Pseudocapacitive charge storage in thin nanobelts

Ria Kunwar^a, Midhun Harilal^a, Syam G. Krishnan^a, Bhupender Pal^a, Izan Izwan Misnon^a, C. R. Mariappan^b, Fabian I. Ezema^c, Hendry Izaac Elim^d, Chun-Chen Yang^e & Rajan Jose^a* ^a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Pahang, Kuantan, 26300, Malaysia ^b Department of Physics, National Institute of Technology, Haryana, Kurukshetra, 136 119, India ^c Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria ^d Department of Physics, University of Pattimura, Ambon, Indonesia ^e Battery Research Centre of Green Energy, Ming Chi University of Technology, New Taipei, Taiwan

ABSTRACT

This article reports that extremely thin nanobelts (thickness ~ 10 nm) exhibit pseudocapacitive (PC) charge storage in the asymmetric supercapacitor (ASC) configuration, while show battery-type charge storage in their single electrodes. Two types of nanobelts, viz. NiO–Co₃O₄ hybrid and spinal-type NiCo₂O₄, developed by electrospinning technique are used in this work. The charge storage behaviour of the nanobelts is benchmarked against their binary metal oxide nanowires, i.e., NiO and Co₃O₄, as well as a hybrid of similar chemistry, CuO–Co₃O₄. The nanobelts have thickness of ~ 10 nm and width ~ 200 nm, whereas the nanowires have diameter of ~ 100 nm. Clear differences in charge storage behaviours are observed in NiO–Co₃O₄ hybrid nanobelts based ASCs compared to those fabricated using the other materials—the former showed capacitive behaviour whereas the others revealed battery-type discharge behaviour. Origin of pseudocapacitance in nanobelts based ASCs is shown to arise from their nanobelts morphology with thickness less than typical electron diffusion lengths (~ 20 nm). Among all the five type of devices fabricated, the NiO–Co₃O₄ hybrid ASCs exhibited the highest specific energy, specific power and cycling stability.

KEYWORDS

Battery-supercapacitor hybrid devices; Energy storage materials; Hybrid materials

ACKNOWLEDGEMENT

This work is supported by the Research and Innovation Department of University Malaysia Pahang (http://ump.edu.my) under the Flagship Leap 3 Program (RDU172201).