

constraints and objectives, making them a

flexible and powerful tool for optimization

- ILP relies on linear equations, which may not

accurately represent some real-world

problems. Thus, there may be situations

where the optimal solution obtained may not

be the best solution in practice.

- Solving ILP problems can be computationally

intensive, especially for large-scale problems.

The computational complexity of ILP

increases exponentially with the number of

decision variables and constraints

Fixing

algorithm [20]

- Fixing algorithm is relatively easy to

implement and do not require extensive

mathematical modeling or programming

knowledge.

- It can be adapted to handle a wide range of

optimization problems and can be easily

modified to accommodate different

constraints and objectives.

- Fixing algorithm does not guarantee optimal

solutions to the optimization problem. They

may only provide good-quality solutions that

are close to the optimal solution.

- It may not be suitable for some types of

optimization problems, especially those with

complex constraints or objectives.

- It may not be able to solve very large

optimization problems due to computational

limitations.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 232

table 2 continued

Technique Strengths Limitations

MILP model

[9, 43]

- MILP is an efficient algorithm for solving

optimization problems that have linear

constraints and integer variables

- It can be applied to many types of problems,

including resource allocation, scheduling,

logistics, and financial planning

- MILP can become computationally expensive

as the problem size increases, making it

difficult to solve large-scale problems.

- It is not suitable for non-linear optimization

problems, which may require different

techniques such as non-linear programming or

heuristics.

- It produces discrete solutions, which may not

be suitable for problems that require

continuous values.

Matheuristic

strategies [9]

- Matheuristic strategies are highly flexible

and can be adapted to different types of

optimization problems.

- They can often achieve high levels of

accuracy in finding solutions, especially

when compared to pure heuristic

approaches.

- They can solve complex optimization

problems that are often intractable for

mathematical programming or heuristic

methods alone.

- Matheuristic strategies can be complex and

difficult to implement, requiring specialized

knowledge and expertise.

- They often require careful parameter tuning to

ensure optimal performance. This can be a

time-consuming process.

- They often lack theoretical guarantees of

finding optimal solutions or bounds on their

performance.

- They may not always be applicable to all

optimization problems. They may require a

significant amount of problem-specific

knowledge to be effective.

Constraint

programming

CP [17, 41,

43]

- CP can solve large-scale optimization

problems with many constraints efficiently.

- It can handle non-linear functions in the

objective function and constraints, making it

suitable for more complex problems.

- It can handle complex constraints such as

global constraints, symmetry-breaking

constraints, and soft constraints.

- CP solutions can be less accurate than IP

solutions, particularly in problems with many

constraints.

- It can require exploring a large search space to

find optimal solutions, which can make it

slower than other optimization techniques for

some problems

- Developing a CP model can be more

challenging than developing an IP model,

particularly for problems with complex

constraints.

MILP/CP [43] - MILP/CP combines the advantages of both

MILP and CP, which can lead to better

performance and higher-quality solutions.

- It is well-suited for problems that have a

mix of linear and non-linear constraints.

- It can handle complex real-world problems

that involve both discrete and continuous

decision variables.

- MILP/CP is more complex than MILP,

requiring expertise in both MILP and CP

techniques.

- The additional overhead of the CP solver can

make MILP/CP slower than MILP for small-

scale problems.

- MILP/CP problems can still be

computationally challenging, especially when

the problem size increases.

Multi-pass

heuristics

algorithms

[10]

- Multi-pass heuristics can improve the

quality of the solution by refining the initial

solution obtained from the first pass.

- They can handle large-scale optimization

problems with thousands of variables and

constraints.

- They can be used to solve a wide variety of

optimization problems, including those with

complex constraints and objectives.

- Multi-pass heuristics can be computationally

expensive, particularly if each pass requires a

significant amount of computation.

- They may get trapped in a local optimum if the

initial solution obtained from the first pass is

not diverse enough.

- They require careful tuning of parameters such

as the number of iterations and the stopping

criteria.

- They may not always converge to the optimal

solution and may require additional

optimization techniques to improve

convergence.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 233

table 2 continued

Technique Strengths Limitations

NEHst [10] - NEHst is a relatively simple algorithm that

is easy to implement and understand.

- It can produce high-quality solutions for

permutation flow shop scheduling

problems, often outperforming other

heuristic algorithms.

- NEHst is only applicable to permutation flow

shop scheduling problems, and may not be

useful for other types of scheduling problems.

- NEHst time complexity can be high,

particularly for large-scale scheduling

problems.

- It may not always produce optimal solutions,

particularly if the input data or problem

parameters are uncertain or variable.

- It is sometimes trapped in local optima and

may not explore a diverse range of solutions.

NEHres [10] - NEHres can be used with a variety of

objective functions, including makespan,

total flow time, and total tardiness.

- It can be used to solve large-scale

scheduling problems with hundreds or even

thousands of jobs and machines.

- It can be applied to a wide variety of

scheduling problems, including those with

multiple objectives and constraints.

- NEHres performance can be sensitive to the

order in which the jobs are processed, which

can make it difficult to achieve optimal results.

- It only explores a limited search space, which

can prevent it from finding globally optimal

solutions in certain cases.

- It is a rigid algorithm that does not allow for

easy modification or customization, which can

limit its usefulness in certain applications.

SWA [10] - SWA can often converge to a high-quality

solution relatively quickly.

- It is a relatively simple heuristic algorithm

that is easy to implement and understand.

- SWA performance can be sensitive to the

order in which the jobs are processed, which

can be a disadvantage if the input data is

poorly structured.

- It is only applicable to scheduling problems,

and may not be useful for other problems.

- It occasionally sticks in local optima and

might not explore a wide variety of solutions.

Enriched

scatter search

ESS [44]

- ESS can find high-quality solutions to

complex optimization problems

- It can be used to solve a wide range of

optimization problems, including both

continuous and discrete problems.

- It can converge to the global optimum of the

problem.

- ESS can be computationally expensive and

time-consuming, especially for large-scale

optimization problems.

- The performance of this algorithm can be

sensitive to the choice of the parameters

- The convergence rate of the algorithm can be

slow, especially for problems with complex

solution spaces.

Enriched

iterated

greedy EIG

[44]

- EIG is often able to find high-quality

solutions quickly, even for large and

complex problems

- It can be applied to a wide range of

optimization problems, including both

continuous and discrete problems

- It can be scaled up to large problem sizes

with a large number of variables

- EIG can become trapped in local optima due to

its lack of diversity in its search

- The performance of the algorithm can be

sensitive to the choice of the parameters

- There is no guarantee that the algorithm will

find the optimal solution to a given problem

 GGA [45] - GGA is capable of searching for the global

optimum of a function in a large solution

space, making it useful for problems with

multiple local optima.

- It can handle a wide range of optimization

problems with different types of constraints

and objective functions.

- It can be easily parallelized, which can help

reduce the optimization time for large-scale

problems.

- It does not require any knowledge of the

gradients of the objective function, making

it suitable for non-differentiable or complex

gradients problems.

- GGA requires careful parameter tuning to

achieve good performance, such as population

size, mutation rate, and crossover rate.

- It may converge to a suboptimal solution if the

population diversity is not maintained or the

genetic operators are not properly

implemented.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 234

table 2 continued

Technique Strengths Limitations

GGA-GD

[46]

- GGA-GD provides a good balance between

exploration and exploitation, allowing the

algorithm to search a wide range of

potential solutions.

- The Great Deluge algorithm can help the

algorithm to converge more quickly towards

the optimal solution, particularly in cases

where the search space is narrow or the

optimization landscape is complex.

- It is often robust to changes in the problem

formulation, input data, or algorithm

parameters.

- It can be designed to handle large-scale

optimization problems with thousands or

even millions of variables

- GGA-GD often requires careful tuning of

algorithm parameters to achieve good

performance, which can be time-consuming

and difficult.

- It requires a more complex implementation

than either GA or GDA alone, which can be

challenging for some users

GGA-TS [46] - GGA-TS can effectively explore a large

search space and avoid local optima,

resulting in better global optimization

performance.

- It can be customized to fit a wide range of

optimization problems, and it can

incorporate different variations of the

genetic and tabu search algorithms.

- It can efficiently explore the solution space

and quickly converge to a good solution,

especially for complex optimization

problems.

- It can handle noisy or uncertain input data

and can adapt to changes in the problem

formulation or search space.

- GGA-TS requires careful tuning of various

parameters, such as the population size,

crossover rate, and tabu search parameters, to

achieve good performance.

- It may not provide an easy-to-interpret

solution, as the optimal solution may be a

combination of the genetic and tabu search

components.

- It may struggle to converge to an optimal

solution, particularly if the optimization

landscape is complex or poorly understood.

GGA-VNS

[46]

- GGA-VNS can maintain diversity by using

the genetic algorithm to explore a wide

range of solutions and the variable

neighborhood search algorithm to refine

promising solutions.

- It is flexible and can be easily adapted to

different optimization problems by

modifying the genetic algorithm or variable

neighborhood search algorithm parameters.

- It can find good quality solutions quickly by

using the genetic algorithm to explore the

search space and the variable neighborhood

search algorithm to refine the solutions.

- GGA-VNS may not always converge to an

optimal solution, particularly if the

optimization landscape is complex or poorly

understood.

- It can be complex and difficult to implement,

particularly if the optimization problem

involves complex constraints or objectives.

- It requires careful tuning of parameters to

achieve good performance, which can be time-

consuming and difficult.

In summary, careful consideration of the advantages and disadvantages of different approaches is essential before

selecting an optimization technique. Exact methods such as Integer Programming, Lagrangian-based CP approach,

IP/CP approach, ILP program, fixing algorithm, MILP model, Constraint programming, and MILP/CP provide a

flexible framework for modeling various types of optimization problems. However, they may be computationally

complex and sensitive to problem formulation. On the other hand, heuristic algorithms like NEHst are simple and

effective for permutation flow shop scheduling problems but may not be suitable for other types of scheduling

problems and may be sensitive to input data. Multi-pass heuristics, such as M1, M2, M3, M4, and M5, require careful

design and parameter tuning for good performance and may be computationally expensive, produce complex solutions

that are difficult to interpret, and get trapped in local optima. Approximation algorithms like the 2-approximation

algorithm, 3/2-approximation algorithm, 4-approximation algorithm, 6.83-approximation algorithm, and 3.75-

approximation algorithm are simple, efficient, and robust. However, they may not produce the optimal solution, lack

flexibility, and their performance may be sensitive to input characteristics. Metaheuristic algorithms, such as Enriched

scatter search, enriched iterated greedy, guided genetic algorithm, and hybrid guided genetic algorithm, have their

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 235

advantages and disadvantages. It is important to carefully evaluate the problem and the available algorithms to

determine the best approach for finding the optimal solution. Matheuristic strategies such as JMR-P, MAF-P, GBF-P,

JMR-S, MAF-S, and GBF-S are powerful tools that can solve complex optimization problems, but they require careful

consideration and expertise to use effectively.

5. CONCLUSION

Viewed as a decision-making form, scheduling is seen as a crucial dimension in most forms of manufacturing,

production and information processing situations and contexts. In addition, scheduling is also vital in situations

involving transportation, distribution and service-related industries. Over the past 70 years, researchers in management,

industrial engineering, operations research, and computer science have examined scheduling extensively. Today, there

is an amazing body of information in this area. The investigation of UPMR is rendered an important area of research.

After presenting the key definitions of concepts, assumptions, and categorizations in this article, the relevant studies

were reviewed and organized into an effective framework according to the machine environments, objective functions,

additional resource characteristics, complexity, and solution approaches. Next, for the PMS problem, a few model

extensions have been revealed and explained. It has been shown the majority of the problems, in question, have been

faced in actual-world problems and call for the use of industrial-sized data in order for them to be solved, but nearly no

one study in the survey addresses these problems. This is an important point to note in addition to the vital features of

the articles revealed above.

Funding

None

ACKNOWLEDGEMENT

We are grateful to Universiti Malaysia Pahang (UMP) for supporting the research project through University

Postgraduate Research Grant Scheme (PGRS1903187).

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] L. Fanjul Peyro and R. Ruiz, "Iterated greedy local search methods for unrelated parallel machine scheduling,"

European Journal of Operational Research, vol. 207, no. 1, pp. 55-69, 2010, doi: 10.1016/j.ejor.2010.03.030.

[2] L. Fanjul-Peyro and R. Ruiz, "Size-reduction heuristics for the unrelated parallel machines scheduling

problem," Computers & Operations Research, vol. 38, no. 1, pp. 301-309, 2011, doi:

10.1016/j.cor.2010.05.005.

[3] E. Vallada and R. Ruiz, "A genetic algorithm for the unrelated parallel machine scheduling problem with

sequence dependent setup times," European Journal of Operational Research, vol. 211, no. 3, pp. 612-622,

2011, doi: 10.1016/j.ejor.2011.01.011.

[4] F. J. Rodriguez, M. Lozano, C. Blum, and C. GarcíA-MartíNez, "An iterated greedy algorithm for the large-

scale unrelated parallel machines scheduling problem," Computers & Operations Research, vol. 40, no. 7, pp.

1829-1841, 2013, doi: 10.1016/j.cor.2013.01.018.

[5] J. E. C. Arroyo and J. Y.-T. Leung, "Scheduling unrelated parallel batch processing machines with non-

identical job sizes and unequal ready times," Computers & Operations Research, vol. 78, pp. 117-128, 2017,

doi: 10.1016/j.cor.2016.08.015.

[6] M. Pinedo, "Scheduling: theory, algorithms and applications," Scheduling: Theory, algorithms and

applications, Prentice-Hall, Englewood Cliffs, NJ, 1995, doi: 10.1007/978-3-642-46773-8_5.

[7] J. Blazewicz, N. Brauner, and G. Finke, "Scheduling with Discrete Resource Constraints," in Handbook of

Scheduling: Algorithms, Models, and Performance Analysis, E. J. Y-T. Leung, Ed., ed. USA: CRC Press,

2004.

[8] A. Grigoriev, M. Sviridenko, and M. Uetz, "Unrelated parallel machine scheduling with resource dependent

processing times," Lecture notes in computer science, pp. 182-195, 2005, doi: 10.1007/11496915_14.

[9] L. Fanjul Peyro, F. Perea, and R. Ruiz, "Models and matheuristics for the unrelated parallel machine

scheduling problem with additional resources," European Journal of Operational Research, vol. 260, no. 2,

pp. 482-493, 2017, doi: 10.1016/j.ejor.2017.01.002.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 236

[10] F. Villa, E. Vallada, and L. Fanjul Peyro, "Heuristic algorithms for the unrelated parallel machine scheduling

problem with one scarce additional resource," Expert Systems with Applications, vol. 93, pp. 28-38, 2018, doi:

10.1016/j.eswa.2017.09.054.

[11] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, "Optimization and approximation in deterministic

sequencing and scheduling: a survey," in Annals of discrete mathematics, vol. 5: Elsevier, 1979, pp. 287-326,

doi: 10.1016/S0167-5060(08)70356-X.

[12] J. Blazewicz, J. K. Lenstra, and A. R. Kan, "Scheduling subject to resource constraints: classification and

complexity," Discrete applied mathematics, vol. 5, no. 1, pp. 11-24, 1983, doi: 10.1016/0166-218X(83)90012-

4.

[13] E. B. Edis, "Resource constrained parallel machine scheduling problems with machine eligibility restrictions:

Mathematical and constraint programming based approaches," DEÜ Fen Bilimleri Enstitüsü, 2009.

[14] E. Mokotoff, "An exact algorithm for the identical parallel machine scheduling problem," European Journal

of Operational Research, vol. 152, no. 3, pp. 758-769, 2004, doi: 10.1016/S0377-2217(02)00726-9.

[15] A. H. Salem, Unrelated parallel machine scheduling with sequence-dependent setup times and machine

eligibility restrictions for minimizing the makespan. University of Central Florida, 1999.

[16] M. Pinedo, "Scheduling: theory, algorithms, and systems Springer Science & Business Media," ed: LLC,

2012.

[17] T. Arbaoui and F. Yalaoui, "Solving the Unrelated Parallel Machine Scheduling Problem with Additional

Resources Using Constraint Programming," in Asian Conference on Intelligent Information and Database

Systems, 2018, pp. 716-725: Springer, doi: 10.1007/978-3-319-75420-8_67.

[18] A. Mensendiek, J. N. Gupta, and J. Herrmann, "Scheduling identical parallel machines with fixed delivery

dates to minimize total tardiness," European Journal of Operational Research, vol. 243, no. 2, pp. 514-522,

2015, doi: 10.1016/j.ejor.2014.12.002.

[19] W.-C. Yeh, M.-C. Chuang, and W.-C. Lee, "Uniform parallel machine scheduling with resource consumption

constraint," Applied Mathematical Modelling, vol. 39, no. 8, pp. 2131-2138, 2015, doi:

10.1016/j.apm.2014.10.012.

[20] L. Fanjul-Peyro, F. Perea, and R. Ruiz, "Algorithms for the unspecified unrelated parallel machine scheduling

problem with additional resources," in Industrial Engineering and Systems Management (IESM), 2015

International Conference on, 2015, pp. 69-73: IEEE, doi: 10.1109/IESM.2015.7380139.

[21] D. Yilmaz Eroglu, H. C. Ozmutlu, and S. Ozmutlu, "Genetic algorithm with local search for the unrelated

parallel machine scheduling problem with sequence-dependent set-up times," International Journal of

Production Research, vol. 52, no. 19, pp. 5841-5856, 2014, doi: 10.1080/00207543.2014.920966.

[22] J. Blazewicz, Cellary, W., Slowinski, R., & Weglarz, J., Scheduling under resource constraints: Deterministic

models. JC BaltzerAG, Scientific Publishing Company., 1986.

[23] J. Blazewicz, k. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, "Scheduling under Resource Constraints,"

Handbook on scheduling: from theory to applications. New York: Springer: Verlag Berlin Heidelberg, pp.

425-475, 2007, doi: 10.1007/978-3-540-32220-7_12.

[24] E. B. Edis, C. Oguz, and I. Ozkarahan, "Parallel machine scheduling with additional resources: Notation,

classification, models and solution methods," European Journal of Operational Research, vol. 230, no. 3, pp.

449-463, 2013, doi: 10.1016/j.ejor.2013.02.042.

[25] R. Słowiński, "Two approaches to problems of resource allocation among project activities—a comparative

study," Journal of the Operational Research Society, vol. 31, no. 8, pp. 711-723, 1980, doi:

10.1057/jors.1980.134.

[26] J. A. Ventura and D. Kim, "Parallel machine scheduling about an unrestricted due date and additional resource

constraints," Iie Transactions, vol. 32, no. 2, pp. 147-153, 2000, doi: 10.1023/A:1007662314880.

[27] D. Shabtay and M. Kaspi, "Parallel machine scheduling with a convex resource consumption function,"

European Journal of Operational Research, vol. 173, no. 1, pp. 92-107, 2006, doi:

10.1016/j.ejor.2004.12.008.

[28] L. Özdamar and G. Ulusoy, "A local constraint based analysis approach to project scheduling under general

resource constraints," European Journal of Operational Research, vol. 79, no. 2, pp. 287-298, 1994, doi:

10.1016/0377-2217(94)90359-X.

[29] J. Y. Leung, Handbook of scheduling: algorithms, models, and performance analysis. CRC press, 2004.

[30] C. A. Glass, Y. M. Shafransky, and V. A. Strusevich, "Scheduling for parallel dedicated machines with a

single server," Naval Research Logistics (NRL), vol. 47, no. 4, pp. 304-328, 2000, doi: 10.1002/(SICI)1520-

6750(200006)47:4<304::AID-NAV3>3.0.CO;2-1.

[31] N. G. Hall, C. N. Potts, and C. Sriskandarajah, "Parallel machine scheduling with a common server," Discrete

Applied Mathematics, vol. 102, no. 3, pp. 223-243, 2000, doi: 10.1016/S0166-218X(99)00206-1.

[32] M. Pinedo, "Scheduling: theory, and systems (3rd ed.)," ed: Springer, Science+Business Media, USA, 2008.

Munther H. Abed, Iraqi Journal for Computer Science and Mathematics Vol. 4 No. 2 (2023) p. 224-237

 237

[33] H. Fisher and G. L. Thompson, "Probabilistic learning combinations of local job-shop scheduling rules: J.F.

Muth, G.L. Thompson (eds.)," Industrial scheduling, Prentice Hall, Englewood Cliffs, New Jersey, pp. 225-

251, 1963,

[34] S. French, "Sequencing and scheduling," An Introduction to the Mathematics of the Job-Shop: Ellis Horwood

Chichester, 1982, Ellis Horwood Chichester,

[35] J.-F. Chen, "Unrelated parallel machine scheduling with secondary resource constraints," The International

Journal of Advanced Manufacturing Technology, vol. 26, no. 3, pp. 285-292, 2005, doi: 10.1007/s00170-003-

1622-1.

[36] J.-F. Chen and T.-H. Wu, "Total tardiness minimization on unrelated parallel machine scheduling with

auxiliary equipment constraints," Omega, vol. 34, no. 1, pp. 81-89, 2006, doi: 10.1016/j.omega.2004.07.023.

[37] E. B. Edis and I. Ozkarahan, "A combined integer/constraint programming approach to a resource-constrained

parallel machine scheduling problem with machine eligibility restrictions," Engineering Optimization, vol. 43,

no. 2, pp. 135-157, 2011, doi: 10.1080/03052151003759117.

[38] E. B. Edis and I. Ozkarahan, "Solution approaches for a real-life resource-constrained parallel machine

scheduling problem," The International Journal of Advanced Manufacturing Technology, vol. 58, no. 9-12,

pp. 1141-1153, 2012, doi: 10.1007/s00170-011-3454-8.

[39] V. A. Kumar and M. V. Marathe, "Approximation algorithms for scheduling on multiple machines," in 46th

Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), 2005, pp. 254-263: IEEE, doi:

10.1109/SFCS.2005.21.

[40] A. Grigoriev, M. Sviridenko, and M. Uetz, "LP rounding and an almost harmonic algorithm for scheduling

with resource dependent processing times," in Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques: Springer, 2006, pp. 140-151, doi: 10.1007/11830924_15.

[41] E. B. Edis and C. Oguz, "Parallel Machine Scheduling with Additional Resources: A Lagrangian-Based

Constraint Programming Approach," Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems, pp. 92-98, 2011, doi: 10.1007/978-3-642-21311-3_10.

[42] E. B. Edis and C. Oguz, "Parallel machine scheduling with flexible resources," Computers & Industrial

Engineering, vol. 63, no. 2, pp. 433-447, 2012, doi: 10.1016/j.cie.2012.03.018.

[43] K. Fleszar and K. S. Hindi, "Algorithms for the unrelated parallel machine scheduling problem with a resource

constraint," European Journal of Operational Research, vol. 271, no. 3, pp. 839-848, 2018, doi:

10.1016/j.ejor.2018.05.056.

[44] E. Vallada, F. Villa, and L. Fanjul-Peyro, "Enriched metaheuristics for the resource constrained unrelated

parallel machine scheduling problem," Computers & Operations Research, vol. 111, pp. 415-424, 2019, doi:

10.1016/j.cor.2019.07.016.

[45] M. H. Abed and M. N. M. Kahar, "Guided genetic algorithm for solving unrelated parallel machine scheduling

problem with additional resources," Indones. J. Electr. Eng. Comput. Sci, vol. 26, no. 2, pp. 1036-1049, 2022,

doi: 10.11591/ijeecs.v26.i2.

[46] M. H. Abed and M. N. M. Kahar, "Hybridizing genetic algorithm and single-based metaheuristics to solve

unrelated parallel machine scheduling problem with scarce resources," Indones. Int J Artif Intell, vol. 12, no. 1,

pp. 315-327, 2023, doi: 10.11591/ijai.v12.i1.

