INTEGRATED PROCESS KNOWLEDGE MANAGEMENT SYSTEM BASED ON RISK BASED PROCESS SAFETY IN PETROCHEMICAL INDUSTRIES

NUR IZZATI BINTI PAKHOR ANUAR

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I/We* have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

wdo

(Supervisor's Signature)Full Name: T.S DR. HANIDA BINTI ABDUL AZIZPosition: SENIOR LECTURERDate: 17th August 2022

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NUR IZZATI BINTI PAKHOR ANUAR ID Number : MTS19001 Date : 17th August 2022

INTEGRATED PROCESS KNOWLEDGE MANAGEMENT SYSTEM BASED ON RISK BASED PROCESS SAFETY IN PETROCHEMICAL INDUSTRIES

NUR IZZATI BINTI PAKHOR ANUAR

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Industrial Sciences and Technology

UNIVERSITI MALAYSIA PAHANG

AUGUST 2022

ACKNOWLEDGEMENTS

I am grateful and would like to express my sincere gratitude to my supervisor DR. HANIDA BINTI ABDUL AZIZ, for her germinal ideas, invaluable guidance, continuous encouragement, and constant support in making this research possible. She has always impressed me with outstanding professional conduct and strong conviction. I appreciate consistent support from my supervisor. I am truly grateful for the progressive vision, tolerance of my naïve mistakes, and commitment to my work. I also sincerely thank her for the time she spent reading and correcting my thesis.

Next, I would like to express very special thanks to all panel members for their suggestions and comments for improvement. I also like to acknowledge with much appreciation to the Faculty of Industrial Science and Technology (FIST) for their assistant and management during my research study.

Lastly, my most sincere thanks to both my beloved parents PAKHOR ANUAR BIN ABU SEMAN and RAMLAH BINTI JUSOH, for showing me love, mental and financial support in completing my research study. Lastly, thanks to all those who support and help, direct and indirectly, throughout my master journey.

ABSTRAK

Garis panduan Risk Based Process Safety (RBPS) adalah untuk membantu industri petrokimia untuk mematuhi undang-undang Process Safety Management (PSM). Maklumat loji proses yang tidak dikemaskini, berselerak dan sukar diakses telah dikenal pasti diantara faktor penyebab utama kemalangan berimpak besar ini masih berlaku. Penukaran data elemen Process Knowledge Management (PKM) turut menjejaskan integriti dan ketepatan maklumat elemen-elemen RBPS yang lain dan sebaliknya. Kekurangan kajian berhubung perkaitan antara elemen PKM dan 19 elemen RBPS yang lain telah membantutkan keberkesanan pelaksanaan program ini. Kekurangan sistem yang merangkumi integrasi antara elemen PKM dan elemen-elemen RBPS yang lain turut tidak menyumbang peningkatan tahap keselamatan proses di tempat kerja secara sistematik. Objektif kajian ialah menentukan perkaitan antara elemen PKM dengan 19 elemen-element RBPS yang lain, menbangunkan carta alir PKM dan carta alir bersepadu berdasarkan garis panduan RBPS, membangunkan sistem PKM bersepadu yang dinamakan Process Safety Knowledge Expert (PSKE) dan untuk mengesahkan PSKE yang dibangunkan melalui kajian kes, perbincangan kumpulan fokus dan System Usability Study (SUS) dalam industri petrokimia. Metodologi kajian menggunakan penyelidikan secara kualititif, penerokaan. Perkaitan elemen PKM dan 19 elemen RBPS secara berheirarki (waterfall approach) yang merangkumi aktiviti kerja telah diterokai. Hasil dapatan perkaitan ini dibentangkan dalam rajah pemetaan dan jadual matriks. Rangka kerja PKM, yang terdiri daripada maklumat utama dan strategi pelaksanaan untuk memenuhi keperluan garis panduan RBPS telah dibangunkan. Rangka kerja bersepadu yang menonjolkan kesalinghubungan PKM dan elemen RBPS lain turut dibangunkan berdasarkan tinjauan literatur yang komprehensif. Seterusnya Process PSKE dibangunkan menggunakan konsep System Development Life Cycle (SDLC). Teknologi bahagian hadapan PSKE menggunakan pembangunan aplikasi rangka kerja Ionik; sementara itu, teknologi belakang menggunakan produk Firebase oleh Google. Pengesahan sistem melibatkan tiga peringkat termasuk kajian kes di loji Petrokimia X, perbincangan kumpulan fokus dan kajian SUS di kalangan 9 kakitangan loji dari HSSE dan Jabatan Operasi. Jadual matriks saling hubungan PKM yang dibangunkan telah secara sistematik menunjukkan PKM mempunyai perkaitan dengan elemen RBPS yang lain. Manakala, Daripada kajian kes, PSKE membenarkan pengguna akhir menyimpan, menyemak, mengubah suai dan mengemas kini data berkenaan bahan kimia berbahaya, teknologi dan maklumat peralatan dalam masa nyata. Antara muka PSKE membolehkan pihak pengurusan melakukan audit semakan sendiri dan membantu pihak pengurusan menjejaki maklumat. Sebagai penunjuk utama, PSKE membolehkan pengguna menyemak status keseluruhan pematuhan syarikat kepada standard keselamatan. Selain itu, PSKE membenarkan pengurusan atau pekerja mengurus dan menyemak program PKM, Process Hazard Analysis (PHA) dan program Asset Integrity and Reliability (AIAR) secara serentak. Untuk kajian SUS, terdapat empat pernyataan mendapat markah 89% dan kesemua 10 pernyataan SUS mendapat peratusan sifar untuk skala 'Tidak Setuju' dan 'Sangat Tidak Setuju'. Kesimpulannya, PSKE mendapat maklum balas positif dari segi kebolehgunaan dalam industri petrokimia. Diharapkan sistem ini dapat membantu meningkatkan tahap keselamatan di industri petrokimia dan mencegah kemalangan besar secara serentak.

ABSTRACT

Risk Based Process Safety (RBPS) guideline objective is to help the petrochemical industries to comply with Process Safety Management (PSM) standard. Outdated, scatted, and inaccessible process knowledge have been identified as significant causal factors of major accidents. Changing Process Knowledge Management (PKM) data can affect other elements, and changes in other elements also affect the reliability and accuracy of PKM elements. The shortcoming of study regarding PKM element interrelationship with other 19 Risk Based Process Safety (RBPS) has hindered the effectiveness of RBPS program. Besides that, lacking systematic system to implement the PKM program that integrates with others RBPS elements also delayed the improvement of process safety levels at the workplace. The research objectives of the study are to determine interrelationship of PKM element with other 19 RBPS elements, to develop a PKM flowchart and integrated flowchart based on RBPS guidelines, to develop integrated PKM system named Process Safety Knowledge Expert (PSKE) and to validate the developed PSKE via case studies, focus group discussion and System Usability Scale (SUS) study in Petrochemical industries. The research methodology used a qualitative, exploratory research design. The interrelationship of the PKM element with other 19 RBPS elements based on possible work activities used hierarchical structure (waterfall approach) and the interrelationship is presented into the mapping diagram and matrix table. A PKM flowchart, which consists of vital information and an implementation strategy to fulfil RBPS guideline requirements, was developed and integrated flowchart that highlights the interrelationship of PKM with other RBPS elements was developed after comprehensive literature review. Then, PSKE was developed using System Development Life Cycle (SDLC) approach. The front-end technology of PSKE used the Ionic framework apps development, meanwhile back-end technology used Firebase product by Google. Validation of the system involved three stages including case study at petrochemical Plant X, focus group discussion and System Usability Scale (SUS) study involving nine plant personnel (expert and key person) from HSSE and Operation department. PKM interrelationship matrix table has systematically confirmed that PKM has significant interrelationship with all of 19 RBPS elements. From the case study, PSKE allow the end-user to store, review, modify and update the data regarding hazardous chemicals, technology, and equipment information in real time. PSKE interfaces allow management to do a self-check audit and help the management to track the information. As a leading indicator, PSKE allows the user to review the overall status of the company compliance to the safety standard. In addition, PSKE allows management or employees to manage and review the PKM program, Process Hazard Analysis (PHA) and Asset Integrity and Reliability (AIAR) program simultaneously. For the SUS study, there are four statements scored 89% and all of 10 SUS statements got 0% for the scale 'Disagree' and 'Strongly Disagree'. It can be concluded that PSKE received positive feedback in term of usability in petrochemical industries. Hopefully the system could help to increase the safety level at petrochemical plant and prevent major accidents simultaneously.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	STRAK	iii
ABS	STRACT	iv
TAB	BLE OF CONTENT	v
LIST	T OF TABLES	ix
LIST	T OF FIGURES	xi
LIST	T OF SYMBOLS	xiii
LIST	T OF ABBREVIATIONS	xiv
LIST	T OF APPENDICES	xvi
CHA	APTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	PKM implementation and Challenge	7
1.3	Problem Statement	8
1.4	Research Question	10
1.5	Research Objective	10
1.6	Scope of Study	11
1.7	Significance of Study	12
1.8	Operational Definition	13
	1.8.1 Process safety	13
	1.8.2 Process safety incidents	13
	1.8.3 Interrelationship	14
	1.8.4 Hierarchical data structure	14
1.9	Thesis Organization	14

CHA	PTER 2 LITERATURE REVIEW	16
2.1	Introduction	16
2.2	Introduction of Process Safety Management (PSM) Element	16
	2.2.1 Process Safety Management Implementation in Malaysia Industries	19
2.3	Interrelationship of Process Safety Information (PSI) element with other Process Safety Management (PSM) elements	21
2.4	Comparison Between Process Safety Management (PSM) with Risk Based Process Safety (RBPS)	22
2.5	Introduction to Risk Based Process Safety (RBPS) Pillars and Elements	24
2.6	Process Knowledge Management (PKM) of Risk Based Process Safety (RBPS)	27
2.7	Implementation of Process Safety Information (PSI) through Process Knowledge Management (PKM) of Risk Based Process Safety (RBPS)	30
2.8	Comparison between Process Safety Information (PSI) & Process Knowledge Management (PKM) Requirements	33
2.9	Lesson Learned from Previous Process Safety Accident	39
	2.9.1 Major Accidents in Petrochemical Industries	42
2.10	Previous Process Safety Information (PSI) Flowchart	45
2.11	Previous Knowledge Management (PKM) Framework	47
2.12	Existing Process Safety Management (PSM) Tools and Software	50
	2.12.1 Process Safety Information System (PSI4MS)	50
	2.12.2 Chemical Information Management System (CIMS) by DOSH, Malaysia	52
	2.12.3 Process Hazards Management for Lab Scale Pilot Plant (PHM- LabPP), Malaysia	55
	2.12.4 Process Safety Management (PSM) Tools by International Inventor	56

2.13	System	m Development Life Cycle (SDLC)	58
2.14	Sumn	nary	60
CHA	PTER 3	3 METHODOLOGY	61
3.1	Introd	luction	61
3.2	Resea	rch Framework	61
	3.2.1	Research Framework for Phase 1	63
	3.2.2	Research Framework for Phase 2	65
3.3	Devel	opment of PSKE through SDLC concept	67
	3.3.1	Initiation: Plan for Process Safety Knowledge Expert (PSKE)	68
	3.3.2	Development: Development of Flowchart and Database for PSKE	68
	3.3.3	Implementation: System Validation	70
	3.3.4	Maintenance: Do improvement on the system	71
	3.3.5	Disposal: Discarding or evolve the system	71
3.4	Case	Study	71
	3.4.1	Case study 1: Fire and Explosion at Chemical Manufacturing in	
		Ceosby, Texas (2018) (CSB, 2018)	71
	3.4.2	Case study 2: PSKE system validation at Petrochemical Plant X	71
3.5	Qualit	ty Control	72
3.6	Study	Ethic	72
CHA	PTER 4	4 RESULTS AND DISCUSSION	73
4.1	Introd	luction	73
4.2	The Interrelationship between Process Knowledge Management (PKM)		
	eleme	nt with other 19 RBPS elements	73
	4.2.1	Mapping Diagram of Relationship between Process Knowledge	
		Management Element with others RBPS Elements	75

APPE	NDICI	ES	161
REFE	CRENC	ES	146
5.3	Recommendation		145
5.2	Concl	usion	143
5.1	Introd	uction	143
CHAI	PTER 5	5 CONCLUSION	143
4.6	Summ	ary	142
	4.5.4	System Usability Scale (SUS) Study	139
	4.5.3	Focus group discussion	137
	4.5.2	Comparison between PSKE with the Previous System	135
	4.5.1	A case study at Petrochemical Plant X	105
4.5	Proces	ss Safety Knowledge Expert (PSKE)	104
4.4	Integra	ation Flowchart	101
4.3	Proces	ss Knowledge Management (PKM) Flowchart	95
	4.2.4	Methodology Justification	95
		through Case Study	91
	4.2.3	Validation of PKM Interrelationship with other 19 RBPS element	
	4.2.2	PKM Interrelation Matrix for other 19 RBPS Elements	88

LIST OF TABLES

Table 1.1	Major Process Safety Accident in	3
	Petrochemical Industries	
Table 1.2	Expanded Scope of PKM	5-6
Table 2.1	PSM Elements	17-
		18
Table 2.2	PSM Elements by Four Selected Companies in	20
	Malaysia	
Table 2.3	Comparison between RBPS Elements with	23
	PSM Elements	
Table 2.4	Description of PSM Elements Failure	31-
		32
Table 2.5	Information Pertaining Hazards of Highly	34
	Hazardous Chemicals in the Process	
Table 2.6	Information pertaining to Hazards to	36
	Technology of the Process	
Table 2.7	Information pertaining to Hazards to Equipment	38
	of the Process	
Table 2.8	Some Major Accidents in the Chemical Process	41
	Industry	
Table 2.9	Summary of Investigation Report of Process	44
	Safety Major Accident by Chemical Safety	
	Board (CSB)	
Table 2.10	Summary of Previous International PSM Tools	57
Table 2.11	The SDLC Process Applied to COO/OD	59
	Implementation	
Table 4.1	PKM Interrelationship Matrix Analysis with	90
	others 19 RBPS elements	
Table 4.2	List of Chemical released into flood water when	91
	petrochemical Plant W wastewater tanks	
	overflows	

Table 4.3	Comparison between PKM framework and	104
	integrated PKM framework with previous	
	process knowledge framework.	
Table 4.4	Comparison between PSKE with previous	136
	system	
Table 4.5	Focus Group Discussion feedback regarding	138
	PSKE	

LIST OF FIGURES

Figure 1.1	Example of Scenario to describe interrelationship	9
	between RBPS elements	
Figure 2.1	Pillars and Element of RBPS Guideline	26
Figure 2.2	Process Safety Knowledge Source	29
Figure 2.3	PSM Failures Analysis based on Accident Database	40
Figure 2.4	Flowchart of PSI management based on 29 CFR	46
	1910.119(d)	
Figure 2.5	Process Safety Knowledge Management Framework	48
	Model	
Figure 2.6	Initiation of the KM Cycle	49
Figure 2.7	Process Chemical and Process Technology Interface of	51
	PS4MS	
Figure 2.8	Importer and Manufacturer Interface View in CIMS.	53-
		54
Figure 2.9	PHA Outcomes in PHM-LabPP	55
Figure 3.1	Summary of Research Framework	62
Figure 3.2	SDLC Cycle	67
Figure 4.1	Hierarchical Structure for interrelationship study of	75
	PKM with other 19 RBPS elements	
Figure 4.2	Mapping Diagram of Relationship between Process	77
	Knowledge Management Element with others RBPS	
	Elements	
Figure 4.3	Mapping Diagram of Relationship between Process	81
	Knowledge Management Element with others RBPS	
	Elements	
Figure 4.4	Mapping Diagram of Relationship between Process	84
	Knowledge Management Element with others RBPS	
	Elements	
Figure 4.5	Mapping Diagram of Relationship between Process	87
	Knowledge Management Element with others RBPS	
	Elements	

Figure 4.6	Timeline of Fire and Explosion at Plant W	93
e	-	
Figure 4.7	PKM interaction with others RBPS element based on a	95
	case study	
Figure 4.8	Process Safety Knowledge Expert (PSKE) Individual	98-
	Framework	100
Figure 4.9	Integrated Framework of Process Knowledge	103
	Management (PKM) Framework	
Figure 4.10	Login Form Interface	106
Figure 4.11	Navigation Form Interface	108
Figure 4.12	User Authentication Modules	110
Figure 4.13	PSKE User Diagram Context	111
Figure 4.14	Digital Dashboard Interface	113
Figure 4.15	Hazardous Chemical Information Interface	116-
		117
Figure 4.16	Wastewater Treatment unit flow diagram in the plant X	119
Figure 4.17	Process Technology Information Interface	121
Figure 4.18	HAZOP Module Interface	124-
		127
Figure 4.19	JSA Modules Interface	129-
		131
Figure 4.20	Reactor and Condenser System Design Diagram	132
Figure 4.21	Process Equipment Information Interface	134
Figure 4.22	SUS Study	141

LIST OF SYMBOLS

%	Percentage
kgf/cm2	Kilogram-force per square centimetre
°C	Degree Celsius
CO_2	Carbon dioxide

LIST OF ABBREVIATIONS

PSM	Process Safety Management
AIAR	Asset Integrity and Reliability
AICHE	American Institute of Chemical Engineers
CBS	Chemical Safety Board
CCPS	Center for Chemical Process Safety
CLASS	Classification, Labelling and Safety Data Sheet of Hazardous
	Chemical
CIMAH	Control of Industrial Major Accident Hazard
CIMS	Chemical Information Management System
DOSH	Department of Occupational Safety and Health
EP	Employee Participation
FFAR	Fixed Film Anaerobic Reactor
HIRA	Hazard Identification and Risk Analysis
HTHA	High Temperature Hydrogen Attack
HAZOP	Hazard and Operability study
II	Incident Investigation
LPG	Liquified Petroleum Gas
MI	Mechanical Integrity
MIDA	Malaysia Investment Development Authority
MOC	Management of Change
MHI	Major Hazard Installation
OSHA	Occupational Safety Health Administration
PDCA	Plan Do Check Act
PSI4ms	Process Safety Information System
РКМ	Process Knowledge Management
PSKE	Process Safety Knowledge Expert
PHA	Process Hazard Analysis
PHM-LabPP	Process Hazards Management for Lab Scale Pilot Plant
PPM	Part Per Millions
PSC	Process Safety Culture
PSPC	Process Safety Competency

P&ID	Piping and Instrumentation Diagram
RBPS	Risk Based Process Safety
ROG	Reactor off Gases
SDLC	System Development Life Cycle
SUS	System Usability Scale
SQL	Structured Query Language
STEL	Short-Term Exposure Limit
TWA	Time Weighted Average
WWT	Wastewater Treatment
WI	Worker Involvement

LIST OF APPENDICES

Appendix A:	Details on 20 RBPS Elements Requirements	162
Appendix B:	System Usability Scale (SUS) Questionnaire	169
Appendix C:	Standard A and Standard B According to DOE, Malaysia	171

REFERENCES

- AIChE. (2018). CCPS Process Safety Glossary. Retrieved 2020, from https://www.aiche.org: https://www.aiche.org/ccps/resources/glossary?title=pssr#views-exposed-formglossary-page
- Adhitya, A., Cheng, S. F., Lee, Z., & Srinivasan, R. (2014). Quantifying the effectiveness of an alarm management system through human factors studies. *Computers and ChemicalEngineering*,67,1–12. https://doi.org/10.1016/j.compchemeng.2014.03.013
- Abraham Silbersschatz, Henry F.Kort, S.Sudarshan. (2019). *Database System Concepts* (7 ed.). McGraw-Hill. doi:ISBN 9780078022159
- American Institute of Chemical Engineers (AICHE). (2014). (C. f. Safety (CCPS), Ed.) doi:ISBN: 978-0-8169-1080-9
- Akwan, M. (9 january, 2015). System Development Life Cycle. Retrieved 27 april, 2018, from WordPress: https://airbrake.io/blog/sdlc/what-is-system-development-lifecycle
- Arendt, S. (2008). Connecting Process Safety Performance Outcomes to Process Safety Cultural Root Causes Process Safety Culture – The Key to Sustainable Performance Steve. Houston, Texas USA: ABS Consulting.
- Arendt Vice President, Steve. (2006). Continuously improving PSM effectiveness—A practical roadmap. *Process Safety Progress*. 25. 86 93. 10.1002/prs.10127.
- Alexis M. Herman, Charles N. Jeffress. (2000). Process Safety management. Administration, U.S. Department of Labor Occupational Safety and Health.

- Aziz, H. A., Shariff, A. M., & Rusli, R. (2017). Interrelations between process safety management elements. *Process Safety Progress*, 36(1), 74–80. https://doi.org/10.1002/prs.11824
- Aziz, H. A., Shariff, A. M., Rusli, R., & Yew, K. H. (2014). Managing process chemicals, technology and equipment information for pilot plant based on Process Safety Management standard. *Process Safety and Environmental Protection*, 92(5), 423–429. https://doi.org/10.1016/j.psep.2014.02.011
- Aziz, Hanida Abdul, Shariff, A. M., & Zailani, B. (2013). Development of Process Safety Management System for Process Industries : Management of Change. June, 19–26.
- Akcil, A., Vegliò, F., Ferella, F., Okudan, M. D., & Tuncuk, A. (2015). A review of metal recovery from spent petroleum catalysts and ash. *Waste Management*, 45, 420–433. https://doi.org/10.1016/j.wasman.2015.07.007
- Bakar, H. T. A., Siong, P. H., Yan, C. K., Kidam, K., Ali, M. W., Hassim, M. H., & amp; Kamarden, H. (2017). Analysis of main accident contributor according to process safety management elements failure. *Chemical Engineering Transactions*, 56, 991– 996. https://doi.org/10.3303/CET1756166
- Baybutt, P. (2016). Insights into process safety incidents from an analysis of CSB investigations. *Journal of Loss Prevention in the Process Industries*, 43, 537–548. https://doi.org/10.1016/j.jlp.2016.07.002
- Benson, C., Argyropoulos, C. D., Dimopoulos, C., Mikellidou, C. V., & Boustras, G. (2021). Safety and risk analysis in digitalized process operations warning of possible deviating conditions in the process environment. *Process Safety and Environmental Protection*, 149, 750–757. https://doi.org/10.1016/j.psep.2021.02.039
- Brenntag Corporation. (2021). GUIDE TO STABILIZERS. Retrieved 2021, from https://www.brenntag.com/: https://www.brenntag.com/en-us/industries/coatingsconstruction/guide-to-stabilizers/#content_row_2

Brewer, L. (1987). Methods of obtaining thermodynamic data. United States: U.S

Department of Energy.

- CCPS. (2007). Guidelines for Risk Based Process Safety. New Jersey: American Institute of Chemical Engineers (AIChE): John Wiley & Sons, Inc., Publication. doi:ISBN 978-0-470-16569-0
- CCPS. (2014). Risked Based Process Safety Overview Risked Based Process Safety Overview. AIChe, New Jersey.
- CCPS. (2015). Risk based process safety (RBPS) management approach, 1, 1689–1699. https://doi.org/10.1017/CBO9781107415324.004
- CSB. (2017). Key Lessons from the ExxonMobil Baton Rouge Refinery Isobutane Release and Fire.
- CSB, C. S. (2018, May 24). Arkema Inc. Chemical Plant Fire. Retrieved from https://www.csb.gov/: https://www.csb.gov/arkema-inc-chemical-plant-fire-/
- CSB. (2011). Goodyear Heat Exchanger Rupture. Retrieved from https://www.csb.gov/goodyear-heat-exchanger-rupture/: https://www.csb.gov/goodyear-heat-exchanger-rupture/
- Chemical Safety Board (2019). Midland Resource Recovery Midland Resource Recovery, (2017), 1–50.
- CSB. (2019, June). *Toxic Chemical Release at the DuPont La Porte Chemical Facility*. Retrieved from US Chemical Safety and Hazard Investigation Board (CSB): https://www.csb.gov/dupont-la-porte-facility-toxic-chemical-release-/
- Chen, M. (2016). Process Safety Knowledge Management in the Chemical Process Industry. American Journal of Chemical Engineering, 4(5), 131. https://doi.org/10.11648/j.ajche.20160405.16
- Corporation, C. O. (2018). Flowchart Symbols. Retrieved 25 april, 2018, from conceptdraw.com: http://www.conceptdraw.com/How-To-Guide/flow-chartsymbols

- Dale, D. (2009). CHEMICAL REACTION HAZARDS AN EVOLVING APPROACH. SYMPOSIUM SERIES NO. 155 (pp. 185-190). United Kingdom: IChemE: The Institution of Chemical Engineers.
- DBM Vircon . (2020, October 2). The Difference Between Design Drawings and Shop Drawings. Retrieved from DBMVircon .com: https://www.dbmvircon.com/thedifference-between-design-drawings-and-shop-drawings/
- Department of Energy (DOE) US. (1996). Process Safety Management for Highly Hazardous Chemicals. Washington US. doi:DOE-HDBK-1101-96
- Department of Occupational Safety and Health (DOSH). (n.d.). Occupational Safety and Health (control of Industrial Major Accident Hazards) Regulation 1996. 1996: Federal Subsidiary Legislation.
- Department of Occupational Safety and Health, D. (2016). User Manual for Supplier of Chemical Information Management System(CIMS) User Manual for Supplier.
 Malaysia: Ministry of Human Resource.
- Department of Occupational Safety and Health (DOSH), I. U. (2017). *Login Interface for CIMS*. Retrieved from CIMS: https://cims.dosh.gov.my/
- Ditria, J. (1997). Design Basis of a Compact Production System. *IBC Conference, November 17-18th, 1997.* Houston, Texas: eProcess Technologies.
- Duan, Y., Zhao, J., Chen, J., & Bai, G. (2016). A risk matrix analysis method based on potential risk influence: A case study on cryogenic liquid hydrogen filling system. *Process Safety and Environmental Protection*, 102(171), 277–287. https://doi.org/10.1016/j.psep.2016.03.022
- Ebnesajjad, S. (15 April, 2016). *Chemical Processing Industries in Spotlight issues, trends and future*. Retrieved from https://chemical-materials.elsevier.com: https://chemical-materials.elsevier.com/chemical-manufacturing-excellence/chemical-processing-industries-in-spotlight/

- Engineers, A. I. (2017). Introduction to Process Knowledge Management. Retrieved february,2018,fromhttps://www.aiche.org: https://www.aiche.org/ccps/topics/elements-process-safety/understand-hazard-risk/process-knowledge-management/introduction
- Fuller, D. (2009). Texas US Patent No. US20090012631A1.
- Gus Constan, John Herman, Paul Moeller. (1992). Ensuring safe design and operation of pilot plants. *Journal of Loss Prevention in the Process Industries*, 5(1), 42-45. doi:https://doi.org/10.1016/0950-4230(92)80063-E.
- Gnoni, M. G., Andriulo, S., Maggio, G., & Nardone, P. (2013). "Lean occupational" safety: An application for a Near-miss Management System design. *Safety Science*, 53(March), 96–104. https://doi.org/10.1016/j.ssci.2012.09.012
- Godfrey, M. (2019, December 2019). *What is a research framework and why do we need one?* Retrieved from do-we-need-one-b3fac8351d46uxdesign: https://uxdesign.cc/what-is-a-research-framework-and-why-
- Government of Canada. (2011, November 17). *Petrochemicals Industrial Profile*. Retrieved from https://www.ic.gc.ca: https://www.ic.gc.ca/eic/site/chemicals-chimiques.nsf/eng/bt01135.html
- Hanida Abdul Aziz, Azmi Mohd Shariff and Mohd Rafizie Roslan. (2012). Managing Process Hazards in Lab-Scale Pilot Plant for Safe Operation. American J. of Engineering and Applied Sciences 5, 84-88. doi:ISSN 1941-7020
- Inc., O. H. (3 january, 2018). CSB Releasing Final Report on 2016 Kansas Chlorine Release. Retrieved 19 february, 2018, from https://ohsonline.com: https://ohsonline.com/articles/2018/01/03/csb-releasing-report.aspx
- International Labour Organization(ILO), I. L. (1991). Prevention of Major Industries Accidents. Geneva. doi:ISBN 92-2-107101-4
- inspectioneering. (2021). *Overview of Process Safet Incidents*. Retrieved from inspectioneering.com: https://inspectioneering.com/tag/incidents

James, N. D. (2012). US Patent No. WO 2012/058336 Al.

- Jang, M., Yoon, C., Park, J., & Kwon, O. (2019). Evaluation of Hazardous Chemicals with Material Safety Data Sheet and By-products of a Photoresist Used in the Semiconductor-Manufacturing Industry. *Safety and Health at Work*, 10(1), 114– 121. https://doi.org/10.1016/j.shaw.2018.08.001
- J, L. (2001). Knowledge management and its link to artificial intelligence. *Expert Systems with Applications*, 20(1), 1–6. http://www.sciencedirect.com.library.capella.edu/science/article/pii/S0957417400 000440
- Kwon, H. M. (2006). The effectiveness of process safety management (PSM) regulation for chemical industry in Korea. *Journal of Loss Prevention in the Process Industries*, 19(1), 13–16. https://doi.org/10.1016/j.jlp.2005.03.009
- Kingdom, U., Besserman, J., & Mentzer, R. A. (2017). Journal of Loss Prevention in the Process Industries Review of global process safety regulations: United States, European. Journal of Loss Prevention in the Process Industries, 50, 165–183. https://doi.org/10.1016/j.jlp.2017.09.010
- Kiranyaz, S., & Gabbouj, M. (2005). Hierarchical Cellular Tree: An efficient indexing method for browsing and navigation in multimedia databases. 13th European Signal Processing Conference, EUSIPCO 2005, 125–128.
- Klein, J. A., & Dharmavaram, S. (2012). Improving the performance of established PSM programs. *Process Safety Progress*, 31(3), 261–265. https://doi.org/10.1002/prs.11494
- Labor, U. S. (2017). Process Safety Management. Retrieved february, 2018, from https://www.osha.gov: https://www.osha.gov/SLTC/processsafetymanagement/
- Laws of Malaysian. (2019). Occupational Safety and Health Act 1994 (Act 514), Regulation & Order. International Law Book Services (ILBS).

- Laskar, S. (2014). Maintain accurate process safety information. *Chemical Engineering Progress*, 110(4), 48–52.
- Liang J, Xian D, Liu X, Fu J, Zhang X, Tang B, Lei J. (2018). Usability Study of Mainstream Wearable Fitness Devices: Feature Analysis and System Usability Scale Evaluation. JMIR Mhealth Uhealth. doi:10.2196/11066
- Liaw, H. J. (2019). Deficiencies frequently encountered in the management of process safety information. *Process Safety and Environmental Protection*, 132, 226–230. https://doi.org/10.1016/j.psep.2019.10.015
- Lemoine, C., Brandt, K., Brennan, K., Kodiak, T., Cohran, V., & Superina, R. (2019). *P4.55. Transplantation, 103, S170.* https://doi.org/10.1097/01.tp.0000576484.92284.9b
- Lu, M. (2020). Dublin Patent No. US10,769,570 B2.
- Malaysia Investment Development Authority (MIDA). (2020, June). *Petrochemical Industry in Malaysia*. Retrieved from https://www.mida.gov.my/: https://www.mida.gov.my/publications/malaysias-petrochemical-industry/
- Marr, B. (2016). What Everyone Must Know About Industry. Retrieved from https://www.forbes.com/sites/bernardmarr/2016/06/20/what-everyone-mustknow-about-industry-4-0/#6c108afd795f
- McCrady, S. G. (2013). Documentation for SCADA Systems. Canada: Elsevier Inc. doi:https://doi.org/10.1016/C2012-0-06034-6
- Moran, S. (2019). Chapter 3 Process plant design deliverables. In S. Moran (Ed.), An Applied Guide to Process and Plant Design (Second Edition) (Second Edition ed., pp. 39-62). Elsevier. doi:https://doi.org/10.1016/B978-0-12-814860-0.00004-5
- Miang, Y., Tan, S., & Chung, K. (2015). Learning from the Bhopal disaster to improve process safety management in Singapore. *Process Safety and Environmental Protection*, 97, 102–108. https://doi.org/10.1016/j.psep.2015.02.004

- Mohammad Farhat Ali, Bassam M El. Ali and James G.Speight. (2005). Handbook of Industrial Chemistry: Organic Chemicals. McGraw-Hill Education. Retrieved from https://encyclopedia2: https://www.accessengineeringlibrary.com/content/book/9780071410373
- Mohd Shariff, A., Abdul Aziz, H., & Abdul Majid, N. D. (2016). Way forward in Process
 Safety Management (PSM) for effective implementation in process industries. *Current Opinion in Chemical Engineering*, 14, 56–60.
 https://doi.org/10.1016/j.coche.2016.08.006
- MGPI Processing, Inc. Toxic Chemical Release. (12 april, 2017). Retrieved 19 february, 2018, from http://www.csb.gov: http://www.csb.gov/videos/mgpi-processing-inc-toxic-chemical-release/
- McLellan, S., Muddimer, A., & Peres, S. (2012). The effect of experience on system usability scale ratings. *Journal of Usability Studies*, 7(2), 56–67.
- Munn, A. (2009). COMMON PROBLEMS AND RECENT TRENDS WITH HAZOPS. IChemE SYMPOSIUM SERIES NO. 155 (pp. 130-133). Warrington: Aker Solutions.
- Office of Environmental Health and Safety. (2021). Shock Sensitive Chemicals. Retrieved from East Carolina University: https://oehs.ecu.edu/chemicalhygiene/chemical-and-hazardous-waste/shock-sensitive-chemicals/
- Occupational Safety and Helath Administration (OSHA) US. (2020). *Chemical Exposure Health Data*. Retrieved from https://www.osha.gov/: https://www.osha.gov/opengov/healthsamples.html
- O.Nyumba, T., Wilson, K., Derrick, C. J., & Mukherjee, N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation. *Methods in Ecology and Evolution*, 9(1), 20–32. https://doi.org/10.1111/2041-210X.12860
- Olewski, T., & Snakard, M. (2017). Challenges in applying process safety management at university laboratories. Journal of Loss Prevention in the Process Industries, 49,

209-214. https://doi.org/10.1016/j.jlp.2017.06.013

- Olomolaiye, A., & Egbu, C. O. (2005). Tacit vs. explicit knowledge the current approaches to knowledge management. Second Scottish Conference for Postgraduate Researchers of the Built and Natural Environment (PRoBE), 503–511.
- Parida A, Kumar U. (2009). Maintenance productivity and performance measurement. Handbook of maintenance management and engineering, 17-41.
- Pasman, H. J., & Fabiano, B. (2021). The Delft 1974 and 2019 European Loss Prevention Symposia: Highlights and an impression of process safety evolutionary changes from the 1st to the 16th LPS. *Process Safety and Environmental Protection*, 147, 80–91. https://doi.org/10.1016/j.psep.2020.09.024
- Pang, K. K., Aziz, H. A., & Patah, A. A. (2020). Management of change system with integrated risk analysis for temporary and emergency cases. *Pertanika Journal of Science and Technology*, 28(Special Issue 1), 159–172.
- Prassl, W. F., Peden, J. M., & Wong, K. W. (2005). A process-knowledge management approach for assessment and mitigation of drilling risks. Journal of Petroleum Science and Engineering, 49(3–4), 142–161. https://doi.org/10.1016/j.petrol.2005.05.012
- Pittiglio, P., Bragatto, P., & Delle Site, C. (2014). Updated failure rates and risk management in process industries. Energy Procedia, 45, 1364–1371. https://doi.org/10.1016/j.egypro.2014.01.143
- Pipe Fabrication Institute. (2008). What are Piping Specifications. Retrieved from wermac.org: http://www.wermac.org/documents/piping_specifications_what_are.html
- Purdue University. (n.d.). *Pyrophoric Materials*. Retrieved November 2021, from www.purdue.edu:

https://www.purdue.edu/ehps/rem/laboratory/HazMat/Chemical%20 Materials/pyr

o.html

- Qatar Chemical. (2012, November). *Process Safety Information(PSI) Policy*. Retrieved from QC-PSM-PCY-00-0002.
- Ratnayake, R. M. C., & Antosz, K. (2017). Development of a Risk Matrix and Extending the Risk-based Maintenance Analysis with Fuzzy Logic. Procedia Engineering, 182(1877), 602–610. https://doi.org/10.1016/j.proeng.2017.03.163
- Rakha. (2012).. Management, 4, 181–197. https://doi.org/10.1007/978-1-4419-0011-1
- Rashid, R. M., Umar, R. Z. R., & Ahmad, N. (2019). Research trends on Control of Industrial Major Accident Hazard occurrence in Malaysia: A thematic review. *Journal of Legal, Ethical and Regulatory Issues*, 22(1), 1–10.
- Rasyimawati Mat Rashid, Radin Zaid Radin Umar & Nadiah Ahmad. (2019). Research Trends on Control of Industrial Major Accident Hazard Occurrence in Malaysia: A Thematic Review. Journal of Legal, Ethical and Regulatory Issues, 1(22). doi:ISSN: 1544-0044)
- Rishabh Engineering. (2021). mportance Of Isometric Drawings For Piping Design. Retrieved from https://www.rishabheng.com: https://www.rishabheng.com/blog/importance-of-piping-isometric-drawing/
- RBPS (2016). Guidelines for Integrating Management Systems and Metrics to Improve
 Process Safety Performance. John Wiley & Sons.Inc. doi:ISBN: 978-1-118-79503 3
- Rouse, M. (2013). framework. Retrieved february, 2018, from http://whatis.techtarget.com/: http://whatis.techtarget.com/definition/framework
- Rowe, S., & Francois, J. M. (2016). Process safety data The cornerstone of PSM and often it's undermining. Journal of Loss Prevention in the Process Industries, 43, 736–740. https://doi.org/10.1016/j.jlp.2016.06.002

Rowley, b. J. (2002). Using Case Studies in Research. Using, 16-25.

- Roy A. Parisher, Robert A. Rhea. (2012). Chapter 8 Codes and Specifications. *Pipe Drafting and Design(third edition)*, 154-169.
- Sauro, J. (2013, June 18). *10 Things to Know About the System Usability Scale (SUS)*. Retrieved from Measuring U: https://measuringu.com/10-things-sus/
- Sauro, J. (2016, May 2). Measuring Usability With The System Usability Scale (SUS). Retrieved from Userfocus UK: https://www.userfocus.co.uk/articles/measuringusability-with-the-SUS.html
- Schmitz, P., Reniers, G., Swuste, P., & van Nunen, K. (2021). Predicting major hazard accidents in the process industry based on organizational factors: A practical, qualitative approach. *Process Safety and Environmental Protection*, 148, 1268– 1278. https://doi.org/10.1016/j.psep.2021.02.040
- Shanmugam, K., & Abdul Razak, M. (2021). Assessment on process safety management implementation maturity among major hazard installations in Malaysia. *Process Safety and Environmental Protection*, 149, 485–496. https://doi.org/10.1016/j.psep.2020.11.013
- Shichao Xu, Shanqing Yin, Rajagopalan Srinivasan, Martin Helander. (2012). Proactive Alarms Monitoring using Predictive Technologies. *Computer Aided Chemical Engineering*, 31, Pages 1537-1541. doi:https://doi.org/10.1016/B978-0-444-59506-5.50138-3
- SEO, S. E. (2017). The Seven Phases of the System-Development Life Cycle. Retrieved
 27 APRIL, 2018, from microsoft Gold Partner: https://www.innovativearchitects.com/KnowledgeCenter/basic-ITsystems/systemdevelopment-life-cycle.aspx
- Study.com. (2003-2021). *Heuristic Knowledge*. Retrieved from https://study.com: https://study.com/academy/answer/what-is-heuristic-knowledge.html

- St Denis, T., & Johnson, S. (2007). Hash Functions. *Cryptography for Developers*, 203–250. https://doi.org/10.1016/b978-159749104-4/50008-x
- Syris. (2021). *Reaction Calometry Application*. Retrieved from https://www.syrris.com/: https://www.syrris.com/applications/what-is-reaction-calorimetry-applications/
- TIBCO Software Inc. (2021). *Hierarchical Data*. Retrieved from www.tibco.com: https://www.tibco.com/reference-center/what-is-hierarchical-data
- Tew, R. P. (2018). Understanding the interrelationships between the PSM elements for effective implementation. Global Congress on Process Safety 2018, GCPS 2018 -Topical Conference at the 2018 AIChE Spring Meeting and 14th Global Congress on Process Safety, 4, 2376–2393.
- U.S. Occupational Safety and Health Administration (OSHA). Process safety management guidelines for compliance. OSHA 3132. Washington, DC: United States. U.S. OSHA, 2000. https://www.osha.gov/Publications/osha3132.pdf
- U.S. CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD. (2003, February 20). *CTA Acoustics Dust Explosion and Fire*. Retrieved from Chemical Safety Board: https://www.csb.gov/cta-acoustics-dust-explosion-and-fire/
- V. Alcacer, V. Cruz Machado. (2019, June). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. *Engineering Science and Technology, an International Journal,* 22(3), 899-919. doi:https://doi.org/10.1016/j.jestch.2019.01.006
- Wisal Khan, Waqas Ahmad, Luo Bin & Ejaz Ahmed. (2018). SQL Database with physical database tuning technique and NoSQL graph database comparisons. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2019, (pp. 111-116). China. doi:10.1109/ITNEC.2019.8729264
- William R. Robinson. (2012). *Thermochemistry*. Retrieved from OpenStax: https://opentextbc.ca/chemistry/chapter/5-2-calorimetry/

- Weber, M. (2006). Some Safety Aspects on the Design of Sparger Systems for the. Process Safety Progress, 25(4), 326–330. https://doi.org/10.1002/prs
- West, A.S., 1999. Plant process safety starts in the laboratory. Chem. Health Saf. 6 (2), 15e17
- Wolery, T. J., & Jové Colón, C. F. (2017). Chemical thermodynamic data. 1. The concept of links to the chemical elements and the historical development of key thermodynamic data. *Geochimica et Cosmochimica Acta*, 213, 635–676. https://doi.org/10.1016/j.gca.2016.09.028
- Yizhen Liu, Yingxin Tong, Yuqi Yang. (2018). The Application of Mind Mapping into College Computer. *Procedia Computer Science*, 129, 66-70. Retrieved from https://doi.org/10.1016/j.procs.2018.03.047.
- Yan, C. K., Siong, P. H., Abu Bakar, T., Kidam Ab, K., & amp; Ali, M. W. (2016). Current status and challenges of the process safety practices in Malaysia. International Journal of Applied Engineering Research ISSN, 11(19), 973–4562. Retrieved from http://www.ripublication.com
- Zvonko Kremljak, Ciril Kafol. (2014). Types of Risk in a System Engineering Environment and Software. (2. 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, Ed.) *Procedia Engineering*, 177-183.