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This paper examines the flow of Brinkman-viscoelastic fluid in the boundary layer re-
gion. The flow over a Horizontal Circular Cylinder (HCC) is investigated theoretically. 
The proposed model’s governing equations, which are partial differential equations 
(PDEs), are transformed to their simplest form by using the appropriate non-dimen-
sional variables and non-similarity transformation. The numerical computations for the 
obtained equations are then computed using the Keller-box method (KBM) which is 
programmed in MATLAB R2019a software. The velocity distribution results, together 
with the coefficient of skin friction are presented. A comparison study with previously 
published results is carried out to ensure that the current findings are accurate. It is 
discovered that the presence of the Brinkman and viscoelastic parameters influences 
the velocity behaviour of fluid, with a tendency to decrease the velocity distribution of 
fluid. Furthermore, both parameters have the potential to decrease the skin friction 
coefficient. The output can be used as a starting point for complex flow problems that 
occur frequently in engineering applications. 
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1. Introduction 
 

The analysis of fluid behaviour is occurred in motion or at rest in fluid mechanics. The behaviour 
of the fluid is critical to comprehend in order to improve the best final product. Many researchers 
are now interested in studying boundary layer flow because of its numerous applications in fluid 
mechanics such as aeronautics, ship hydrodynamics, chemical process engineering, and automobile 
aerodynamics. The majority of boundary layer flow problems have been solved by focusing on the 
complex fluid known as non-Newtonian fluids such as Jeffrey, Viscoelastic, Williamson, and Burger’s 
fluid. Several works have been done to improve the quality of fluid characteristics, as highlighted by 
the following researchers [1-5]. 
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Despite the difficulties of solving complex fluid flow problems, particularly those involving viscos-
ity and elasticity properties in porosity conditions, many experts took on the challenge of solving fluid 
flow problems involving different geometry. Tonekeboni et al., [6] used similarity solutions of visco-
elastic boundary layer flow. They solved the equations using the finite difference method, which they 
claimed was more accurate. Furthermore, Ahmad et al., [7] used KBM to investigate the flow of vis-
coelastic fluid across HCC. The authors have incorporated the radiation effect into the fluid. Aziz et 
al., [8], used KBM to investigate the boundary layer flow around a cylinder surface in viscoelastic 
fluid. It has been determined that the increment value of the viscoelastic parameter slows the fluid’s 
motion. Jaafar et al., [9] investigated the flow in the same fluid as Aziz et al., [8] by including the 
viscous dissipation effect over a non-linear stretching sheet. They came to the conclusion that as the 
viscoelastic parameter increased, so did the coefficient of skin friction. Besides, other reports regard-
ing viscoelastic fluid over a blunt body has been established by several authors [10-12]. 

Given the importance of boundary layer flow with porosity, a few studies have been carried out 
by incorporating the viscoelastic fluid into the porous region [13-15]. The Brinkman model, which 
considers high porosity fluid, is one of the classical models for porous regions. Nazar et al., [16] ex-
plored the Brinkman flow model in viscous fluid from a HCC. The coefficient of skin friction decreased 
as the Brinkman factor was increased. Chamkha et al., [17] then investigated convection flow in po-
rous regions using Darcy’s law across a vertical cylinder filled with cold water. They discovered that 
the density variation in porous regions has a significant impact on fluid flow characteristics. In addi-
tion, Shafie et al., [18] examined the phenomenon of fluid flow passing over an oscillating plate using 
the fractional Brinkman model and the Laplace Transformation to solve. The authors discovered that 
increasing the Brinkman factor increased fluid velocity. Finally, Flilihi et al., [19] used the shooting 
method to investigate the flow of the Darcy-Brinkman model through a heated vertical plate. The 
authors discovered that the more permeable the porosity medium, the greater the velocity profile 
and frictional force. 

Based on the preceding literature, the main goal in this research is to investigate the flow char-
acteristics of a Brinkman-viscoelastic fluid passing over a HCC in a porous region. Salleh et al., [20], 
who focus solely on boundary layer flow, inspired this study. This problem only considered the con-
tinuity and momentum equations, with gravity being ignored. The effect of Brinkman and viscoelastic 
parameters toward the velocity and coefficient of skin friction is discussed and illustrated graphically. 
 
2. Methodology  
 

This section discusses research methodology. The boundary layer approximation is used to pre-
sent the basic governing models. Using non-dimensional variables and non-similarity transfor-
mations, the conversion and derivation of the governing model are reduced into a less complicated 
form of PDEs. Figure 1 shows summaries of the problem methodology used in this study. 
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Fig. 1. Problem methodology 

 
2.1 Mathematical Formulation 

 
Consider the steady boundary layer flow past a HCC of radius a   embedded in a porous region. 

The problem is to analyse the flow characteristics of a Brinkman-viscoelastic fluid in a boundary layer 
region using the continuity and momentum equations. According to Figure 2, the coordinate of x  

and y  are calculated along the cylinder’s surface. The ambient velocity, 
1

2
U  is assumed to be as-

cending as it passes over the cylinder. The gravity in momentum equation can be ignored in the case 
of flow analysis. 

 

 
Fig. 2. General physical flow  
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The governing boundary layer equations consists of continuity and momentum equations are in-
troduced as follows  
 

0,
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with the appropriate boundary condition 
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where u  and v  are the velocity components in x  and y directions, respectively.  Besides, ( )eu x

is considered as external flow moving in upward direction passing the cylinder. Note that   is de-

fined as dynamic viscosity, K is determined as permeability of porous region,   is porosity of porous 

region and 0k  is referred to viscoelasticity. 

 
2.1.1 Non-dimensional variables 
 

The following non-dimensional variables adopted from Tham et al., [21], are introduced in order 
to simplify the governing Eq. (1) and Eq. (2).  

 
1/2 1/2/ , ( / ), / , ( / ),

( ) ( ) / ,

 


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e e

x x a y Pe y a u u U v Pe v U

u x u x U
                  (4) 

 

where / mPe U a  is a modified Péclet number in porous region. 

 
Substituting Eq. (4) for Eq. (1) and Eq. (2), and then differentiating with respect to y  in the mo-

mentum equation, gives 
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and the boundary conditions Eq. (3) become 
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0, 0,     at 0,

, 0,    as ,
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where 


 
Da

Pe  is Brinkman parameter and 0
1 3


k KU Pe

k
a

 is the viscoelastic parameter. 

 
2.1.2 Non-similarity transformation 
 

Then, the non-similarity transformation is introduced to find the solutions of Eq. (5) to Eq. (7) as 
below 

 

( , ), ,   ,   
 
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 

   
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x f x y u v
y x

                     (8) 

 
Eq. (5) is automatically satisfied after several steps. Then, Eq. (6) and Eq. (7) comes to be 
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At the lowest stagnation point ( 0x ) of the cylinder, Eq. (9) and Eq. (10) results in the succeeding 

ordinary differential equations as follows 
 

   
2

1Γ 2 1 0,          
 

iv
f f k f f ff f                               (11) 

 
(0) 0, (0) 0,      

( ) 1, ( ) 0.

 

    

f f

f f
                                (12) 

 
The dimensionless local skin friction coefficient can be written as follows 
 

1/2 / Pr .flC Pe xf                                  (13) 

 
According to Harris et al., [22], the exact solution for Eq. (11) when 0  can be written in the 

following form 
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with its second derivative, 
 

1
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 
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It is worth to mention that, at the surface of 0y , Eq. (15) with 0   becomes 

 
1

(0) . 


f                                   (16) 

 
2.2 Numerical Method 
 

In this study, KBM is used to obtain the numerical results of Eq. (11) under the boundary condi-
tions Eq. (12). Figure 1 shows the four stages of KBM. The numerical algorithms and computations 
are carried out using the MATLAB R2019a tool. The current solutions are achieved by selecting the 

finite boundary layer thickness, 8 y and step size, 0.02 y  based on satisfying the boundary 

conditions Eq. (12). The parameters of   and 1k  in Eq. (11) are computed to determine the flow of 

fluid velocity, as displayed in Figures 3 and 4. Eq. (13) are used to summarise the local skin friction in 

tabular and graphical form. The fixed values of 1 8k  for various  and 0.1   for various 1k  are 

chosen to carry out the graphical solution shown in Figures 3–6. 
 
2.3 Validation Procedure 
 

The current results are compared to the numerical solution of Nazar et al., [16] and exact Eq. (16) 

in the absence of 1k . Table 1 compares the current model at the stagnation point to the existing 

equation with a few limited cases. Table 2 shows the results for (0)f  are validated with previous 

literature. The comparison values in Table 2 show that the numerical results are close to the exact 
values, implying that the numerical algorithm proposed in this study is precise. 

 
Table 1 
Comparative model at stagnation point 

Author Model (momentum) Limiting cases 

Current    
2

1Γ 2 1 0
iv

f f k f f ff f          
 

 1 0, 0k     

Nazar et al., [16] Γ 1 0f f       0, 0    

Harris et al., [22] Γ 1 0f f       Exact solution 
0, 0    
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Table 2 

Comparison values of (0)f  at stagnation point for several   with 1 0k  

  Exact Eq. (16) Nazar et al., [16] Current 

0.1 3.1622 3.1623 3.1622 
0.2 2.2360 2.2361 2.2360 
0.3 1.8257 1.8257 1.8257 
0.4 1.5811 - 1.5813 
0.5 1.4142 - 1.4147 

 
3. Results and Discussion  

 

The viscoelastic parameter, 1k  is assigned as non-negative value in this study because the focus 

of the investigation is on determining the existence of viscosity and elasticity characteristics. The 
Brinkman parameter is characterised as 0   due to the variation in porosity. Therefore, for the 
entire analysis, values for the Brinkman parameter and the viscoelastic parameter are selected from 

the intervals 0.1 3   and 18 23 k , respectively. Figures 3 and 4 demonstrate that an increment 

in 1k  and   leads to a decrease in fluid flow velocity. This occurred because the presence of viscoe-

lastic properties causes fluid to resist movement. This result also suggests that the Brinkman factor, 
which determined the porosity of porous medium, increases the fluid's drag force and consequently 
slows the velocity profile. 

 

 
Fig. 3. Performance of viscoelastic, 1k  on velocity,  f y   
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Fig. 4. Performance of Brinkman,   on velocity,  f y  

 
Table 3 displays the effect of various Brinkman and viscoelastic parameters on the coefficient of 

local skin friction at 1x . It can be seen that when   and 1k  are increased, the rate of skin friction 

decreases. According to the flow analysis, the total percentage decrease in skin friction coefficient 

for   within 0.1 3   is 19.13% and for 1k  within 18 11 k  is 14.22%. Figures 5 and 6 portray the 

graph of the skin friction coefficient toward Brinkman and the viscoelastic parameters. The increase 

of 1k  and   allows for a reduction in skin friction. This is due to the existence of a solid matrix in the 

fluid. Furthermore, according to the numerical analysis, Figure 5 clearly demonstrates that the visco-
elastic properties delayed the separation of the boundary layer within the range 0  x  whereas 
variations in the Brinkman factor had no effect on flow separation. 

 
Table 3 

Numerical values of 1/2 / PrfC Pe  for various values of 1k

and   at 1x  

  1k  1/2 / PrfC Pe  

0.1 8 0.003319 
1  0.003024 

2  0.002828 

3  0.002684 
0.1 8 0.003319 

 9 0.003138 
 10 0.002982 

 11 0.002847 
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Fig. 5. Performance of viscoelastic, 1k  on skin friction, 1/2 / PrfC Pe  

 

 
Fig. 6. Performance of Brinkman,  on skin friction, 1/2 / PrfC Pe  

 
4. Conclusions 
 

This research focuses on the boundary layer flow analysis over HCC in porous region. The Brink-
man model with the viscoelastic properties is adopted to model the problem. The problem is trans-
formed from PDEs to dimensionless PDEs using the appropriate variables as shown in Figure 1. The 
PDEs are solved numerically using KBM and the MATLAB R2019a software. The proposed model is 
validated with previously published work. Conclusively, the Brinkman and viscoelastic parameters 
influenced the fluid flow characteristics. It is observed that increasing the Brinkman and viscoelastic 
parameters reduces the fluid velocity. By increasing both parameters, the skin friction coefficient 
decreases. It was also discovered that the flow encounters a separation boundary layer after 2.5x   
for the variation of Brinkman parameter. 
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