
DEVELOPING LQR TO CONTROL SPEED MOTOR USING MATLB GUI

SHAMSUL NIZAM BIN MOHD YUSOF @ HAMID

UNIVERSITI MALAYSIA PAHANG

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

LOT 355 KG. MENTERA BANGGU EN. NIK MOHD KAMIL NIK YUSOFF
16150 KOTA BHARU (Nama Penyelia)
KELANTAN

Tarikh: 12 NOVEMBER 2008 Tarikh: : 12 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2008/2009

SHAMSUL NIZAM BIN MOHD YUSOF @ HAMID (850428-03-6305)

DEVELOPING LQR TO CONTROL SPEED MOTOR
USING MATLB GUI

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : HASZURAIDAH BINTI ISHAK

 Date : 12 NOVEMBER 2008

DEVELOPING LQR TO CONTROL SPEED MOTOR USING MATLAB GUI

SHAMSUL NIZAM BIN MOHD YUSOF @ HAMID

A report submitted in partial fulfillment of the

requirements for the award of the degree of

Bachelor of Electrical (Electronics) Engineering

Faculty of Electrical and Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : SHAMSUL NIZAM BIN MOHD YUSOF @ HAMID

Date : 10 NOVEMBER 2008

iii

To my beloved parents and my siblings, I’m nothing without them.

iv

ACKNOWLEDGEMENT

During doing this thesis, I found myself around with a lot of great people.

Those people have helped me a lot in doing this research directly or in directly. Their

contribution has helped me in understanding about my project thoroughly.

I would like to say thank to my supervisor, Madam Haszuraidah Binti Ishak for

her support, guide, advices and determination in guiding me to finish my final year

project and this thesis to. I would also like to express my gratitude to my colleagues,

for their intention on helping me in any sort of way.

I, myself are fully in debt with Faculty of Electrical and Electronics (FKEE),

for providing me necessary components, information and funding my project.

Without their helped, this project was deeming to be unfinished.

Last but not least, I would like to say my gratitude toward to my family

member for their support and encouragement. I am grateful to have them all.

v

ABSTRACT

This project is mainly upon developing Linear Quadratic Regulator (LQR)

controller and controlling it through software. In the software part, MATLAB GUI is

been implemented to control the whole LQR system. In addition, a servo motor is

attached as a hardware module to show the resultant of the LQR controller. The

ability of the controller on the servo motor is, it is capable to manipulate and control

the rotating speed of the motor. Thus it could also regulate the value from the error

that occurs at output so that the value is stabilized as same as the input. Application

of feedback system is applied in the MATLAB GUI itself before interfacing it with

the servo motor using DAQ Card. The output from the MATLAB is then sent to the

input of the DAQ Card through the Analog pin. A generation of signal from output at

DAQ Card through the Analog pin subsequently enters to the motor driver. Driving

the motor with the signal provided, it will send a feedback signal back to the system

to be compared with the initial input. The whole system built from the simulink

modeling through the software MATLAB.

vi

ABSTRAK

 Projek ini boleh dikategorikan ke dalam dua bahagian utama, pengaturcaraan

dan system pengawal servo motor. Untuk system pengawal, “Linear Quadratic

Regulator” dan untuk programnya pula, Matlab GUI digunakan. System pengawal

ini akan diaplikasi ke dalam program Matlab GUI bagi membolehkan pengguna

mengawal dan memanipulasi kelajuan atau putaran servo motor tersebut. System

pengawal yang telah diaplikasi ke dalam program akan disambungkan ke servo

motor menggunakan “serial and parallel port”. Signal keluaran dari Matlab akan

dihantar ke “DAQ Card” melalui pin Analog. Kemudian “feedback” dari servo motor

akan di hantar ke sistem pengawal untuk dibandingkan dengan masukan dan

seterusnya akan diubah sehingga “feedback” tadi akan sama nilainya dengan

masukan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xv

1 INTRODUCTION

1.1 General 1

1.2 Problem Statement 2

1.2.1 Current Controller and Software 2

1.2.2 Problem Solving 3

1.3 Objectives 3

1.4 Scope of Project 4

2 LITERATURE REVIEW

 2.1 Linear Quadratic Regulator 5

2.2 Data Acquisition 7

2.3 Servo Motor 10

viii

3 METHODOLOGY

3.1 SOFTWARE 12

3.1.1 Real Time Target Setup 13

3.1.2 Installation and Configuration 15

 3.1.2.1 C Compiler 15

3.1.2.2 Installation the Kernel 17

3.1.2.3 Testing the Installation 18

 3.1.3 Procedures of Creating Real Time Applications 19

3.1.3.1 Creating a Simulink Model 19

3.1.3.2 Entering Configuration

Parameters for Simulink 26

 3.1.3.3 Entering Simulation Parameters

for Real-Time Workshop 28

3.1.3.4 Creating a Real-Time Application 30

3.1.3.5 Running a Real-Time Application 31

3.1.4 Creating Graphical User Interfaces 32

3.1.4.1 GUI Development Environment 33

3.1.4.2 Starting Guide 33

3.1.4.3 The Layout Editor 34

3.1.4.4 Programming a GUI 35

3.1.5 Simulation of the servomotor 36

3.1.6 Graphical User Interface 38

3.2 HARDWARE 42

3.2.1 CLIFTON PRECISION SERVO

MOTOR MODEL JDH-2250-HF-2C-E 42

3.2.2 G340 installation 43

3.2.3 G340 installation 44

3.2.3.1 Encoder hook up 44

3.2.3.2 Power supply hook up 45

3.2.3.3 Testing the encoder 45

3.2.3.4 Control input hook up 46

ix

3.2.3.5 Testing the control inputs 46

3.2.3.6 Motor hook up 46

3.2.4 Advantech PCI-1710HG 47

3.2.5 Common Specifications 47

3.2.6 Pin Assignments 48

3.3 Linear Quadratic Regulator Development 48

3.3.1 The General State-Space Representation 48

3.3.2 Evaluating the State Space equation 51

3.4 Applying Linear Quadratic Regulator 54

4 RESULT AND DISCUSSION

 4.1 Simulation result 56

 4.1.1 Simulation on the DC motor 56

 4.1.2 Simulation on the Clifton

Precision servo motor 58

 4.2 Data Analysis 60

 4.3 Tuning the value of Q 62

5 CONCLUSION AND RECOMMENDATION

 5.1 Introduction 65

 5.2 Assessment of design 65

 5.3 Strength and Weakness 66

 5.4 Suggestion for Future Work 67

5.5 Costing & Commercialization 67

REFERENCES 68

APPENDIX A 69

APPENDIX B 77

xi

LIST OF TABLE

TABLE NO. TITLE PAGE

3.1 Comparison of Matlab GUI with other software

and it’s problem 13

3.2 Parameters of servomotor elements 53

4.1 Data analysis simulink of the system 61

4.2 Simulation results for three different Q 64

xii

LIST OF FIGURES

FIGURE NO. TITLE
PAGE

2.1 LQR block diagram 5

2.2 Typical dc servo motor system with either encoder or

resolver feedback 11

3.1 Real Time Windows Target 14

3.2 Simulink Model rtvdp.mdl 18

3.3 Create a new model 20

3.4 Empty Simulink model 20

3.5 Block Parameters of Signal Generator 21

3.6 Block Parameters of Analog Output 23

3.7 Scope Parameters Dialog Box 24

3.8 Scope Properties: axis 1 25

3.9 Completed Simulink Block Diagram 26

3.10 Configuration Parameters – Solver 27

3.11 Configuration Parameters – Hardware Implementation 28

3.12 System Target File Browser 29

3.13 Configuration Parameters – Real-Time Workshop 29

3.14 Connect to target from the Simulation menu 31

3.15 GUIDE Quick start 34

3.16 Layout Editor 35

3.17 M-File Editor 36

3.18 Block diagram for the simulation servo motor 37

3.19 Subsystem for the block diagram above 37

3.20 M-file for the system 38

3.21 Main panel 38

3.22 Supervisor credit 39

3.23 Student credit 39

3.24 Abstract of the project 40

3.25 Manual way to find the K gain 40

xiii

3.26 Simulink model 41

3.27 Find K if different motor constant 41

3.28 Servo Motor 42

3.29 Gecko drive (G340) 43

3.30 G340 block diagram 43

3.31 Advantech PCI-1710HG 47

3.32 Pin Assignment for PCI-1710HG 48

3.33 Graphic representation of state space and state vector 50

3.34 DC motor model system 51

4.1 Result for DC motor 57

4.2 Graph result for K = [0.245006 0.0801054] 57

4.3 Result for Clifton Precision servo motor 58

4.4 Graph result for K = [1.28138 0.90017] 59

4.5 Settling time for simulation DC motor 60

4.6 Rise time for simulation DC motor 61

4.7 Result for Q = 1 62

4.8 Result for Q = 10 63

4.9 Result for Q = 100 63

xiv

LIST OF ABBREVIATIONS

GUI - Graphical User Interface

IEEE - Institute of Electrical and Electronics Engineers

LQR Linear Quadratic Regulator

LQG Linear Quadratic Gaussian

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A G340 Installation 69

B Coding Program 77

CHAPTER 1

INTRODUCTION

1.1 GENERAL

This project is based on the controller and the software used to interface the

CLIFTON PRECISION motor. By developing Linear Quadratic Regulator (LQR)

using mathematical equation to get the feedback controller to control the speed of the

servo motor with using Matlab GUI from Mathworks.

Matlab GUI is the one of the software that is using graphical method.

Between the servo motor and Matlab GUI, DAQ Card used to interface the both of

them. From the software, the data transfer first to the DAQ Card. Then the DAQ

Card will convert the data to an electrical signal that acquired by the servo motor.

The drive that drives the servo motor is G340 Servodrive(x10 Step

Multiplier) by Geckodrive that comes in package with the servo motor.

The servo motor is type JDH-2250-HF-2C-E CLIFTON PRECISION that has

the supply voltage -0.5 to 7V interval. The output voltage of the servo motor is -0.5

to Vcc. Choosing this servo motor is because High output power relative to motor

size and weight. It also suitable for the controller that has feedback, not like stepper

motor which is operated open loop.

2

1.2 PROBLEM STATEMENT

 As research had been done, there are lot of controller that are used. But there

are some features not same as LQR features in others controller.

1.2.1 Current controller and software

 There are a lot of controllers which can be used to control the speed of the

motor such as Proportional Integral Derivatives (PID) and Fuzzy Logics. For the

software, many companies has developed various software related to engineering in

this day like Matlab, Visual Basic and Labview. However, the problems are:-

i. PID controller

The controller like PID need has percentage of overshoot and take

some time to it’s stabilizing the system. It also has the time settling

that are can reach more than 1 sec. this will affect the effectiveness of

the system.

ii. Software

Software like Labview has problem in term of control system because

we need to download separately from the manufacturer’s website the

control toolkit. Then after that we could use it for the control system.

The toolkit is like the add-ons to the Labview software. For the Visual

Basic, we cannot do the simulation to know the result before we do it

in the real-time.

3

1.2.2 Problem solving

i. Linear quadratic regulator is the most effective controller because it

regulates the error to zero and it doesn’t have percentage of overshoot

and time settling. So it can stabilize the system quicker than PID.

ii. Matlab GUI is choose because it is friendly user and don’t use

complex coding to run it. Just drag and drop the function to use it. It

also can simulate the linear system before use in real-time using

Simulink. In Simulink, we need to create the system using block

diagram in Matlab.

1.3 Objectives

 First objective that has been setup for this project is in developing the

controller that used. Linear Quadratic Regulator need to be develops first before can

proceed to another objective or to the next step for this project. Before can do the

developing, need to study first about this controller because this the first time I want

to use it.

To develop LQR, there is more than one method that can be use. The purpose

is to find the gain value, K. The method is like pole placement, and Algebraic Riccati

equation (ARE). For this project, ARE method used because only need to find the

gain value, K that is need to use to regulate the error that comes from the feedback in

the linear system.

The second objective is to control the speed of the servomotor. We control

the speed of the servomotor with the value of the gain, K that we obtain before. The

gain will be multiplied with the output value to make the error zero and same as the

input. To control the speed of the servomotor, we use Matlab GUI as the user control

4

panel that from there, we can control the speed by change the input as we can say the

speed of the servomotor by just insert the value at the Matlab GUI.

The third one is interfacing the servomotor with the software. To doing that, a

converter that converts data from computer to electrical signal called DAQ Card

(Data Acquisition Card) need to be use.

1.4 Scope

The most important step in this project is obtaining the state space of the

motor that will use for this project first. It is because the gain value, K via Algebraic

Riccati Equation (ARE) can be obtained from state space equation.

After the value of the gain K been obtained, the linear system can be created

and will be simulated. The result is obtained from the simulation of the system, and

the value of the gain can regulate the error or not can be determined. If not, find

another value of K by change the value of the disturbance, Q in the ARE equation.

CHAPTER 2

LITERATURE REVIEW

2.1 Linear Quadratic Regulator (LQR)

Figure 2.1: LQR block diagram

The theory of optimal control is concerned with operating a dynamic system

at minimum cost. The case where the system dynamics are described by a set of

linear differential equations and the cost is described by a quadratic functional is

called the LQ problem. One of the main results in the theory is that the solution is

provided by the linear-quadratic regulator (LQR), a feedback controller whose

equations are given below. The LQR is an important part of the solution to the LQG

problem. Like the LQR problem itself the LQG problem is one of the most

fundamental problems in control theory.

6

In layman's terms this means that the settings of a (regulating) controller

governing either a machine or process (like an airplane or chemical reactor) are

found by using a mathematical algorithm that minimizes a cost function with

weighting factors supplied by a human (engineer). The "cost" (function) is often

defined as a sum of the deviations of key measurements from their desired values. In

effect this algorithm therefore finds those controller settings that minimize the

undesired deviations, like deviations from desired altitude or process temperature.

Often the magnitude of the control action itself is included in this sum as to keep the

energy expended by the control action itself limited.

In effect, the LQR algorithm takes care of the tedious work done by the

control systems engineer in optimizing the controller. However, the engineer still

needs to specify the weighting factors and compare the results with the specified

design goals. Often this means that controller synthesis will still be an iterative

process where the engineer judges the produced "optimal" controllers through

simulation and then adjusts the weighting factors to get a controller more in line with

the specified design goals.

The LQR algorithm is, at its core, just an automated way of finding an

appropriate state-feedback controller. And as such it is not uncommon to find that

control engineers prefer alternative methods like full state feedback (also known as

pole placement) to find a controller over the use of the LQR algorithm. With these

the engineer has a much clearer linkage between adjusted parameters and the

resulting changes in controller behavior. Difficulty in finding the right weighting

factors limits the application of the LQR based controller synthesis. [6]

Linear Quadratic Regulator (LQR) is the most common approach to modern

control design, and one of the controller that are commonly used by users to control

the system besides Proportional Integral Derivatives (PID) because its stability. For a

LTI system:

7

 (2.1)

The technique involves choosing a control law u=-ω(x) which stabilizes the
origin (i.e., regulates x to zero). The gain K which solves the LQR problem is

K=R−1
B

T
P* (2.2)

where P* is the unique, positive semidefinite solution to the algebraic Riccati
equation (ARE):

ATP + PA – PBR-1BTP + Q = 0 (2.3)

2.2 Data acquisition

Data acquisition is the sampling of the real world to generate data that can be

manipulated by a computer. Sometimes abbreviated DAQ or DAS, data acquisition

typically involves acquisition of signals and waveforms and processing the signals to

obtain desired information. The components of data acquisition systems include

appropriate sensors that convert any measurement parameter to an electrical signal,

which is acquired by data acquisition hardware.

Acquired data are displayed, analyzed, and stored on a computer, either using

vendor supplied software, or custom displays and control can be developed using

various general purpose programming languages. LabVIEW, which offers a

graphical programming environment optimized for data acquisition and MATLAB

provides a programming language but also built-in graphical tools and libraries for

data acquisition and analysis.

Data acquisition begins with the physical phenomenon or physical property

of an object (under investigation) to be measured. This physical property or

phenomenon could be the temperature or temperature change of a room, the intensity

8

or intensity change of a light source, the pressure inside a chamber, the force applied

to an object, or many other things. An effective data acquisition system can measure

all of these different properties or phenomena.

A transducer is a device that converts a physical property or phenomenon into

a corresponding measurable electrical signal, such as voltage, current, change in

resistance or capacitor values, etc. The ability of a data acquisition system to measure

different phenomena depends on the transducers to convert the physical phenomena

into signals measurable by the data acquisition hardware. Transducers are

synonymous with sensors in DAQ systems. There are specific transducers for many

different applications, such as measuring temperature, pressure, or fluid flow. DAQ

also deploy various Signal Conditioning techniques to adequately modify various

different electrical signals into voltage that can then be digitized using ADCs.

Signals may be digital (also called logic signals sometimes) or analog

depending on the transducer used.

Signal conditioning may be necessary if the signal from the transducer is not

suitable for the DAQ hardware to be used. The signal may be amplified or

deamplified, or may require filtering, or a lock-in amplifier is included to perform

demodulation. Various other examples of signal conditioning might be bridge

completion, providing current or voltage excitation to the sensor, isolation,

linearization, etc.

Analog signals tolerate almost no cross talk and so are converted to digital

data, before coming close to a PC or before traveling along long cables. For analog

data to have a high signal to noise ratio, the signal needs to be very high, and sending

+-10 Voltages along a fast signal path with a 50 Ohm termination requires powerful

drivers. With a slightly mismatched or no termination at all, the voltage along the

cable rings multiple time until it is settled in the needed precision. Digital data can

have +-0.5 Volt. The same is true for DACs. Also digital data can be sent over glass

fiber for high voltage isolation or by means of Manchester encoding or similar

9

through RF-couplers, which prevent net hum. Also as of 2007 16bit ADCs cost only

20 $ or €.

DAQ hardware is what usually interfaces between the signal and a PC. It

could be in the form of modules that can be connected to the computer's ports

(parallel, serial, USB, etc...) or cards connected to slots (PCI, ISA) in the mother

board. Usually the space on the back of a PCI card is too small for all the

connections needed, so an external breakout box is required. The cable between this

Box and the PC is expensive due to the many wires and the required shielding and

because it is exotic. DAQ-cards often contain multiple components (multiplexer,

ADC, DAC, TTL-IO, high speed timers, RAM). These are accessible via a bus by a

micro controller, which can run small programs. The controller is more flexible than

a hard wired logic, yet cheaper than a CPU so that it is alright to block it with simple

polling loops. For example: Waiting for a trigger, starting the ADC, looking up the

time, waiting for the ADC to finish, move value to RAM, switch multiplexer, get

TTL input, let DAC proceed with voltage ramp. As 16 bit ADCs and DACs and

OpAmps and sample and holds with equal precision as of 2007 only run at 1 MHz,

even low cost digital controllers like the AVR32 have about 100 clock cycles for

bookkeeping in between. Reconfigurable computing may deliver high speed for

digital signals. Digital signal processors spend a lot of silicon on arithmetic and

allow tight control loops or filters. The fixed connection with the PC allows for

comfortable compilation and debugging. Using an external housing a modular design

with slots in a bus can grow with the needs of the user. High speed binary data needs

special purpose hardware called Time to digital converter and high speed 8 bit ADCs

are called oscilloscope Digital storage oscilloscope, which are typically not

connected to DAQ hardware, but directly to the PC.

Driver software that usually comes with the DAQ hardware or from other

vendors, allows the operating system to recognize the DAQ hardware and programs

to access the signals being read by the DAQ hardware. A good driver offers high and

low level access. So one would start out with the high level solutions offered and

improves down to assembly instructions in time critical or exotic applications.[4]

10

2.3 Servo Motor

A servomechanism or servo is an automatic device which uses error-sensing

feedback to correct the performance of a mechanism. The term correctly applies only

to systems where the feedback or error-correction signals help control mechanical

position or other parameters. For example an automotive power window control is

not a servomechanism, as there is no automatic feedback which controls position—

the operator does this by observation. However, if the operator and the window

motor could be considered together, perhaps they as an entity could be said to

operate via a servomechanism. By contrast the car's cruise control uses closed loop

feedback, which classifies it as a servomechanism.

Servomechanisms may or may not use a servomotor. For example a

household furnace controlled by thermostat is a servomechanism, yet there is no

closed-loop control of a servomotor.

A common type of servo provides position control. Servos are commonly

electrical or partially electronic in nature, using an electric motor as the primary

means of creating mechanical force. Other types of servos use hydraulics,

pneumatics, or magnetic principles. Usually, servos operate on the principle of

negative feedback, where the control input is compared to the actual position of the

mechanical system as measured by some sort of transducer at the output. Any

difference between the actual and wanted values or an "error signal" is amplified and

used to drive the system in the direction necessary to reduce or eliminate the error.

An entire science known as control theory has been developed on this type of system.

Servomechanisms were first used in military fire-control and marine

navigation equipment. Today servomechanisms are used in automatic machine tools,

satellite-tracking antennas, automatic navigation systems on boats and planes, and

antiaircraft-gun control systems. Other examples are fly-by-wire systems in aircraft

which use servos to actuate the aircraft's control surfaces, and radio-controlled

models which use RC servos for the same purpose. Many autofocus cameras also use

11

a servomechanism to accurately move the lens, and thus adjust the focus. A modern

hard disk drive has a magnetic servo system with sub-micrometer positioning

accuracy.

Typical servos give a rotary (angular) output. Linear types are common as

well, using a screw thread or a linear motor to give linear motion.

Another device commonly referred to as a servo is used in automobiles to

amplify the steering or braking force applied by the driver. However, these devices

are not true servos, but rather mechanical amplifiers.

Servo motor is one of the devices that have the applications where precise

positioning and speed required. The big advantage of the servo motor is that servos

are operated "closed loop". This means feedback is required from the motor, that’s

why this system is sensitivity to disturbances and have ability to correct these

disturbances. [7]

Figure 2.2: Typical dc servo motor system with either encoder or resolver feedback.

CHAPTER 3

METHODOLOGY

3.1 SOFTWARE

The MATLAB software is use for this project because it allows one to

perform numerical calculations and visualize the result without need for complicated

and time consuming programming. This software provides an easy way to go directly

from collecting data to deriving informative result. It also accurately solves the

problem, to produce graphics easily and create the code efficiently.

 MATLAB software is compatible with the Advantech PCI-1710HG that will

work together in this project. It also supports the entire data acquisition and analysis

process, including interfacing with data acquisition devices and instruments,

analyzing and visualizing the data and producing presentation quality output.

 The table shows the different between Matlab GUI and others software that

have the same function and the problem with the GUI. The comparison between

Matlab GUI and others software like Visual Basic, Labview, and C++ can be the

reason why Matlab GUI was selected for this project. In the table also state the

problem with the software and can be a guidance to avoid making mistake while

working with the software. [5]

Table 3.1: Comparison of Matlab GUI with others software and its problem.

Matlab GUI versus others Problems with GUI

Similar to RAD such as C++ builder and
VB

Not as flexible

13

Most GUI work across platforms

Cross platform appearance may not
be the same

Can perform most functions as
traditional GUI through tricks

Often must use tricks and unfriendly
techniques

Can link platform dependent code using
MEX programs

MEX code GUI eliminates cross
platform operation

3.1.1 Real Time Target Setup

Real-Time Windows Target enables to run Simulink and Stateflow model in

real time on desktop or laptop PC for rapid prototyping or hardware-in-the loop

simulation of control system and digital signal processing algorithms. A real-

timeexecution can be created and controlled entirely trough Simulink. Using Real-

time Workshop, C code can be generated, compiled, and started real-time execution

on Windows PC while interfacing to real hardware using PC I/O board. I/O device

drivers are included to support an extensive selection of I/O boards, enabling to

interface to sensor, actuators, and other devices for experimentation, development,

and testing real-time systems. Simulink block diagram can be edited and Real-Time

Workshop can be used to create a new real-time binary file. This integrated

environment would implement any designs quickly without lengthy hand coding and

debugging. Figure shows the required product of Real Time Windows Target.

14

Figure 3.1: Real Time Windows Target

 Real-Time Windows Target includes a set of I/O blocks that provide

connections between the physical I/O board and real-time model. Hardware-in-the-

loop simulations can be ran and quickly observed how Simulink model responds to

real-world behavior. I/O signals can be connected using the block library for

operation with numerous I/O boards.

The following types of blocks are included:

• Digital Input blocks : Connect digital input signals to Simulink block

diagram to provide logical inputs.

• Digital Output blocks : Connected logical signals from Simulink block

diagram to control external hardware.

• Analog Input blocks : Enable to use A/D converters that digitize analog

signal for use as input to Simulink block diagram.

• Analog Output blocks : Enable Simulink block diagram to use D/A converters

to output analog signal from Simulink model using I/O board(s).

• Counter Input blocks : Enable to count pulses or measure frequency using

hardware counters on I/O board(s).

• Encoder Input blocks : Enable to include feedback from optical encoders.

REAL TIME
WINDOWS TARGET

MATLAB

Command-line
interface for the Real-
Time Windows
Target

SIMULINK

Environment to model
physical systems and
controllers using block
diagrams

REAL-TIME
WORKSHOP

Converts Simulink
blocks and code
from Stateflow
Coder into C

15

3.1.2 Installation and Configuration

The Real-Time Windows Target is a self-targeting system where the host and

the targeting computer are the same computer. It can be installed on a PC-compatible

computer running Windows NT 4.0, Windows 2000 or Windows XP.

3.1.2.1 C Compiler

 The Real-Time Windows Target requires one of following C compilers which

not included in with the Real Time Windows Target:

• Microsoft Visual C/C ++ compiler - - Version 5.0, 6.0 or 7.0

• Watcom C/C ++ compiler - - Version 10.6 and 11.0. During installation of

Watcom C/C ++ compiler, a DOS target is specified in addition to a windows

target to have necessary libraries available for linking.

After installation, the MEX utility is run to select compiler as the default

compiler for building real-time applications.

Real Time Workshop uses the default C compiler to generate executable code

and the MEX utility uses this compiler to create MEX-files.

This procedure is executed in order to select either a Microsoft Visual C/C ++

compiler or a Watcom C/C ++ compiler before build an application. Note, the LCC

compiler is not supported:

1. mex –setup is typed in the MATLAB window

MATLAB will display the following message:

 Please choose your compiler for building eternal

 interface

16

(MEX) files. Would you like mex to locate installed compilers? ([y] /

n) :

Then a letter “y” is typed.

 MATLAB will display the following message:

 Select a compiler:

 [1]: WATCOM Compiler in c: \watcaom

 [2]: Microsoft compiler in c: \visual

 [0]: None

 Compiler:

Next, a number is typed. For example, number 2 is typed to select the

Microsoft compiler.

MATLAB will display the following message:

 Please verify your choices:

 Compiler: Microsoft 5.0

 Location: c: \visual

 Are these correct? ([y] / n)

Finally, a letter “y” is typed.

MATLAB will reset the default compiler and display the message:

 The default option file:

 “c:\WINNT\Profiles\username\Application

 Data\MathWorks\MATLAB\mexopts.bat” is being updated.

3.1.2.2 Installation the Kernel

 During installation, all software for the Real-Time Windows Target is copied

onto hard drive. The kernel is not automatically installed. Installing the kernel sets up

the kernel to start running in the background each time when the computer is started.

The kernel can be installed just after the Real-Time Windows Target has been

installed.

The installation of the kernel is necessary before a Real-Time Windows Target can

be executed:

17

1. rtwintgt –install is typed in MATLAB window.

 MATLAB will display the following message:

You are going to install the Real-Time Windows Target kernel.

 Do you want to proceed? [y] :

2. The kernel installation is continued by typing a letter “y”.

 MATLAB will install the kernel and display the following message:

The Real-Time Windows Target kernel has been successfully

installed.

 The computer has to be restart if a “restart” message being displayed.

3. The kernel should be checked whether it was correctly installed. Then, rtwho

is typed.

 MATLAB would display a message similar to

Real-Time Windows Target version 2.5.0 (C) The MathWorks, Inc.

 1994-2003

 MATLAB performance = 100.0%

 Kernel timeslice period = 1ms

After the kernel being installed, it remains idle, which allows Window to

control the execution of any standard Windows application. Standard Windows

applications include internet browsers, word processors, MATLAB and so on. It is

only during real-time execution of model that the kernel intervenes to ensure that the

model is given priority to use the CPU to execute each model updating at the

prescribed sample intervals. Once the model update at a particular sample interval

completed, the kernel releases the CPU to run any other Windows application that

might need servicing.

3.1.2.3 Testing the Installation

 The installation can be tested by running the model rtvdp.mdl. This model

does not have any I/O blocks, so that this model can be run regardless of the I/O

18

boards in computer. Running this model would test the installation by executing

Real-Time Workshop, Real-Time Windows Target and Real-Time Windows Target

kernel. After the Real-Time Windows Target kernel being installed, the entire

installation can be tested by building and running a real-time application. The Real-

Time Windows Target includes the model rtvdp.mdl, which already has the correct

Real-Time Workshop options selected for users:

1. rtvdp is typed in MATLAB window.

The Simulink model rtvdp.mdl window will be opened as shown in Figure

3.2

Figure 3.2: Simulink Model rtvdp.mdl

2. From the Tools menu, it should be pointed to Real-Time Workshop, and

then clicked Build Model. The MATLAB window will display the following

messages:

 ### Starting Real-Time Workshop build for model: rtvdp

 ### Invoking Target Language Compiler on rtvdp.rtw

 . . .

 ### Compiling rtvdp.c

 . . .

 ### Created Real-Time Windows Target module rtvdp.rwd.

 ### Successful completion of Real-Time Workshop builds procedure for

model: rtvdp

19

3. From the simulation menu, External should be clicked and followed by

clicking Connect to target.

 The MATLAB window displayed the following message:

 Model rtvdp loaded

4. Start Real-Time Code is clicked from Simulation menu.

 The Scope window will display the output signals. After the Real-Time

Windows Target has been successfully installed and the real-time application

has been run, Scope window should indicate such a figure.

5. From Simulation menu, after the Stop Real-Time Code is clicked. The real-

time application will stop running and then the Scope window will stop

displaying the output signals.

3.1.3 Procedures of Creating Real Time Applications

3.1.3.1 Creating a Simulink Model

 This procedure explains how to create a simple Simulink model. This model

is used as an example to learn other procedures in the Real-Time Windows Target. A

Simulink model has to be created before it can run a simulation or create a real-time

application:

1. Simulink is typed in the MATLAB Command Window.

 The Simulink Library Browser window is opened as shown in Figure 3.11.

2. From the toolbar, the Create a new model button is clicked.

20

Figure 3.3: Create a new model

An empty Simulink window is opened. With the toolbar and status bar

disabled, the window looks like following figure 3.12 (Figure).

Figure 3.4: Empty Simulink model

3. In the Simulink Library Browser window, Simulink is double-clicked and

then Sources is also doubled-clicked. Next, Signal Generator is clicked and

dragged to Simulink window.

 Sinks is clicked. Scope is clicked and dragged to the Simulink window. Real-

Time Windows Target is clicked. Analog Output is clicked and dragged to

the Simulink window.

21

4. The Signal Generator output is connected to the scope input by clicking-

and-dragging a line between the blocks. Likewise, the Analog Output input

is connected to the connection between Scope and Signal Generator.

5. The Signal Generator block is double clicked. The Block Parameters dialog

box opened. From the Wave form list, square is selected.

 In the Amplitude text box, 0.25 is entered.

 In the Frequency text box, 2.5 are entered.

 From the Units list, Hertz is selected.

 The Block Parameters dialog box is shown in Figure 3.13.

Figure 3.5: Block Parameters of Signal Generator

6. OK is clicked.
7. The analog output block is double clicked.

 The Block Parameters dialog box will open.

8. The Install new board button is clicked. From the list, it should be pointed to

manufacturer and then clicked a board name. For example, it should be

pointed to Advantech and then click PCL818.

9. One of the following is selected:

• For an ISA bus board, a base address is entered. This value must

match the base address switches or jumpers set on the physical board.

For example, to enter a base address of 0x300 in the address box, 300

is typed. The base address also could be selected by selecting check

boxes A9 through A3.

22

• For a PCI bus board, the PCI slot is entered or the Auto-detect check

box is selected.

10. The Test button is clicked.

The Real-Time Windows Target tried to connect to the selected board and the

following message would display if successful.

11. On the message box, OK is clicked.
12. The same value as entered in the Fixed step size box from the Configuration

Parameters dialog box is entered in the Sample time box. For example,

0.001 is entered.

13. A channel vector that selected the analog input channels that are using on this

board is entered in the Output channels box. The vector can be any valid

MATLAB vector form. For example, to select analog output channel on

PCL818 board 1 is entered.

14. The input range for the entire analog input channel that has been entered in

the Input channels box is chosen from the Output range list. For example,

with the PCL818 board, 0 to 5V is chosen.

15. From the Block Input signal list, the following options is chosen:

• Volts – Expected a value equal to the analog output range.

• Normalized unipolar – Expected a value between 0 and +1 that is

converted to the full range of the output voltage regardless of the

output voltage range. For example, an analog output range of 0 to +5

volts and -5 to +5 volts would both converted from values between 0

and +1.

• Normalized bipolar – Expected a value between -1 and +1 that is

converted to the full range of output voltage regardless of the output

voltage range.

• Raw – Expected a value of 0 to 2n-1. For example, a 12-bit A/D

converter would expected a value between 0 and 212 -1 (0 to 4095).

The advantage of this method is the expected value is always an

integer with no round off error.

23

16. The initial value is entered for each analog output channel that has been

entered in the Output Channels box. For example, if 1 is entered in the

Output Channels box and the initial value of 0 volts is needed, 0 is entered.

17. The final value is entered for each analog channel that has been entered in

Output Channels box. For example, if 1 is entered in the Output Channels

box and the final value of 0 volts is needed, 0 is entered.

 The dialog box would look similar to the Figure 3.14 if Volts is chosen.

Figure 3.6: Block Parameters of Analog Output

18. One of following is executed:

 Apply is clicked to apply the changes to the model and the dialog box

is left open.

 OK is clicked to apply the changes to the model and the Block

Parameters: Analog Output dialog box will close.

24

19. Parameters dialog box is closed and the parameter values are saved with the

Simulink model.

20. In the Simulink window, the Scope block is double clicked.

 A Scope window will open.

21. The Parameters button is clicked.

 A Scope parameters dialog box will open.

22. The General tab is clicked. The number of graphs that is needed in one

Scope window is entered in the Number of axes box. For example, 1 is

entered for a single graph. Do not select the floating scope check box. In the

Time range box, upper value the time range is entered. For example, 1

second is entered. From the Tick labels list, bottom axis only is chosen.

 From the Sampling list, decimation is chosen and 1 is entered in the text box.

 The Scope parameters dialog box would look like such a Figure 3.15 as

shown.

Figure 3.7: Scope Parameters Dialog Box
23. One of following done:

 Apply is clicked to apply the changes to the model and the dialog box

is left open.

 OK is clicked to apply the changes to the model and the Scope

parameters dialog box is closed.

25

24. In the Scope window, it should be pointed to the y-axis and then right

clicked.

25. Axes Properties is clicked from the pop-up menu.

26. The Scope properties: axis 1 dialog box is opened. In the Y-min and Y-max

text boxes, the range for the y-axis is entered in the Scope window. For

example, -2 and 2 are entered as shown in the Figure 3.16

Figure 3.8: Scope Properties: axis 1

27. One of the following is done:

 Apply is clicked to apply the changes to the model and the dialog box

is left open.

 OK is clicked to apply the changes to the model and the Axes

Parameters dialog box is closed.

The completed Simulink block diagram is shown in Figure 3.17.

26

Figure 3.9: Completed Simulink Block Diagram

Save As is clicked from the File menu. The Save As dialog diagram box is

opened. In the File name text box, a filename for the Simulink model is

entered and Save is clicked. For example, rtwin_model is typed.

Simulink saved the model in the file rtwin_model.mdl.

3.1.3.2 Entering Configuration Parameters for Simulink

The configuration parameters give information to Simulink for running a

simulation. After create a Simulink model, the configuration parameters could be

entered for Simulink.

1. In the Simulink window, Configuration Parameters is clicked from the

Simulation menu. In the Configuration Parameters dialog box, the Solver

tab is clicked.

The Solver pane will open.

27

2. In the Start time box, 0.0 is entered. In the Stop time box, the amount of

time that the model needs to run is entered. For example, 99999 seconds is

entered.

3. From the Type list, Fixed-step is chosen. Real-Time Workshop does not

support variable step solvers.

4. From the Solver list, a solver is chosen. For example, the general purpose

solver ode5 (Dormand-Prince) is chosen.

5. In the Fixed step size box, a sample time is entered. For example, 0.001

seconds is entered for the sample rate of 1000 samples/second.

6. From the Tasking Mode list, SingleTasking is chosen. Multitasking is

chosen for models with blocks that have different sample times.

 The Solver pane would look similar to the Figure 3.18.

Figure 3.10: Configuration Parameters – Solver

7. One of following is done:

 Apply is clicked to apply the changes to the model and the dialog box

is left open.

 OK is clicked to apply the changes to the model and the

Configuration Parameters dialog box is closed.

28

3.1.3.3 Entering Simulation Parameters for Real-Time Workshop

 The Simulation Parameters are used by Real-Time Workshop for generating

C code and building a real-time application.

1. In the Simulink window, Configuration Parameters is clicked from the

Simulation menu as shown in Figure 3.19.

2. The Hardware Implementation node is clicked.

3. From the Device type list, 32-bit Real-Time Windows Target is chosen.

Figure 3.11: Configuration Parameters – Hardware Implementation

4. The Real-Time Workshop node is clicked.

 The Real-Time Workshop pane will open.

4. In the Target selection section, the Browse button is clicked at the RTW

system target file list. The System Target File Browser will open as shown

in Figure 3.20.

5. The system target file is selected for the Real-Time Windows Target and OK

is clicked.

29

Figure 3.12: System Target File Browser

 The system target file rtwin.tlc, the template makefile rtwin.tmf and the make

command make_rtw are automatically entered into the Real-Time

Workshop pane.

 Although not visible in the Real-Time Workshop pane, the external target

interface MEX file rtwinext is also configured after OK is clicked. This

allows external mode to pass new parameters to the real-time application and

to return signal data from the real-time application. The data is displayed in

Scope blocks or saved with signal logging.

 The Real-Time Workshop pane would look similar to the Figure 3.21.

Figure 3.13: Configuration Parameters – Real-Time Workshop

7. One of following is done:

30

 Apply is clicked to apply the changes to the model and the dialog box

is left open.

 OK is clicked to apply the changes to the model and the

Configuration Parameters dialog box is closed.

3.1.3.4 Creating a Real-Time Application

 Real-Time Workshop generates C code from the Simulink model and then the

Microsoft Visual Basic C++ compiler compiles and links that C code into a real-

time application. After parameters are entered into the Configuration Parameters

dialog box for Real-Time Workshop, a real-time application could be built.

1. In the Simulink window and from the Tools menu, it should be pointed to the

Real-Time Workshop and then clicked Build Model. The build process does

the following:

 Real-Time Workshop creates the C code source files rtwin_model.c

and rtwin_model.h.

 The make utility make_rtw.exe creates the makefile rtwin_model.mk

from the template makefile rtwin.tmf.

 The make utility make_rtw.exe builds the real-time application

rtwin_model.rwd using the makefile rtwin_model.mk created above.

The file rtwin_model.rwd is binary files that refer to as the real-time

application. The real-time application could be run with the Real-

Time Windows Target kernel.

2. The Simulink model is connected to real-time application.

After the real-time application is created, MATLAB could be closed and

started again later and then the executable is connected and run without

having to rebuild.

31

3.1.3.5 Running a Real-Time Application

The real-time application is run to observe the behavior of the model in real

time with the generated code.

The process of connecting consist of

 Establishing a connection between your Simulink model and the kernel to

allow exchange of commands, parameters and logged data.

 Running the application in real time.

After the real-time application is built, the model could be run in real time.

1. From the Simulation menu, External is clicked and then Connect To Target is

connected from the Simulation menu, Also, it could be connected to the

target from the toolbar by clicking . It can be seen I Figure 3.22.

Figure 3.14: Connect to target from the Simulation menu

 MATLAB will display the message

 Model rtwin_model loaded

32

2. In the Simulation window and from the Simulation menu, Start Real-Time

Code is clicked. The execution also could be started from the toolbar by

clicking Start icon.

 Simulink runs the execution and plots the signal data in the Scope window.

In the model, the Scope window displays 1000 samples in 1 second, increases

the time offset and then displays the samples for the next 1 second.

Note:
Transfer of data is less critical than calculating the signal output at the

selected sample interval. Therefore, data transfer runs at a lower priority in

the remaining CPU time after real-time application computations are

performed while waiting for another interrupt to trigger the next real-time

application update. The result may be a loss of data points displayed in the

Scope window.

3. One of the following is done:

 The execution is let to be run until it reaches the stop time.

 Stop Real-Time Code is clicked from the Simulation menu.

The real-time application is stopped.

4. In the Simulation window, Disconnected From Target is clicked from the

Simulation menu.

5. From the Simulation menu, External is clicked

 MATLAB will display the message

 Model rtwin_model unloaded

3.1.4 Creating Graphical User Interfaces

MATLAB implements GUIs as figure windows containing various styles of

uicontrol objects. You must program each object to perform the intended action

when activated by the user of the GUI. In addition, you must be able to save and

launch your GUI. All of these tasks are simplified by GUIDE, MATLAB’s graphical

user interface development environment.

33

3.1.4.1 GUI Development Environment

The process of implementing a GUI involves two basic tasks:

(i) Laying out the GUI components

(ii) Programming the GUI components

GUIDE primarily is a set of layout tools. However, GUIDE also generates an

M-file that contains code to handle the initialization and launching of the GUI. This

M-file provides a framework for the implementation of the callbacks – the functions

that execute when users activate components in the GUI.

The Implementation of a GUI

While it is possible to write an M-file that contains all the commands to lay

out a GUI, it is easier to use GUIDE to lay out the components interactively and to

generate two files that save and launch the GUI:

(i) A FIG-file – contains a complete description of the GUI figure and all of

its children (uicontrols and axes), as well as the values of all object

properties.

(ii) An M-file – contains the functions that launch and control the GUI and

the callbacks, which are defined as subfunctions. This M-file is referred to

as the application M-file in this documentation.

3.1.4.2 Starting Guide

Start GUIDE by typing guide at the MATLAB command prompt. This

displays the GUIDE Quick Start dialog, as shown in the following Figure 3.23.

34

Figure 3.15: GUIDE Quick Start

From the Quick Start dialog, the user can:

(i) Create a new GUI from one of the GUIDE templates.
(ii) Open an existing GUI.

3.1.4.3 The Layout Editor

When the user opened a GUI in GUIDE, it is displayed in the Layout Editor,

which is the control panel for all of the GUIDE tools. The following Figure 3.24

shows the Layout Editor with a blank GUI template.

35

Figure 3.16: Layout Editor

The user can lay out the GUI by dragging components, such as panels, push

buttons, pop-up menus, or axes, from the component palette, at the left side of the

Layout Editor, into the layout area.

3.1.4.4 Programming a GUI

After laying out the GUI and setting component properties, the next step is to

program the GUI. The user programs the GUI by coding one or more callbacks for

each of its components. Callbacks are functions that execute in response to some

action by the user. A typical action is clicking a push button.

A GUI’s callbacks are found in an M-file that GUIDE generates

automatically.

36

GUIDE adds templates for the most commonly used callbacks to this M-file,

but the user may want to add others. Use the M-file Editor to edit this file.

The following Figure 3.25 shows the Callback template for a push button.

Figure 3.17: M-file Editor

3.1.5 Simulation of the servomotor

To know or improve if the gain value that we get before is correct or not,

build the simulink model using Matlab. By this simulink, it will show the result in

the feedback system by the graph of the comparison of feedback value and input

value. If the value of feedback after the gain equal to the input value then our value is

correct.

37

Figure 3.18: Block diagram for simulation servo motor

There is subsystem in the main system to make it easy to build the system. In

the subsystem, there are systems that are build connected to the main system.

Figure 3.19: Subsystem for the block diagram above

Before the simulink above run, the m-file that are contains the value of each

parameters in the block diagram need to run first. The m-file is:

38

Figure 3.20: M-file for the system

3.1.6 Graphical User Interface

 User interface is developing to make the user controlling the speed of the

motor easily by just change the value in the text box. The main panel of the user

interface is:

Figure 3.21: Main panel

39

From the main, user can go to the other subsystem for GUI. There’s credit for

student and supervisor of the project, abstract of the project, 3 buttons for the LQR,

Simulation and Find K, and button exit.

Figure 3.22: Supervisor credit

Figure 3.23: Student credit

40

Figure 3.24: Abstract of the project

For the button LQR on the main panel, the following figure will show the m-

file appears when the button pressed.

Figure 3.25: Manual way to find the K gain

41

After the m-file ran, we click the button Simulation so that we can simulate

the system with the value of K obtained before. Then after the simulation done, click

on the scope to sure if the result is perfect. From the result, we can know if the value

of K is correct. The simulation button pressed then the model will appear like below:

Figure 3.26: Simulink model

There also GUI for finding K for just key in the value of the motor constant

because different type of motor, it has different constant. The value of K will show

up in the 2 text boxes in form K1 and K2. The GUI is:

Figure 3.27: Find K if different motor constant

42

3.2 HARDWARE

3.2.1 CLIFTON PRECISION SERVO MOTOR MODEL JDH-2250-HF-2C-E

The other advantages of servo motor are:

• High output power relative to motor size and weight

• Encoder determines accuracy and resolution

• High efficiency. Can approach 90% at light loads

• High torque to inertia ratio. Can rapidly accelerate loads

• Has reserve power. Two to three times continuous power for short

periods

• Has reserve torque. Five to ten times rated torque for short periods

• Motor stays cool. Currently draw proportional to load

• Usable high speed torque. Maintains rated torque to 90% of No load

RPM

• Audibly quiet at high speeds

• Resonance and vibration free operation

Figure 3.28: Servo Motor

The parameters of the Clifton Servo Motor

• Torque Constant: 15.76 oz-in. / A

• Back EMF: 11.65 VDC / KRPM

• Peak Torque: 125 oz-in.

43

• Cont. Torque: 16.5 oz-in.

• Encoder: 250 counts / rev.

• Channels A, B in quadrature, 5 VDC input (no index)

• Body Dimensions: 2.25” dia. X 4.35” L (includes encoder)

• Shaft Dimensions: 8 mm x 1.0” L w/flat

3.2.2 G340 Motor Driver

Figure 3.29: Gecko drive (G340)

Figure 3.30: G340 block diagram

44

The several characteristics of Servo Drive G340 are:

• Run PM DC servos with stepmotor software

• PLL step pulse multiplier

• 20A motor output

• 18V to 80V power supply

• PID closed loop operation

• Step and Direction control inputs

• Quadrature encoder feedback

• Anti-dithering circuit keeps motor silent

• Onboard +5VDC, 50mA encoder supply

• Pulse by pulse motor current limiting

• 0 to 20A current limit adjust range

• +/- 128 count servo lock range

• No tachometer feedback needed

• 250 kHz max step rate

• Latched Fault protection

• LED Fault indicator

• Small size: 2.5" by 2.5" by 0.82" (63mm by 63mm by 21mm)

• Light: 3.6 oz (100gm)

• Anodized aluminum package

• Modular 2-piece main connector

3.2.3 G340 installation

3.2.3.1 Encoder hook up

The instructions below are to determine the optimal encoder line
count:-

i. Determine motors no load RPM

45

ii. Calculate rated RPM as 80% of no load RPM

iii. Divide (#2) by 60 to get revolutions per second

iv. Determine the CNC program’s maximum step pulse frequency

(in Hz)

v. Divide (#4) by (#3), which will give you the maximum counts

per revolution

vi. Divide (#5) by 4, which will give you the max line count

vii. Pick the first standard line count below (#6)

An example of using the formula with 45 kHz step pulse frequency and a

maximum motor RPM of 3000:

 (45 kHz / 40) / 4 = 281.25

3.2.3.2 Power supply hook up

Power supply needs to keep leads short and the largest wire gauge

used so that it will fit in the terminals. Use a 1000 µF capacitor across the

G340 power supply terminals if the lead length is more than 18’’. Make sure

the power supply can provide the peak current the motor may draw. The

range for the power supply is between 18 VDC to 80 VDC. The actual

voltage should not higher than the motor’s rated voltage that is 5 volts.

3.2.3.3 Testing the encoder

Use oscilloscope or voltmeter to monitor the POSITION ERROR test

point. The POSITION ERROR test point shows the difference between the

command position and the actual motor position. If both same, the voltage

will be +5 VDC.

46

3.2.3.4 Control input hook up

The control input group is the standard step motor drive STEP,

DIRECTION and +5 VDC lines. The STEP and DIRECTION signal drivers

must be TTL compatible and have edge transition times of 100 ns or faster.

The +5 VDC is the opto-isolator common anode line and must be returned to

the pulse source +5 VDC supply.

i. DIR Connect the DIRECTION line to this terminal

ii. STEP Connect the STEP line to this terminal

iii. +5 VDC Connect this terminal to the controller +5 VDC power supply

3.2.3.5 Testing the control inputs

To testing the functionality of these output, let the oscillator used

before at the same position. Then, set the STEP pulse generator to about 40

pulses per second and set the DIRECTION output to clockwise (logical “1”).

Power supply turned on. After the power-on reset period of 5 seconds the

FAULT light will turn off.

3.2.3.6 Motor hook up

Make sure the power is off and the STEP pulse source is set to zero

pulses per second. The trimpot settings are checked if it is set to according to

the instructions above. Secure the motor so that it can’t jump off the bench.

ARM- Connect the BLACK motor lead to this terminal

ARM+ Connect the RED motor lead to this terminal

3

b

(

m

c

c

3

a

b

3.2.4 Adva

The

because it i

(Data Acqui

market. Thi

consumption

compatible

1710HG.

3.2.5 Com

a) Anal
•

•

•

•

•

•

•

b) Anal
•

antech PCI-

Advantech

s low cost.

isition Syste

is custom g

n. The size

for this PC

mmon Specif

log Input
• Channels

• Resolutio

• Max. Sam

• Input ran

• Auto cha

• Input imp

• Input ove

log Output
• Channels

-1710HG

PCL-1710H

The budget

em) card. It

gives higher

of this har

CL from MA

Figure 3.31:

fications

s: 16, single-

on: 12 bits

mpling Rate:

nge selection

annel/gain sc

pedance: 1 G

ervoltage: +/

s: 2

HG is the p

t will be sa

present in th

performanc

rdware is ha

ATLAB. Fig

: Advantech

-ended or 8 d

: 100kS/s

n: (V, softwa

canning

G ohms

/-30 VDC m

erfect choic

aving to buy

he best pric

ce and relia

alf size DA

gure 3.7 sho

PCI-1710H

differential.

re programm

maximum

ce to use fo

y this multif

e and perfor

ability with

AS Card. Th

ows the Ad

HG

mable)

4

or this proje

function DA

rmance in th

lower pow

he software

dvantech PC

47

ect

AS

he

wer

is

CI-

48

• Resolution: 12-bits

• Output range: (V, software programmable)

3.2.6 Pin Assignments

 Figure 3.8 shows the Pin Assignment for PCI-1710 HG. It used to connect

from the I/O board to PC.

Figure 3.32: Pin Assignment for PCI-1710 HG

3.3 Linear Quadratic Regulator Development

3.3.1 The General State-Space Representation

A physical network in state space has been represented and has a good idea of
the terminology and the concept, let’s summarize and generalize the representation
for linear differential equations. First, formalize some of the definitions that came
across before.

49

Linear combination:A linear combination of n variables, xi, for i = 1 to n, is

given by the following sum, S:

 S = Knxn + Kn-1xn-1 + …. + K1x1 (3.1)

where each Ki is a constant.

Linear independence: A set of variables is said to be linearly independent if

none of the variables can be written as a linear combination of the others. For

example, given x1, x2, and x3, if x2 = 5x1 + 6x3, then the variables are not linear

combination of the other two. Now, what must be true so that one variable cannot be

written as a linear combination of the other variables? Consider the example K2x2 =

K1x1 + K3x3. If no xi = 0, then any xi can be written as a linear combination of other

variables, unless all Ki = 0. Formally, then, variables xi, for i = 1 to n, are said to be

linearly independent if their linear combination, S, equals zero only if every Ki = 0

and no xi = 0.

System variable: Any variable that responds to an input or initial conditions

in a system.

State variables: The smallest set of linearly independent system variables

Such that the values of the members of the set at time t0 along with known forcing

functions completely determine the value of all system variables for all t ≥ t0.

State vector: A vector whose elements are the state variables.

State space: The n-dimensional space whose axes are the state variables. This

is a new term and is illustrated in Figure 3.1, where the state variables are assumed to

be a resistor voltage, vR, and a capacitor voltage, vC. These variables form the axes of

the state space. A trajectory can be thought of as being mapped out by the state

vector, x(t), for a range of t. Also shown is the state vector at the particular time t = 4.

50

Figure 3.33: Graphic representation of state space and a state vector

State equations: A set of simultaneous, first-order differential equations with
n variables, where the n variables to be solved are the state variables.

Output equation: The algebraic equation that expresses the output variables

of a system as linear combinations of the state variables and the inputs.

Now that the definitions have been formally stated, define the state-space

representation of a system. A system is represented in state space by the following

equations:

for t ≥ t0 and initial conditions, x(t0), where

 x = state vector

 = derivative of the state vector with respect to time

 y = output vector

 u = input or control vector

 A = system matrix

 B = input matrix

 C = output matrix

 D = feedforward matrix

State vector,

State vector

State vector,

vC

State space
vR

51

Equation (1) above is called the state equation and the vector x, the state

vector, contains the state variables. That equation can be solved for the state

variables. Equation (2) is called output equation. This equation used to calculate any

other system variables. This representation of a system provides complete knowledge

of all variables of the system at any t ≥ t0.

3.3.2 Evaluating the State Space equation

The main point for this project is LQR. We need to obtain the gain, K for the

linear sate feedback control. First, the state space equation of the servo motor need to

be obtain because each motor have different state space equation. State space for the

servo motor model calculated below:-

Figure 3.34: DC motor model system

where

R = terminal resistance

L = terminal inductance

Kt = torque constant

Jm = motor and load inertia

Bm = friction

Kemf =speed constant

52

Using Kirchoff current law;

Vs(t) = Vemf + L di/dt +Ri(t) ; Vemf = K emf. Ω

Vs(t) = Kemf. ω + L di/dt +R i(t)

Ldi/dt = Vs(t) – Kemf. ω – R i(t)

di/dt = {Vs(t) – Kemf. Ω – R i(t)}/L (4.1)

Torque,

 T = Kt.Ii

 T = J dω/dt + Bω

 Kt.Ii = J dω/dt + Bω

 J dω/dt = Kt.Ii – Bω

 dω/dt = {Kt.Ii – Bω}/J (4.2)

Simplify equation 4.1 & 4.2

. . (4.3)

 = . . (4.4)

After get all the equation above, all the equation arrange and insert into the

state space equation in matrix form. The equation of the state space is:-

0

 0 1

53

where;

 , 0 1

0

 , 0

Then, get the elements from the DC motor

Table 3.2: Parameters of servomotor elements

Variable Units Value Description

R Ohm 2.7 Terminal Resistance

L Henry 0.004 Terminal Inductance

Kt N-m- 0.105 Torque Constant

Kemf V-s- 0.105 Back emf Constant

B N-m-s- 0.0000093 Friction

J Kg- 0.0001 Equivalent Moment
of Inertia

Td - A=0.05N-m , f=100 rad- Load Disturbance

Convert to state space equation:

0

Thus, the perimeter is state below:

.
.

 .
.

.
.

 .
.

675 26.25
1050 0.093

1

0

1
0.004

0

250
0

54

 0 1

 0

3.4 Applying Linear Quadratic Regulator

The plant is defined by the following state space equations as state in DC

motor equation:

where :

4 0.2
5 10 , 2

0 , 0 1 0

The performance index J is given by

where

 1 0

0 1 R 1

Assume the following control u is used.

Determine the optimal feedback gain matrix K.

The optimal feedback gain matrix K can be obtained by solving the following

Riccati equation for a positive-definite matrix P.

55

0

The result is

 0.1349 0.0152

0.0152 0.0496

Substituting this matrix P into the following equation gives the optimal K matrix:

 1 0 2 0.1349 0.0152
0.0152 0.0496

 0.2698 0.0304

Thus, the optimal control signal is given by

1 2

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Simulation result

 For the simulation, the parameters of DC motor and servo motor will be taken

to show the result of the simulation.

4.1.1 Simulation on the DC motor

The result is for the DC motor that has the value of parameters below:

R = 2.0 Ω

L = 0.05 H

Kt = 0.1

Jm = 0.02

Bm = 0.2

Kemf =0.1

The value of the gain, K obtained from the GUI Find K after all the

parameters of the DC motor selected inserted. The figure shows the result from the

GUI:

57

Figure 4.1: Result for DC motor

 From the figure above, the value of the gain, K has been obtained after all the

parameters of the DC motor inserted and the button RUN clicked. The value is:

K = [0.245006 0.0801054]

Using the gain value that has been obtained before, the simulation is done by

inserting the value into the block diagram system.

For the simulation result in Matlab, the graph is like below:

Figure 4.2: Graph result for K = [0.245006 0.0801054]

58

4.1.2 Simulation on the Clifton Precision servo motor

 To find the other value of gain, K for Clifton Precision servo motor, click the

button Clear on the user interface and insert the value of the Clifton Precision servo

motor parameters. The parameters values of the Clifton Precision servo motor are

like below:

 R = 2.7

L = 0.004

Kt = 0.105

Jm = 0.0001

Bm = 0.0000093

Kemf =0.105

 The following figure shows the result of the value of gain, K obtained from

the user interface before. The value of gain, K obtained is:

Figure 4.3: Result for Clifton Precision servo motor

 The result of the gain, K in matrix form from figure above is like below:

K = [1.28138 0.0.90017]

59

 Then, insert the value that has been obtained before into the simulink system.

After the simulink run, the graph of the result is:

Figure 4.4: Graph result for K = [1.28138 0.90017]

60

4.2 Data Analysis

 Analysis will be done on the first simulation because analysis for the second

simulation that is simulation for the Clifton Precision is the same as the first one.

 From the graph result of the first simulation, DC motor simulation, the data

analysis is get from the following figure. For the first figure below, Settling time (Tr)

of the system get stable:

Figure 4.5: Settling time for simulation DC motor

 From the graph above, the settling time for the system to stable state are:

Ts = 1.888 – 1

= 0.888s

 For the next figure, the rise time will be analyzed from the graph shown

below:

61

Figure 4.6: Rise time for simulation DC motor

 For the figure above, analysis can be done for the rise time. From the graph,

the time for the system to be rise to the steady state is:

Tr = 1.274 – 1

= 0.274

 From the two figures above, analysis also can be done to the other parameters

like Percent Overshoot (%OS), and Steady state error. Table below shows the all

parameters from the analysis that has been done before for the first simulation and

the parameters mentioned earlier. All the parameters are put in the table below:

Table 4.1: Data analysis simulink of the system

Rising time (Tr) 0.274s

Settling time (Ts) 0.888

Percent overshoot
%OS

0

Steady state error 0

62

 From the table of the parameters analysis, the system gets stable in a short

time, within a second. The system that use LQR controller also does not have the

Percent Overshoot (%OS) and Steady state error. This can be seen in the figure

above that the graph is rising smoothly.

4.3 Tuning the value of Q

 The value of Q can be tuning to get the best result of the LQR as long as the

value Q is positive semi definite. For the analysis before, the value of Q is 1, same as

the R. Here, the value of Q will be used as 10 and 100 but the value of R is still

maintained.

 For the first tuning, the value of Q is 1 will be used. The result that gets from

the Matlab after tuning the value of Q is:

Figure 4.7: Result for Q = 1

 The graph shows that the servo motor achieves its maximum speed at

0.8507 rad/s and it takes 0.888 seconds to reach its steady-state.

63

Figure 4.8: Result for Q = 10

Figure 4.8 shows the servo motor achieves its maximum speed at 0.8918

rad/s and it takes 0.453 seconds to reach its steady-state.

Figure 4.9: Result for Q = 100

64

 Figure 4.9 shows that the motor achieve its maximum speed at 0.9516 rad/s

and it takes 0.23 seconds to reach its steady-state.

The results from the simulation of the three different values of Q are shown

in Table 4.2.

Table 4.2: Simulation results for three different Q

Q R K

(Gain)

Time Rise Settling

Time

[1 0 ; 0 1] 1 K = [0.2450 0.0801] 0.209 0.888

[1 0 ; 0 10] 1 K = [0.3241 0.8025] 0.203 0.453

[1 0 ; 0 100] 1 K = [0.7704 5.3505] 0.141 0.23

 From the table above, the time for the system to rise and settled decreased

due to the increased of the value Q.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Introduction

 This thesis has discussed on development of Matlab GUI and Linear

Quadratic Regulator which has ability to control the speed of the motor. This project

is implemented using G340 motor driver and interfacing between servomotor and

computer through serial and parallel port with a development program usin Matlab

GUI.

 This project has been able to achieve some of its objectives. Some of the

objectives that did not achieve will be discussed about its problem in this chapter.

Then, conclusion will be made to state out the strength and weakness of the project.

Lastly, planning for future work will be discussed.

5.2 Assessment of design

 While developing the application design, several difficulties and mistakes

were countered. This project required some research and troubleshooting at the

motor driver. During the project development, several problems are faced. They are:

• The servo motor control

66

Unfamiliar with servo motor has caused the slow down on selecting

either pulse or voltage need to send to the servo motor to control the

speed.

• Motor driver application

Don’t know how to connect the motor driver to the serial and parallel

port has taking much time. The motor driver also had its own

controller that is PID controller and makes this project difficult

because this project develops its own controller that is Linear

Quadratic Regulator.

• Graphical user interface

There need a time to learn the function of in the Matlab GUI for built

the user interface and for sending data through serial and parallel port.

5.3 Strength and Weakness

 This project offer simple and efficient way to construct a GUI to control the

speed of the servo motor. Most of the controlling speed use such complex

mathematical equation and advance control system to control the speed.

 The user friendly interface in computer can let the user easily control the

speed of the motor manually. By changing the value in the text box then the servo

motor will change its speed according to the value insert before.

 The weakness of this project is, it can’t specify the speed of the motor. There

is no display for the speed of the motor either in revolution per minute (rpm) or other

unit. So that we don’t know the speed of the servo motor is running.

67

5.4 Suggestion for Future Work

 The project is functioning well from the user friendly interface and its

simulation. However, in implementing it, need to be improved to a more advanced

and better application in the future. For future improvement, several suggestions are

proposed:

• Suitable motor driver

The motor driver that used in this project need to be no its own

controller, so that this project can use its own controller that has been

develop.

• Choose familiar servo motor
Unfamiliar with the servo motor makes this project hard because the
servo motor is the main part.

5.5 Costing & Commercialization

 There is no cost at all to develop this project because all the instrument and

hardware part is provided by the FKEE Laboratory. This project is generally can be

implemented more on subject at the university due to its cost and this project itself.

This is said that because this project is focus on the LQR controller where

this controller is still on research nowadays. It is new knowledge so that it is good if

implemented on subject at the university.

Commercialization for this project can be done among all universities or

others higher study institutes relate to the technical skills. It can be very useful

technical learning tools for the engineering laboratory that are related to Control

Systems topic.

68

REFERENCES

[1] F. L. Lewis (1999). “EE 4343/5329 - Control System Design Project”.

[2] Norman S. Nise (2004). “Control System Engineering”. John Wiley & Sons,

Inc.

[3] Sergey E. Lyshevski. “Electromechanical Systems, Electric Mechanics AND

Applied Mechatronics”

[4] Wikipedia (2008), Data acquisition

 URL http://en.wikipedia.org/wiki/Data_acquisition

[5] Hello and welcome to Mik's page at DSP lab.

 URL http://dsp.ucsd.edu/students/present-students/mik/matlabgui/

[6] Wikipedia (2008), Linear Quadratic Regulator

 URL http://en.wikipedia.org/wiki/Linear-quadratic_regulator

[7] Wikipedia (2008), Servo Motor

 URL http://en.wikipedia.org/wiki/Servo_motor

G340 INSTALLATION NOTES

(March 31, 2002)

Thank you for purchasing the G340 drive. The G340 DC servodrive is warranted to be free of manufacturing defects for 1
year from the date of purchase. Also anyone who is dissatisfied with it or is unable to make it work will be cheerfully
refunded the purchase price if the G340 is returned within 15 days of the purchase date.

PLEASE READ FIRST BEFORE USING THE G340:

If you are not familiar with DC servodrives please do the following setup instructions with the motor on the bench before
mounting it on the mechanism it will eventually run. This will allow you to get a baseline motor behavior of what to expect.

Before you start, you must have a suitable encoder mounted and properly aligned on the motor. Follow the manufacturer’s
instructions on mounting and aligning the encoder if the motor doesn’t already come with one.

Next you must have a DC power supply suitable for the motor. Do not use a power supply voltage more than 5 volts in
excess of the motors rated voltage. The power supply current rating must equal the maximum current you expect to run the
motor at.

Finally have a STEP and DIRECTION pulse source available.

Before going on, turn the current LIMIT trimpot a quarter to half of full scale. Turn the GAIN trimpot fully off and turn the
DAMPing trimpot to a quarter of full scale. The trimpots are single-turn, do not over-torque them with a screwdriver.

REMOVING AND REPLACING THE COVER:

The STEP PULSE MULTIPLIER and the INPUT OPTION settings are jumpered internally. It is necessary to remove the
cover of the drive to change these settings from their default values. Please follow the steps below on how to remove and
replace the cover to avoid damaging the drive:

REMOVING THE COVER:

1) Remove the two 2-56 phillips-head screws on the bottom of the drive.
2) Gently lift the back of the cover upward until the LED clears the rectangular hole
3) Slide the cover backwards while still lifting until it clears the drive.

REPLACING THE COVER:

1) Make sure the LED is vertical relative to the drive printed circuit board.
2) Slide the cover forward over the drive while lifting the back of the cover.
3) When the cover is fully forward, look to see the LED is aligned with the hole.
4) Gently press the cover down, making sure the LED moves into the hole.
5) Replace the screws on the bottom of the drive.

It is recommended to use small needle-nose pliers or tweezers to move the jumpers on the internal headers.

G340 MULTIPLIER AND INPUT OPTION HEADERS:

MULTIPLIER OPTION HEADER

The G340 has a built in STEP PULSE MULTIPLIER. This circuit puts out 1, 2, 5, or 10 pulses for every input STEP pulse. All
motor moves will be in these increments. For example, if X10 is selected, then the motor will move 10 encoder counts for
every STEP pulse sent to the G340. Move the jumper on the MULTIPLIER HEADER to select the desired multiplier. Do not
operate the drive without a jumper.

INPUT OPTION HEADER

The INPUT OPTION HEADER allows the STEP and DIRECTION opto-isolators to be configured as either common
ground or common +5VDC.

If the G340 inputs are driven by a source that has only ground available, such as a PC parallel port, move the 4 jumpers on
the header so that it looks like the COMMON GROUND setting. Connect the input driver ground to TERM 12 on the main
connector.

If the G340 inputs are driven by open collector transistors or standard TTL gates, move the 4 jumpers on the header so that
it looks like the COMMON +5VDC setting.

1

1 5
2 6
3 7
4 8

1 5
2 6
3 7
4 8

X10

X5

1 5
2 6

X2
3 7
4 8

1 5
2 6

X1
3 7
4 8

MULTIPLIER HEADER

1 5
2 6
3 7
4 8

1 5
2 6
3 7
4 8

COMMON GROUND

COMMON +5VDC

INPUT OPTION HEADER

G340 TERMINAL WIRING:

IMPORTANT: When first testing the G320, connect ERR/RES (term. 5) to ENC+ (term. 7).
Please follow the next steps in the sequence they are given.

STEP 1: ENCODER HOOK-UP

The encoder must be at minimum a 25 line-count digital quadrature encoder and must operate on a single +5VDC power
supply. If the encoder supply current is more than 50 mA, use an external +5VDC supply. It may have an INDEX output,
which will not be used. If it has differential outputs, use only the “+” phase outputs. IMPORTANT: Connect a 470-ohm
resistor from TERM. 6 to TERM. 7 if an external power supply is used for the encoder.

(TERM. 6) ENC- Connect the encoder power supply ground to this terminal.
(TERM. 7) ENC+ Connect the encoder +5VDC to this terminal
(TERM. 8) PHASE A Connect the encoder phase “A” to this terminal
(TERM. 9) PHASE B Connect the encoder phase “B” to this terminal

STEP 2: POWER SUPPLY HOOK-UP

Keep the power supply leads short and use the largest wire gauge that will fit in the terminals. If the lead length is more than
18” use a 1000 uF capacitor across the G340 power supply terminals. Make sure your power supply can provide the peak
current the motor may draw. The power supply voltage must be between 18 VDC and 80 VDC. The actual voltage should
not be more than 5 volts higher than the motor’s rated voltage.

(TERM. 1) POWER GROUND Connect the power supply ground to this terminal.
(TERM. 2) +18 TO 80 VDC Connect the power supply “+” to this terminal

STEP 3: TESTING THE ENCODER

At this point the encoder should be tested for functionality. If you wish to monitor the POSITION ERROR test point with a
voltmeter or oscilloscope, then remove the cover of the drive now. If you have a choice, pick the oscilloscope.

The POSITION ERROR test point shows the difference between the command position and the actual motor position.
When both are the same, the voltage will be +5VDC. For every count the motor is clockwise of the command position, the
voltage will decrease by 0.04 volts. When it drops to 0.4 volts, the protection circuit takes over and resets the drive for 3
seconds. While reset, the FAULT light is on.

For counter-clockwise position errors the voltage will increase by 0.04 volts for every count until it reaches 9.6 volts when
again the protection circuit takes over as before.

VOLTMETER MONITORING: Place the red lead on the test point and the black lead on the large blue capacitor lead
(GND) furthest from the main connector. Turn on the power supply. The FAULT light should be on for 3 seconds and then

2

turn off. The voltmeter should read +5VDC. Turn the motor shaft clockwise VERY slowly. The voltmeter reading should
decrease 0.04 volts for every encoder count. When the reading reaches 0.4 volts, the red light will turn on and the voltage
will jump back to +5VDC. After 3 seconds the light will turn off. You may turn the motor shaft counter-clockwise as well.
The voltage will increase then by 0.04 volts per count until it reaches 9.6 volts and trips the protection circuit.

OSCILLOSCPE MONITORING: Set the scope to 2 volts / cm vertical and about 1 millisec per cm horizontal. Zero the
trace to the bottom line on the screen. DC couple the input. Place the probe on the test point and the ground clip to the blue
capacitor ground lead. Follow the steps in VOLTMETER TESTING above.

CURRENT LIMIT TRIMPOT

DAMPING TRIMPOT

GAIN TRIMPOT

1 4
2 5
3 6

1 4
2 5
3 6

1 4
2 5
3 6

ANTI-DITHER
DISABLED

LOW-INERTIA
ENABLED

DIRECTION
INVERTED

OPTION JUMPER BLOCK

TEST POINT GND

TEST POINT

(UNDER MULTIPLIER BOARD)

STEP 4: CONTROL INPUT HOOK-UP

The control input group is the standard step motor drive STEP, DIRECTION and +5VDC lines. The STEP and
DIRECTION signal drivers must be TTL compatible and have edge transition times of 100 ns or faster. The +5VDC is the
opto-isolator common anode line and must be returned to the pulse source +5VDC supply.

(TERM. 10) DIR Connect the DIRECTION line to this terminal.
(TERM. 11) STEP Connect the STEP line to this terminal.
(TERM. 12) +5VDC Connect this terminal to the controller +5VDC power supply

STEP 5: TESTING THE CONTROL INPUTS

You may wish to test the functionality of these inputs. If you used an oscilloscope in the previous section, leave it
connected to the test point. If you used a voltmeter, then remove it from the drive.

Set the STEP pulse generator to about 40 pulses per second and set the DIRECTION output to clockwise (logical “1”). Turn
on the power supply. After the power-on reset period of 5 seconds the FAULT light will turn off.

If you are using an oscilloscope, then the test point voltage will begin to increase until 3 seconds later it trips the protection
circuit at 9.6 volts. The FAULT light will turn on for 5 seconds and voltage will snap back to +5VDC. After the FAULT turns off,
the sequence will repeat again.

If you are not using an oscilloscope, just see if the FAULT light turns on and off every three seconds.

STEP 6: MOTOR HOOK-UP

Make sure the power is off and the STEP pulse source is set to zero pulses per second. Check to see if the trimpot
settings are set according to the instructions on page 2. You may wish to secure the motor so it can’t jump off the
bench.

(TERM. 3) ARM- Connect the RED motor lead to this terminal.
(TERM. 4) ARM+ Connect the BLACK motor lead to this terminal.

STEP 7: TUNING THE SERVO

Turn on the power supply. The FAULT light should turn off after 3 seconds. If everything is correct you should hear the
motor “singing”. This is normal. The motor is dithering or bouncing between adjacent encoder counts. The integral term in a
PID loop has infinite DC gain over time and will amplify even the smallest position error. Because encoder feedback can only
occur on count edges, the loop is “blind” until it encounters an encoder count edge. It then reverses the motor direction
until another edge is found, then the process repeats.

3

If the motor jumps slightly and the FAULT light immediately turns back on, then either the motor is wired backwards or the
trimpots are misadjusted. Check the trimpot settings. If they seem right then switch the motor leads and try again. If it still
doesn’t work and you followed all the previous steps, call me at the number at the end of this document.

Now turn on your STEP pulse source and ramp the speed up to see if the motor turns. It should turn clockwise with a
logical “1” on the DIRECTION input.

The optimum way to tune the servo is to induce an impulse load on the motor while watching an oscilloscope to see how
the motor behaves in response, then adjusting the PID co-efficients (GAIN and DAMPING trimpot settings) for optimal
behavior.

In all cases the motor must return to the command position, what matters is how it does it. The manner in which the motor
returns to its command position is called damping. At one extreme called overdamped response, the motor returns to
position after a long, drawn out delay. At the other extreme called underdamped response, the motor returns to its position too
rapidly, overshoots, returns and undershoots and so on until it finally settles at its command position. This is also caused
ringing; when extreme, the over/undershoot builds in amplitude until the motor enters violent oscillation. Between the two
extremes is the optimal response called critical damping. Here the motor rapidly returns to its position with little or no
overshoot in the minimal amount of time.

GAIN AND DAMPING

GAIN and DAMPING settings generally track each other. If you increase GAIN (greater stiffness), then increased
DAMPING is needed as well to restore critical damping. Be careful, increasing GAIN without increasing DAMPING may
cause the motor to break out into violent oscillation.

The higher GAIN is set, the noisier the motor will be when stopped. This is because higher gain causes more vigorous
dithering between encoder counts at rest. There is a trade-off between high gain (high stiffness) one hand and excessive
dithering (noise and motor heating) on the other. Use judgment here.

To see how your servo is compensated it is first necessary to induce a disturbance. The easiest way is to switch the
DIRECTION input while commanding a constant speed via the STEP input. The abrupt direction change puts just the
momentary load needed on the motor while you watch how it responds.

If you are using an oscilloscope, use channel 1 on the test point and channel 2 on the DIRECTION input. Set the trigger to
“normal”, trigger source to channel 2 and trigger edge to “+”. You should see a single sweep for every clockwise change
in direction.

Slowly increase STEP speed until you get a picture similar to one of the three above, and then do the following:

1) OVERDAMPED: Decrease DAMPING or increase GAIN
2) CRITICALLY DAMPED: Do nothing; you’re there
3) UNDERDAMPED: Decrease GAIN or increase DAMPING

(POSITION ERROR TEST POINT NOTE)

Don’t confuse the POSITION ERROR with the motor or machine position. The signal is actually the differential position
error between the command speed and the motor speed. As noted above, sending clockwise STEP pulses moves the
POSITION ERROR voltage more positive while turning the motor clockwise moves the POSITION ERROR voltage more
negative.

When the motor encoder counts match the number of STEP pulses being sent one for one, the POSITION ERROR
voltage stays at +5VDC. If the motor gets ahead of the STEP pulses such as during very rapid deceleration, the voltage
will decrease by 0.04 volts for every encoder count the motor is ahead of the STEP pulses sent. The PID algorithm will
force the motor to match the STEP input over time and restore the POSITION ERROR voltage back to +5 VDC.

4

CURRENT LIMIT

The current LIMIT trimpot sets maximum current the motor is permitted to have. It is adjustable from 0 amps to 20 amps.
Normally the LIMIT trimpot is set to maximum (20 amps) unless you want to limit motor torque to a lower value.

Motor speed and position is unaffected by the current LIMIT setting unless the torque demand due to load exceeds this
setting, then the motor position will fall behind the command position because of insufficient torque.

FAULT INDICATOR

The FAULT indicator is on while the drive is in power-on reset, the DISABLE input is held “low” or if the protection circuit is
tripped due to a fault condition. All power MOSFETs are turned off and all internal counters are restet. The FAULT
condition lasts for 3 seconds, and then self-resets to try again. If the protection circuit tripped it and the cause is not
cleared, then it will immediately re-enter the FAULT state again and repeat the cycle.

There are two conditions that will trip the protection circuit. One condition is if a short-circuit occurs and current exceeds 20
amps. The other condition is if the POSITION ERROR exceeds +/- 120 counts causing a break of the servo-lock. This
condition can have several causes:

1) The loop settings are severely under-damped and the motor breaks out into oscillation.
2) Excessive motor load due to acceleration or workload.
3) The speed command in excess of what the motor can deliver.
4) The current LIMIT is set too low.
5) The power supply current is insufficient for the demand.
6) The power supply voltage is below 18 VDC.
7) The motor is wired backwards, is broken or disconnected.
8) Encoder failure.

REVERSING DEFAULT MOTOR DIRECTION

The G340 will turn the motor in the CW direction when the DIRECTION input is “high” (logical “1”, or +5VDC). If instead
CCW is preferred, then:

1) Reverse the motor “+” and “-“ leads (term. 3 with term. 4)
2) Reverse the encoder “channel A” and “channel B” leads (term. 8 with term. 9)

USING THE G340 WITH VERY SMALL MOTORS

Very small motors have low inductance relative to their operating current. Consequently ripple current due to pulse-width
modulation can quickly overheat and destroy these motors. If the G340 will be used with these motors, then an external low
pass filter must be used to attenuate ripple current to tolerable levels.

A suggested filter consists of two 150 microhenry inductors in series with each motor lead and a 2 microfarad, low
inductance film capacitor across the motor leads. The inductors must be rated for the anticipated peak motor current.

This filter is also need if ironless-armature or “pancake” motors are used. These motors have very low inductance as well and
will overheat if driven directly by the G340.

(TERM. 5) ERR / RES

This terminal functions as an ERROR output and as a RESET input. Because this terminal functions as both an input and an
output, some detailed description is necessary.

When first testing the G340, ERR/RES (term. 5) was connected to ENC+ (term. 7). It can be left that way if it is not
necessary to read the state of the ERROR output. Otherwise, the following details are important.

The ERROR output is latched in the “ERROR” state (term. 5 = “0”) by the power-on reset circuitry in the G340. It will stay in
this state indefinitely until it is cleared by applying +5V to this terminal for at least 1 second.

The voltage on this terminal is +5VDC when the G340 is functioning normally. The voltage on this terminal goes to 0VDC
whenever the FAULT indicator is lit. This output can be used to signal your controller that an error has occurred.

Normally when the G340 is first powered up, it will be necessary to push the momentary switch to START for 5 seconds.
This will clear the power-on reset condition and extinguish the FAULT LED. The motor will then be enabled and the drive
will begin to operate. If at anytime after that a condition occurs that causes the G340 to “fault out”, such as not being able
to complete a step command, the ERR/RES terminal will go to “0”, signaling the computer an error has occurred. This will
require the operator to correct the problem that caused the fault and then push the switch to “START” for 5 seconds to re-
enable the G340.

5

5V

OPTIONAL
EXTERNAL LED
FAULT LED
CIRCUIT

220

PN2907 4.7 uF

TO COMPUTER

5V

START TERM. 5
MOMENTARY ERR/RES
CENTER OFF

STOP

FROM FAULT
DETECTORS
(FAULT=0)

1MEG

RESET FOR
INTERNAL CIRCUIT
(RESET=1)

5V

FAULT LED

470 10K

470
G320 DRIVE

At anytime the operator can push the switch to the “STOP” position to immediately halt the G340 drive. Anytime the G340 is
in the “FAULT” state (FAULT LED lit), all switching action stops and the motor freewheels and is unpowered. This will light
the “FAULT” light.

G340 BLOCK DIAGRAM:

4-BIT DOWN COUNTER
DIFFERENTIAL

VOLTAGE

CONTROLLED INTEGRAL
OSCILLATOR

PROPORTIONAL

10 5 2 1

DIVIDE BY 1, 2, 5, 10

CLOCK OUTPUT

11 200 CLOCK

1K 8-BIT U/D COUNTER R

12 U/D

10 1K 8
200

A 8

8-BIT ADDER A+B
+5VDC

B

1K 1K
8

8 CH A U/D
QUADRATURE
DECODER 8-BIT U/D COUNTER R

9 CH B CLOCK

7 +5VDC

6 470

FAULT LED

470 10K
5

5 SECOND DELAY S Q

FAULT LATCH

R R Q

CLOCK

4

4 A
4-BIT D/A A+B 4-BIT ADDER

CONVERTER

B

4

4-BIT UP COUNTER

CLOCK

DAMPING

DIFFERENTIAL

INTEGRAL

8-BIT D/A PROPORTIONAL
CONVERTER

GAIN

TEST POINT

+5VDC

25 KHZ OSCILLATOR

POSITION ERROR
WINDOW COMPARATOR

G340 BLOCK DIAGRAM

2

ANALOG
Q BRIDGE BRIDGE

PULSE WIDTH DRIVER DRIVER
MODULATOR

Q IN 3 4 IN

OFF OFF

.025 Ohms

1

CLK Q

CURRENT LIMIT

D R R

"1"

CURRENT LIMIT SET

OVER CURRENT LIMIT

6

2.5000"

(63.5 mm)

G340 Servodrive
(X10 Step Multiplier)

Cover: Aluminum, Anodized
Plate: Aluminum, Hard Anodized
Color: Black, Green Text
Weight: 3.6 oz (100 gm)
Size: 2.5" X 2.5" X 0.825"

(63.6 X 63.5 X 21 mm)

2.1500"
(54.6 mm)

0.125"
(3.2 mm)

G340 SPECIFICATIONS:

Power Supply 18 to 80 VDC
Motor Current 0 to 20 Amps

1.7500"
(44.5 mm)

2.3750" 2.5000"
(60.3 mm) (63.5 mm)

0.2000" 0.1500"
(5 mm) (3.8 mm)

0.8250"
(21 mm) 0.5000"

(12.7 mm)

Lock Range +/- 128 count following error
Feedback Quadrature TTL Encoder
Feedback Resolution X4 Encoder Line Count
Switching Frequency 25 kHz
Current Limit 0 to 20 Amp, Trimpot Adjustable
Analog PID Damping and Gain Trimpots
Step Pulse Frequency 0 to 250 kHz
Step Pulse “0” Time 0.5 Microseconds Min.
Step Pulse “1” Time 3.5 Microseconds Min.
Multiplier Settings X1, X2, X4, X5 and X10
Size 2.5" X 2.5” X 0.825"
Weight 3.6 oz weight
Encoder Supply +5VDC, 50 mA max

Geckodrive Inc. Phone: 1-714-771-1662
9702 Rangeview Drive Fax: 1-714-771-4867
Santa Ana, CA 92705 Web Site: www.geckodrive.com

7

Appendix B

Coding Program

78

function varargout = FIND_K(varargin)

% FIND_K M-file for FIND_K.fig

% FIND_K, by itself, creates a new FIND_K or raises the existing

% singleton*.

%
% H = FIND_K returns the handle to a new FIND_K or the handle to

% the existing singleton*.

%
% FIND_K('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in FIND_K.M with the given input arguments.

%
% FIND_K('Property','Value',...) creates a new FIND_K or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before FIND_K_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to FIND_K_OpeningFcn via varargin.

%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help FIND_K

% Last Modified by GUIDE v2.5 15-Oct-2008 00:11:31

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @FIND_K_OpeningFcn, ...

 'gui_OutputFcn', @FIND_K_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

79

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before FIND_K is made visible.

function FIND_K_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to FIND_K (see VARARGIN)

% Choose default command line output for FIND_K

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes FIND_K wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = FIND_K_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

80

varargout{1} = handles.output;

function Ra_Callback(hObject, eventdata, handles)

% hObject handle to Ra (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ra as text

% str2double(get(hObject,'String')) returns contents of Ra as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function Ra_CreateFcn(hObject, eventdata, handles)

% hObject handle to Ra (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function La_Callback(hObject, eventdata, handles)

% hObject handle to La (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

81

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of La as text

% str2double(get(hObject,'String')) returns contents of La as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function La_CreateFcn(hObject, eventdata, handles)

% hObject handle to La (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function Bm_Callback(hObject, eventdata, handles)

% hObject handle to Bm (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Bm as text

% str2double(get(hObject,'String')) returns contents of Bm as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

82

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function Bm_CreateFcn(hObject, eventdata, handles)

% hObject handle to Bm (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function Kemf_Callback(hObject, eventdata, handles)

% hObject handle to Kemf (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Kemf as text

% str2double(get(hObject,'String')) returns contents of Kemf as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function Kemf_CreateFcn(hObject, eventdata, handles)

83

% hObject handle to Kemf (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function Kt_Callback(hObject, eventdata, handles)

% hObject handle to Kt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Kt as text

% str2double(get(hObject,'String')) returns contents of Kt as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function Kt_CreateFcn(hObject, eventdata, handles)

% hObject handle to Kt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

84

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function J_Callback(hObject, eventdata, handles)

% hObject handle to J (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of J as text

% str2double(get(hObject,'String')) returns contents of J as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function J_CreateFcn(hObject, eventdata, handles)

% hObject handle to J (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

85

% --- Executes on button press in run1.

function run1_Callback(hObject, eventdata, handles)

Ra1 = str2double(get(handles.Ra,'String'));

La1 = str2double(get(handles.La,'String'));

Bm1 = str2double(get(handles.Bm,'String'));

Kemf1 = str2double(get(handles.Kemf,'String'));

Kt1 = str2double(get(handles.Kt,'String'));

J1 = str2double(get(handles.J,'String'));

 A=[-Ra1/La1 -Kemf1/La1; Kt1/J1 -Bm1/J1];

 B=[1/La1;0];

 C=[0 1;1 0];

 D=[0;0];

 Q=[1 0;0 1];

 R=[1];

 [K]=lqr(A,B,Q,R);

 set(handles.answer,'String',K(1, 1));

 set(handles.answer2,'String',K(1, 2));

% hObject handle to run1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function text1_CreateFcn(hObject, eventdata, handles)

% hObject handle to text1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

86

function answer_Callback(hObject, eventdata, handles)

% hObject handle to answer (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of answer as text

% str2double(get(hObject,'String')) returns contents of answer as a double

% --- Executes during object creation, after setting all properties.

function answer_CreateFcn(hObject, eventdata, handles)

% hObject handle to answer (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function Ra1_Callback(hObject, eventdata, handles)

% hObject handle to Ra (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ra as text

% str2double(get(hObject,'String')) returns contents of Ra as a double

87

% --- Executes during object creation, after setting all properties.

function Ra1_CreateFcn(hObject, eventdata, handles)

% hObject handle to Ra (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function Kemf1_Callback(hObject, eventdata, handles)

% hObject handle to Kemf (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Kemf as text

% str2double(get(hObject,'String')) returns contents of Kemf as a double

data1 = str2double(get(hObject, 'String'));

if isnan(data1)

 set(hObject, 'String', '');

 errordlg(' Input Must Be A Number !!','Error');

end

% --- Executes during object creation, after setting all properties.

function Kemf1_CreateFcn(hObject, eventdata, handles)

% hObject handle to Kemf (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

88

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes during object creation, after setting all properties.

function axes2_CreateFcn(hObject, eventdata, handles)

% hObject handle to axes2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes2

[c,map]=imread('motor','JPEG');

image(c)

set(gca,'visible','off')

function answer2_Callback(hObject, eventdata, handles)

% hObject handle to answer2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of answer2 as text

% str2double(get(hObject,'String')) returns contents of answer2 as a double

% --- Executes during object creation, after setting all properties.
function answer2_CreateFcn(hObject, eventdata, handles)

89

% hObject handle to answer2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on button press in clr.

function clr_Callback(hObject, eventdata, handles)

% hObject handle to clr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(handles.La,'string','');

set(handles.Ra,'string','');

set(handles.Bm,'string','');

set(handles.Kt,'string','');

set(handles.Kemf,'string','');

set(handles.J,'string','');

set(handles.answer,'string','');

set(handles.answer2,'string','');

% --- Executes on button press in main1.

function main1_Callback(hObject, eventdata, handles)

% hObject handle to main1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close

90

figure(main)

% --- Executes on button press in next.

function next_Callback(hObject, eventdata, handles)

% hObject handle to next (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close

open('H:\PSm\PSM2.mdl')

	FRONT PAGE.pdf
	pengesahan_status_tesis.pdf
	acknowledgment_by_supervisor.pdf
	title.pdf
	muka_depan_aku.pdf
	LIST OF TABLE.pdf
	LIST OF FIGURE.pdf
	LIST OF APPENDICES.pdf
	Chapter_1.pdf
	CHAPTER_2.pdf
	Chapter_3.pdf
	Chapter_4.pdf
	chap_5.pdf
	REFERENCES.pdf
	Appendix A.pdf
	Appendix B.pdf

