Techno-economics and Life Cycle Assessment of Bioreactors

Post-Covid19 Waste Management Approach

Techno-economics and Life Cycle Assessment of Bioreactors

Post-Covid19 Waste Management Approach

Edited by:

Puranjan Mishra, Lakhveer Singh and Pooja Ghosh

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-89848-5

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Susan Dennis Editorial Project Manager: Lena Sparks Production Project Manager: Bharatwaj Varatharajan Cover Designer: Mark Rogers

Typeset by MPS Limited, Chennai, India

Contents

List (of coi	ntributors	xiii
		Bioreactors: Current status, recent trends hallenges	1
1.	-	pact of COVID-19 on waste and resource nagement practices	3
		am Thakur	5
	1.1	Introduction	3
		Types of waste	5 4
	1.2	1.2.1 Waste generation during COVID-19 pandemic	4
	13	Impact of COVID-19 on waste management	5
		The unique challenge with SARS CoV-2 and waste management	6
		1.4.1 Waste management strategies	7
	1.5	Policy and regulatory approaches	9
		WHO guidelines on waste management	10
	1.7	Conclusion and future perspective	10
	Refe	erences	11
2.		obic and anaerobic bioreactor systems for	
		stewater treatment	13
	Mor	nika Jain, Smita S. Kumar and Lalit Goswami	
	2.1	Introduction	13
	2.2	Bioreactor and different configurations	15
	2.3	Continuous stirred tank bioreactor	15
	2.4	Airlift bioreactors	16
	2.5	Anaerobic fluidized bed bioreactors	16
	2.6	Packed bed (fixed bed) bioreactors	17
	2.7	Membrane bioreactors	18
	2.8	Upflow anaerobic sludge blanket reactor	19
		Conclusion	20
		nowledgment	21
	Refe	erences	21

3.	Emerging trends in bioreactor systems for an improved wastes valorization 2					
	wastes valorization					
	Olusegun Abayomi Olalere, Chee-Yuen Gan, Abiola Ezekiel Taiwo, Hamoud Alenezi, Oladayo Adeyi and Abiola John Adeyi					
	3.1	Introduction	23			
		3.1.1 Stirred tank system	23			
		3.1.2 Fluidized-bed reactor	25			
		3.1.3 Fixed bed bioreactor	26			
	3.2	The theory of bioreactor and its geometry	27			
	3.3	Bioreactor development for improved waste valorization	29			
	3.4	Current trends in the bioreactor system	30			
	3.5	Conclusion	32			
	Refe	References				
4.	Dev	elopment of bioreactors: current scenario and				
		future challenges				
		Pragya Prakash, Supriya Pandey, Santosh Kumar Jha and Hare Ram Singh				
	4.1	Introduction	37			
	4.2	Stirred tank bioreactors	38			
		4.2.1 Stirred tank bioreactors in waste management	38			
	4.3	Bubble column reactors	39			
		4.3.1 Advances in bubble column bioreactors	39			
		4.3.2 Bubble column reactor in waste management: recent advances	41			
	4.4	Membrane bioreactors	42			
		4.4.1 Anaerobic membrane bioreactor	43			
		4.4.2 Membrane fouling	45			
	4.5	Some modern types of bioreactors and their applications	46			
		4.5.1 Fixed bed bioreactors	46			
		4.5.2 Integrated membrane and hanging sponge bioreactor	46			
		4.5.3 Disposable bioreactors	48			
		4.5.4 Denitrification bioreactors	48			
	4.6	COVID waste management in the pandemic times	48			
		4.6.1 Membrane bio-reactors in the removal of COVID viral load	50			
		Conclusion	50			
		rences	51 53			
	Further reading					

tu	iture perspective	55
	amta Devi Sharma, Swati Sharma, Puranjan Mishra nd Saurabh Kulshrestha	
5	1 Introduction	55
5	2 Directives of economic analysis	56
5	3 Cost analysis	56
	5.3.1 Capital costs	57
	5.3.2 Production costs	57
	5.3.3 Materials and utilities	58
5	4 Cost analysis for bioreactors applied for waste management	58
5	5 Cost evaluation of submerged anaerobic membrane bioreactor for	
	municipal secondary wastewater treatment	60
5	6 Monte Carlo cost estimation method for wastewater treatment	
_	membrane bioreactors	61
5.	7 Cost analysis for aerobic fermenters	63
_	5.7.1 Stirred tank reactor and bubble column reactor cost analysis	64
	8 Future perspectives	65
	eferences	67
F	urther reading	68
	andfill management and efficacy of anaerobic reactors in the eatment of landfill leachate	69
tı In	eatment of landfill leachate nran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan,	69
tı In Iv	eatment of landfill leachate nran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah	
tı In Iv 6.	eatment of landfill leachate nran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction	69
tı In Iv 6.	eatment of landfill leachate man Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah I Introduction 2 Advantages of biological treatment over physical and chemical treatment	69 73
tı In Iv 6. 6.	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 	69 73 77
tı Irr Iv 6. 6.	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 	69 73 77 78
tı Ir Iv 6. 6.	 eatment of landfill leachate hran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 	69 73 77 78 79
tı Ir Iv 6. 6.	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 	69 73 77 78 79 79
tı In Iv 6. 6.	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 	69 73 77 78 79 79 81
tı Ir Iv 6. 6.	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 	69 73 77 78 79 79 81 81
t ı Ir Iv 6. 6.	 eatment of landfill leachate hran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 	69 73 77 78 79 79 81 81 82
tı Ir Iv 6. 6. 6.	 eatment of landfill leachate hran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) 	69 73 77 78 79 79 81 81 82 83
tı Ir 6 6 6	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) 5 Combined anaerobic technologies 	69 73 77 78 79 81 81 82 83 83
t In Iv 6. 6. 6. 6.	 eatment of landfill leachate hran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) 5 Combined anaerobic technologies 	69 73 77 78 79 81 81 82 83 83 83
t 1 In Iv 6. 6. 6. 6. 6. 6. 6.	 eatment of landfill leachate hran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) 5 Combined anaerobic technologies 6 Conclusion 	69 73 77 78 79 79 81 81 81 82 83 83 83 86 87
tu Ini 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 7 7 7 7	 eatment of landfill leachate bran Ahmad, Aida Batrisyia Jasni, Norhayati Abdullah, Santhana Krishnan, vamoto Koji, Shreeshivadasan Chelliapan, Ali Yuzir and Mohd Nasrullah 1 Introduction 2 Advantages of biological treatment over physical and chemical treatment 3 Advantages of anaerobic process over aerobic process 4 Latest development of anaerobic reactors treating landfill leachate 6.4.1 Anaerobic membrane bioreactor 6.4.2 Upflow anaerobic sludge blanket reactor 6.4.3 Anaerobic fixed bed reactor 6.4.4 Anaerobic contact reactor 6.4.5 Anaerobic baffled reactor 6.4.6 Anaerobic ammonium qxidation (anammox) 5 Combined anaerobic technologies 	69 73 77 78 79 81 81 82 83 83 83

of bio	preactors	93				
7. Tec	chnoeconomics and lifecycle assessment of bioreacto	ors:				
	wastewater treatment plant management					
Tarr	Tarnima Warda Andalib, Zaied Bin Khalid and Puranjan Mishra					
7.1	7.1 Introduction					
7.2	2 Concepts of techno-economy analyses	97				
7.3	3 Methodology of techno-economic analysis	99				
	7.3.1 Static cost-benefit assessment	99				
	7.3.2 Annuity method	99				
	7.3.3 Net cash flow	101				
	7.3.4 Net present value	101				
	7.3.5 Internal rate of return	102				
7.4	4 Techno-economic analysis models	102				
7.5	5 Techno-economic paradigm	102				
7.6	6 Techno-economic innovations	105				
7.7	7 Environmental impact assessment					
7.8	3 Environmental impact assessment methodology					
7.9						
7.10	0 Types of bioreactor	109				
	7.10.1 Osmotic membrane bioreactors	110				
	7.10.2 Integrated two-phase fixed-film baffled bioreactor	110				
	7.10.3 High-solid anaerobic membrane bioreactor	111				
	7.10.4 Solar assisted bioreactor	112				
	7.10.5 Anaerobic landfill bioreactors	112				
	7.10.6 Microbial fuel cells	113				
7.11	1 Technological impact assessment of bioreactors on WWTP	114				
7.12	2 Economical impact assessment of bioreactors on WWTP					
7.13	3 Challenges in dealing with waste water treatment plant	115				
	7.13.1 Upgraded biocrude-HTL configuration process and the	heory 117				
7.14	4 Feedstock and plant scale	117				
7.15	5 Hydrothermal liquefaction					
7.16	Hydrothermal liquefaction aqueous phase treatment by catalytic hydrothermal liquefaction/gasification					
7.17						
7.18	Conclusion					
7.19	9 Contribution of authors					
Ack	nowledgment	122				
Refe	erences	122				

8.	Strategies toward sustainable management of organic waste Renu and Puranjan Mishra					
	8.1	Introduction				
	8.2	Activit	Activities for solid waste management			
			gies for waste management	135		
			Prevention of waste generation	136		
		8.3.2	Minimization	136		
		8.3.3	Reuse	137		
		8.3.4	Recycling	137		
		8.3.5	Biological treatment	138		
		8.3.6	Incineration	139		
		8.3.7	Landfill disposal	139		
		8.3.8	Sanitary landfill	140		
		8.3.9	Municipal solid waste landfills	140		
		8.3.10	Construction and demolition waste landfills	140		
		8.3.11	Industrial waste landfills	140		
		8.3.12	Hazardous waste landfills	141		
	8.4	Conclu	usion	141		
	Ackr	nowled	gment	142		
	Refe	rences		142 142		
9.	bio	reacto	on of matrices for the development of next-gen ors from COVID-19 waste management prospects	145		
			Bishwajit Singh Kapoor, Shubha Rani Sharma Kumar Nigam			
	9.1	Introd	uction	145		
	9.2	-	ing trends in bioreactors with respect to matrix			
			oplications	146		
			Monoclonal antibodies production	146		
			Wastewater treatment	150		
		9.2.3	Application of fixed-film microbial reactors for the treatment of effluents	152		
		9.2.4	Abatement of air pollutants	154		
		9.2.5	Matrix design and development for cell cultivation	154		
		9.2.6	Advancement in the development of photobioreactor	155		
		9.2.7	Immobilization and the role of matrices in the improvement of bioreactor function	156		
		9.2.8	Other applications	158		
	9.3		ation of matrices-based bioreactors in COVID-19			
			management	158		

	9.4	Conclusion	158	
	Refer	ences	161	
	Furth	er reading	165	
10.	Sustainable engineering of food waste into high-quality animal feed using a drying technology			
	Purar Shazv	aana Krishnan, Nur Shahidah, Mohd Fadhil Bin Md Din, njan Mishra, Mohd Nasrullah, Abudukeremu Kadier, vin Mat Taib, Mohd Hafiz Bin Puteh, Norahim bin Ibrahim, rhain Md Rusli, Fadzlin Md Sairan and Lakhveer Singh		
	10.1	Introduction	167	
	10.2	Applied processing for food waste into animal feed	169	
		10.2.1 Drying technology	170	
		10.2.2 Solar drying	172	
		10.2.3 Oven	172	
	10.3	Results and discussion	173	
		10.3.1 Effectiveness of conventional fan	173	
		10.3.2 Effectiveness of solar drying	173	
		10.3.3 Effectiveness of oven drying	174	
		10.3.4 Improvement of the drying process	175	
		10.3.5 Moisture content	175	
		10.3.6 Analysis of protein content	177	
		10.3.7 Analysis of <i>Escherichia coli</i>	179	
	10.4	Conclusions	181	
		pwledgments	182	
	Refer	ences	183	
11.		ronmental and economic life cycle assessment of biochar		
	use	n anaerobic digestion for biogas production	185	
		l Bin Khalid, Ahasanul Karim, Pramod Jadhav, Puranjan Mishra, isam Bin Abd Wahid and Mohd Nasrullah		
	11.1	Introduction	185	
	11.2	Life cycle assessment technology	187	
		11.2.1 Life cycle assessment-based methodology	188	
		11.2.2 Life cycle assessment evaluation measures	192	
		11.2.3 Life cycle cost assessment	194	
	11.3	Life cycle assessment studies in anaerobic digestion for		
		biogas production	196	
		Challenges for life cycle assessment technology	199	
	11.5	Concluding remarks and recommendations	200	

	11.6	Acknov	vledgment	202		
	11.7	7 Declaration of competing interest				
	References					
12.	2. Challenges and emerging approaches in life cycle assessment of engineered nanomaterials usage in anaerobic bioreactor					
			av, Zaied Bin Khalid, Puranjan Mishra, Abd Wahid and Mohd Nasrullah			
	12.1	Introdu	ction	207		
	12.2	Anaero	bic digestion process in the bioreactor	208		
		12.2.1	Hydrolysis	208		
		12.2.2	Acidogenesis	208		
		12.2.3	Acetogenesis	209		
		12.2.4	Methanogenesis	209		
	12.3 Engineered nanoparticles in the anaerobic digestion process		210			
		12.3.1	Interaction of nanoparticles in the anaerobic			
			digestion process	210		
		12.3.2	Engineered nanoparticles in bioreactor	211		
	12.4	Challen	ges and assessment of engineered nanoparticles in bioreactor	211 214		
		12.4.1	Techno-economic analysis of engineered nanoparticles			
			in the anaerobic digestion process	214		
			Challenges of engineered nanoparticles	215		
		Conclu		216		
	Acknowledgment			216		
			f competing interest	217		
	References			217		

Index

223

Techno-economics and Life Cycle Assessment of Bioreactors

Post-Covid19 Waste Management Approach

2022, Pages 207-222

Chapter 12 - Challenges and emerging approaches in life cycle assessment of engineered nanomaterials usage in anaerobic bioreactor

Pramod Jadhav, Zaied Bin Khalid, Puranjan Mishra, Zularisam Bin Abd Wahid, Mohd Nasrullah

Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Pahang, Malaysia

Available online 24 June 2022, Version of Record 24 June 2022.

Show less ∧

🕂 Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/B978-0-323-89848-5.00004-4

Get rights and content

Abstract

Nanotechnology has wide applications in all areas such as agriculture, the environment, and industry energy pharmaceuticals. The use of nanoparticles (NPs) is increasing, positive and negative effects in various environmental areas, including air, water, and soil, have recently been discovered. Various types of engineered NPs (ENPs) have been used in the renewable energy production system. Anaerobic digestion (AD) process is cost-effective and waste-to-energy production. Different types ENPs are applied in the AD method for improving biogas yield with suitable conditions. ENPs have their excellent performance in understanding their presence, behavior, and impact on water is critical during the AD process. This study aims to understand the consequence of ENPs on the biogas production rate in the AD system. ENPs interaction with bacteria in the AD process for increasing biogas yield rate in the AD process has been discussed. Cost-effective ENPs production, life cycle assessment, and challenges have been elaborated. Finally, the positive effect of ENPs in the AD system for enhancing biogas yield has been concluded.

Keywords

Anaerobic digestion; biochar; emerging challenges; evaluation measures; LCA methodology; LCA cost analysis

Index

Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

Α

Acetogenesis, AD process, 209 Acidogenesis, AD process, 208-209 Aerobic and anaerobic bioreactor systems for wastewater treatment airlift of. 16 continuous stirred tank, 15-16 and different configurations, 15 fluidized bed. 16-17 membrane of, 18-19 packed bed of, 17-18 upflow anaerobic sludge blanket, 19-20 Aerobic fermenters aeration and mixing functions, 64 annual expenditure for, 64t Aspen Capital Cost Estimator cost, 65t bubble column reactor cost analysis, 64 - 65cost analysis for, 63-65 stirred tank reactor, 64-65 Airlift bioreactors, 16 Air pollutants, abatement of, 154 Anaerobic ammonium oxidation, 83 Anaerobic baffled reactor, 82-83 Anaerobic contact reactor, 81-82 Anaerobic digestion for biogas production life cycle assessment challenges for, 199-200 study in, 196-199 technology of, 187-196 Anaerobic digestion process in biogas production, engineered nanomaterials, 213t engineered nanoparticles, 210-213 in bioreactor, 211-213 ENPs interaction with microbes in, 211f nanoparticles in, interaction of, 210-211 Anaerobic digestion process in bioreactor acetogenesis of, 209 acidogenesis of, 208-209 hydrolysis of, 208

methanogenesis of, 209-210 process stages of, 210f Anaerobic fermentation process, 208 Anaerobic fixed bed reactor, 81 Anaerobic fluidized bed bioreactors, 16-17 Anaerobic landfill bioreactors, 112-113 Anaerobic membrane bioreactor, 43-44.79 Anaerobic process over aerobic process advantages of, 77 simplification of, 78f Anaerobic reactors treating landfill leachate ABR, schematic diagram of, 82f ammonium oxidation, 83 baffled of, 82-83 contact of, 81-82 fixed bed of, 81 latest development of, 78-83 membrane of, 79 UASB, schematic diagram of, 80f upflow sludge blanket, 79-81 Arked Meranti, 167-169

В

Biocrude-HTL configuration process and theory, 117 Biodegradable waste, 131 Biological treatment, 73-77, 138-139 Bioreactors, development of applications, 46-48 biotransformation processes, 31t bubble column, 39-42 COVID waste management in the pandemic times, 48-50 for improved waste valorization, 29-30 membrane of, 42-46 stirred tank, 38-39 types of, 46-48 Bioreactors types denitrification, 48

Bioreactors types (Continued) disposable, 48 fixed bed, 46 hanging sponge, 46-48 integrated membrane, 46-48 Bioreactor systems, emerging trends in current, 30-32 fixed bed, 26-27 fluidized-bed reactor, 25-26 improved waste valorization, development for, 29-30 its geometry, 27-29 research and development component of. 30-32 stirred tank system, 23-25 theory of, 27-29 Bioreactor theory and its geometry, 27-29 laboratory-scale arrangement, 28f Bioreactor types, techno-economics anaerobic landfill, 112-113 high-solid anaerobic membrane, 111 - 112integrated two-phase fixed-film baffled, 110-111 microbial fuel cells, 113-114 osmotic membrane, 110 solar assisted, 112 Bubble column reactors, 39-42 advances in, 39-41 of in-situ product recovery technology, 40-41 miniature, development of, 39-40 basic structure of, 40f in waste management, 41-42

С

Cell cultivation, 154–155 Cell tank bioreactors, 150 Chemo-stats, labs stirred tanks, 25 Clinical waste, 133 Combined anaerobic technology ABR with aerobic reactor, 84*f* UASB-SAS reactor, 85*f* Composition of landfill leachate age, 72*t* Construction and demolition waste landfills, 140 Continuous stirred tank bioreactor, 15-16 Cost analysis aspects affecting, 58f basic features, 57 CAPEX and OPEX relationship, 60 capital costs, 57 materials and utilities of, 58 production of, 57 system performance expenditure, classification of, 58f waste management, applied for, 58-60 COVID-19 on waste and resource management impact of, 5-6and challenges, 6f policy and regulatory approaches, 9-10 types of, 4-5during COVID-19 pandemic, 4-5 unique challenge with SARS, 6-9 different stages of, 7f strategy of, 7-9 WHO guidelines on, 10 COVID waste management in pandemic times, 48-50 Cryogel bioreactors, 149

D

Denitrification bioreactors, 48 Disposable bioreactors, 48 Drying technology, 170–172

Ε

Economic aspects of bioreactors aerobic fermenters, cost analysis for, 63-65cost analysis of, 56-58directives of, 56Monte Carlo cost estimation method, 61-63for municipal secondary wastewater treatment, 60waste management, cost analysis for, 58-60Emerging trends in bioreactors air pollutants, abatement of, 154and applications, 146-158

applications of, 152t, 158 cell cultivation, development for, 154 - 155conventional methods of, 147t of effluents treatment, 152-154 of fixed-film microbial reactors, 152 - 154function improvement of, 156-158 immobilization and role of, 156-158 limitations of, 147t matrix design of, 154-155 monoclonal antibodies production, 146 - 150cell tank bioreactors, 150 cryogel bioreactors, 149 cryogels matrices, 149 high-density cell culture systems, 148 - 149photobioreactor, development of, 155-156, 159t wastewater treatment of, 150-152 Engineered nanoparticles in bioreactor assessment challenges, 214-216 for safe ENPs principles, 215 techno-economic analysis of, 214-215 Environmental impact assessment, 106 - 107Environmental impact assessment methodology, 107-108

F

Fixed bed bioreactors, 46
Fluidized bed bioreactors, 23–27
Food waste, applied processing for into animal feed, 169–173
Arked Meranti, 169
drying methods
end products from, 177*f*improvement of, 175
protein content from, 178*f*protein content in end products, 179*f*drying technology, 170–172
conventional fan, 172
end products by batch, 176*f Escherichia coli*, analysis of, 179–181, 180*t*of feeds conversion, 171*f* moisture content, 175–177 oven, 172–173 drying, effectiveness of, 174–175, 175*f* protein content, analysis of, 177–179 results and discussion of, 173–181 conventional fan, effectiveness of, 173 UTM farm, conventional fan at, 174*f* solar drying, 172 cabinet, 174*f* effectiveness of, 173–174

G

Garbage dump, 139–140 Growth processes, 110–111

Н

Hazardous waste landfills, 141 High-density cell culture systems, 148-149 High-quality animal feed using drying technology food waste, applied processing for, 169 - 173results and discussion, 173-181 High-solid anaerobic membrane bioreactor, 111 - 112Hollow fiber bioreactors, 148 HTL biocrude hydrotreating process diagram, 121f Hydrolysis, AD process, 208 Hydrothermal liquefaction, 119 Hydrothermal liquefaction aqueous phase treatment by catalytic gasification, 119 CHG process diagram, 120f

I

Incineration, thermal waste treatment technique, 139 Industrial waste landfills, 140 Integrated two-phase fixed-film baffled bioreactor, 110–111

L

Lag phase, 109 Landfill disposal, 139–140 Life cycle assessment-based methodology, 188 - 192Life cycle assessment evaluation measures, 192 - 194Life cycle assessment of engineered nanomaterials in anaerobic bioreactor anaerobic digestion process, 208-210 challenges and assessment of ENPs, 214 - 216engineered nanoparticles in anaerobic digestion process, 210-213 Life cycle assessment study aerated wetlands, environmental implications of, 198-199 in anaerobic digestion for biogas production, 196-199 for biogas yield technology, 197-198 biological and thermal bio waste treatments, 196-197 LCA/CE approaches, 191, 196-197 waste-to-methane scenario's nonrenewable energy, 197 Life cycle assessment technology challenges, 199-200 cost of, 194-196 evaluation measures, 192-194 allocation of, 194 functional units of, 192-193 system boundary of, 193-194 temporal units of, 193 methodology, 188-192, 188f bioenergy production, eco-efficiency of, 191-192 environmental impact assessment of, 190 - 191goal of, 189-190 inventory of, 190 scope of, 189-190 study boundary of, 189-190, 189f

Μ

Matrices-based bioreactors in COVID-19 waste management, 158 Matrices for the development of next-gen bioreactors and applications, 146–158 in COVID-19 waste management, 158 Membrane bioreactors, 18-19, 42-46 anaerobic, 43-44 in waste management, 47t COVID viral load, removal of, 50 features of, 44t fouling of, 45-46 SAnMBR, treatment performance in, 45 schematic arrangement of, 43f Methanogenesis, AD process, 209-210 Microbial fuel cells, 113-114 Monoclonal antibodies production, 146 - 150Monte Carlo cost estimation method deterministic model of, 62f stochastic model of, 63f for wastewater treatment membrane bioreactors, 61-63 Municipal solid waste landfills, 140

0

Osmotic membrane bioreactors, 110 Oxygen transfer rate, 64–65

Ρ

Packed-bed biofilm bioreactors, 23–27 Packed bed bioreactors, 17–18 Plant scale feedstock and, 117–119 thermophilic anaerobic digestion, 118*f* Policy and regulatory approaches accountability of, 9 communication of, 9 COVID-19 plastic waste avoiding, 9–10 governance of, 9 technological intervention, 10 Pulp, 138

S

Sanitary landfill, 140 Secure landfills, 140 Sludge hydrothermal liquefaction oil upgrading, 119–120 Solar assisted bioreactor, 112 Solar drying, 172 Solid waste management, activity for collection of, 134 disposal of, 135

generation of, 134 handling and sorting, 134 processing and recovery of, 135 storage and processing of, 134 transfer and transport of, 135 Stirred tank bioreactors, 23-27 for unsteady state bioprocess, 38 in waste management, 38-39 Submerged anaerobic membrane bioreactor cost evaluation of, 60 for municipal secondary wastewater treatment, 60 scale operating facility of, 61t wastewater treatment, scale used for, 61t Sustainable management of organic waste activity for, 134-135, 135f organic and inorganic waste, 132t strategies for, 135-141 types of, 132f

Т

Techno-economic analysis, methodology of annuity method of, 99-101 internal rate of return of, 102 net cash flow of, 101 net present value of, 101 as per literature, 103tstatic cost-benefit assessment of, 99 Techno-economics analyses bioreactors, 108 types of, 109-114 categorization of, 108 concepts of, 97-99 environmental impact assessment, 106 - 107methodology, 107-108 feedstock, 117-119 hydrothermal liquefaction, 119 aqueous phase treatment, 119 innovations of, 105-106 methodology of, 99-102 annuity method of, 99-101 internal rate of return of, 102 net cash flow of, 101

net present value of, 101 as per literature, 103*t* static cost-benefit assessment of, 99 models of, 102 paradigm of, 102–105 plant scale, 117–119 sludge hydrothermal liquefaction oil upgrading, 119–120 steps of, 100*t* sustainable factors of, 108 waste water treatment plant, 115–117 WWTP, economical impact assessment of, 115

U

Upflow anaerobic sludge blanket reactor, 19–20, 79–81

W

Waste management strategy biological treatment of, 138-139 construction and demolition waste landfills, 140 hazardous waste landfills, 141, 142f hierarchy of, 135, 136f incineration of, 8, 139 industrial waste landfills, 140 landfill disposal of, 8, 139-140 minimization of, 136-137 municipal solid landfills, 140 prevention of, 136 recycling of, 8, 137-138 environmental benefits of, 137-138 reusage of, 8, 137 sanitary landfill, 140, 140f transport of, 7 treatment of, 7-8 Wastewater treatment, 150-152 Waste water treatment plant biocrude-HTL configuration process and theory, 117 challenges in, 115-117 HTL and crude upgrading process, 116f WHO guidelines on waste management, 10