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ABSTRACT: For decades, influenza virus infection has been a serious health concern due to seasonal epidemics and 
pandemics, and it is continuing on the rise today, yet there is no gold-standard medication available for treating 
influenza viral infection. As a result, better influenza medicine is necessary to prevent illness. The purpose of this work 
was to investigate how effective usnic acid derivatives were as antiviral medications against the influenza virus in a 
computational approach. To discover the prospective medication as an anti-influenza agent, we employed 
pharmacophore-based molecular docking, ADMET, and drug-likeness studies, CYP isoform analysis and MD 
simulation approaches. Using pharmacophore filtering processes, twenty-three (23) usnic acid derivatives were 
acquired from an in-house database of 340 usnic acid derivatives. A docking simulation on the Influenza A H1N1 
polymerase resulted in four molecules with a high affinity for the protein. The pharmacokinetics and drug-likeness 
predictions yielded two hit compounds, which were then subjected to cytochrome P450 enzyme screening to provide 
the lead molecule, denoted as compound-4. In addition, MD simulation of lead compound (Compound-4) was 
performed to verify the stability of the docked complex and the binding posture acquired in docking experiments. The 
findings revealed that compound-4 is a promising option for antiviral treatment of influenza illness in the future. 

KEYWORDS: Influenza; Usnic acid; Pharmacophore; Molecular docking; MD Simulation. 

 1.  INTRODUCTION 

Influenza virus (IV) infection is a significant global health issue because of the serious sickness, 
mortality, and other causes that occur as a result of seasonal epidemics and pandemics [1]. Each year, seasonal 
human IV A infects over 20% of the worldwide population, resulting in a predicted three to five million serious 
cases and up to 650,000 fatalities; the most vulnerable are the elderly, children, and those with chronic 
conditions [2]. 

IV occurring among people is classified into three groups based on their internal proteins: A, B, and C. 
However, types A and B are mostly responsible for annual epidemics, while type C is less frequent and only 
triggers mild infections [3]. IV A viruses, which are also traditionally responsible for pandemics and cause the 
majority of IV infections, IAV is subject to regular genetic reassortment, which might lead to the emergence of 
new strains capable of triggering a global pandemic, as was the case with the novel H1N1 pandemic in 2009, 
which claimed the lives of over 284,000 people globally in the first year of the pandemic [4]. IV A is further 
subtyped based on the fusion of their surface glycoproteins, hemagglutinin (H or HA) and neuraminidase (N 
or NA) [5]. During the budding stage, the NA surface antigen is critical for releasing the virus from the host 
cell. Since its crystal structure was discovered, NA has been employed as a target protein for several 
therapeutic molecules. Oseltamivir is a licensed anti-influenza medication molecule that targets the H1N1 IV's 
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highly conserved NA active site, which has eight functional residues (R118, D151, R152, R224, E276, R292, 
R371, and Y406). Recent H1N1 outbreaks, as well as reports of oseltamivir-resistant strains, have demanded 
the development of potent anti-influenza medications [6]. Treatment of IV A infection is still limited, and the 
threat of a new pandemic from this infection still requires the development of the newest therapeutic agents. 
Therefore, it is necessary to develop a better drug to inhibit this virus. 

Anti-IV medications are now licensed in two categories: (i) viral neuraminidase (NA) inhibitors like 
zanamivir and oseltamivir, and (ii) compounds that block the matrix-2 (M2) ion channel like amantadine and 
rimantadine [7]. The current drugs are ineffectual against the sudden appearance of new IV A subtypes, as 
seen during the 2009 pandemic, and they require annual updating and administration. Furthermore, these 
drugs provide only limited protection in elderly or immunocompromised subjects.  Antiviral medicines are 
therefore an important alternative for preventing and treating dangerous IV infections, especially in frail 
people. 

Usnic acid (C18H16O7) (UA) is a secondary metabolite found in several lichen species. It has two 
enantiomers in (+)-and (-)-form and both enantiomers are effective against a large variety of gramme-positive 
bacterial strains [8]. It exhibits anti-viral [9], antibiotic [10], anti-fungicidal [11], analgesic [10], and other kinds 
of biological activity. Furthermore, UA has been demonstrated to have anti-mitotic effects on human cancer 
cell lines and to cause leukaemia, lung, and breast cancer cells to lose viable cells. Moreover, UA does not 
activate p53, and it has not been shown that it is implicated in DNA damage [12]. Antiviral properties of the 
UA have been discovered. The (+)-UA, which is commercially available, prevents the type 1 herpes virus from 
causing cytopathic effects. The Zn-UA complex medication was investigated as a papillomavirus treatment 
and was shown to suppress viral multiplication six months after treatment. (+)-UA inhibited Epstein–Barr 
virus replication at 1.0 g/ml (3 µM); (-)-UA was less active at 5.0 µg/ml (15 µM); and UA and its derivatives 
were also effective against the pandemic IV A (H1N1)pdm09 [9, 12]. As a result, this study used a series of 
computational-based approaches to discover anti-IV drug candidates based on the anti-viral and anti-IV A 
activity of UA derivatives, including pharmacophore-based virtual screening, molecular docking simulations, 
ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, drug-likeness properties, 
and CYP isoform analysis. Figure 1 depicts the detailed work plan. 

 
 

 
 

Figure 1. Virtual screening workflow to discover anti-Influenza A Virus. 
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2. RESULTS AND DISCUSSION 

2.1. Pharmacophore Model Generation 

Three N-terminal crystal protein structures of the polymerase acidic sub-unit of influenza virus were 
found (PDB ID: 4ZI0, 5FDD, and 5FDG). The co-crystallized compounds were selected to provide the 
pharmacophore characteristics (index No. 01 from 4ZI0, index No. 02 from 5FDD, and index No. 03 from 
5FDG) (Table 1). 

The "Features Mapping" was first utilized to produce 10 common features for each protein utilizing the 
co-crystallized protein compounds obtained. The "BEST" function and poling approach were then applied to 
produce up to 255 distinct conformations at 20 kcal/mol thresholds. The HipHop pharmacophore 
consolidated a total of 10 characteristics based on the rank value of every protein. Four features from 5FDG, 
four features from 4ZI0, and two features from 5FDD (of the same rank value, we chose the one above) have 
been selected based on the highest rank value. The top ten pharmacophore hypotheses were split into 3 
pharmacophore-based groups by HHHDDAA (01, 02, 03, 04), HHDDD (05, 06, 07, 08), HHHDA (09), and 
HHHAA (10). In these three groups, hypotheses were identified by the direction of the hydrogen bond vectors, 
the location of characteristics, or both (Table 2). Figure 2 shows the workflow. 

 

 
 

Figure 2. Pharmacophore model generation, validation, and virtual screening workflow for Influenza A Virus. 
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Table 1. Activities of inhibitors of Influenza A Virus (Fudo et al., 2016). 

 

Index 
Number 

Structure PDB IC50 
Value 

01 

 

4ZI0 - 

02 

 

5FDD - 

03 

 

5FDG 0.43 

Notes: IC50 values were calculated according to the relevant literature. 

 

   

    
Notes: IC50 values were calculated according to the relevant literature. 

 

Table 2. Chemical features of the ten hypotheses generated from the three active compounds from three proteins for 

Influenza A virus (4ZI0, 5FDD and 5FDG). 

Hypothesis Feature PDB ID Rank Max Fit 

01 HHHHDDA 5FDG 16.509 7 

02 HHHHDDA 5FDG 16.483 7 

03 HHHHDDA 5FDG 16.440 7 

04 HHHHDDA 5FDG 16.430 7 

05 HHDDD 4ZI0 12.133 5 

06 HHDDD 4ZI0 12.114 5 

07 HHDDD 4ZI0 12.086 5 

08 HHDDD 4ZI0 12.081 5 

09 HHHDA 5FDD 10.109 5 

10 HHHAA 5FDD 9.909 5 

Notes: H denotes a hydrophobic group, D denotes a hydrogen bond donor, and A denotes a hydrogen bond acceptor. (b) The compound 

ranking score from the training set that best fits the hypothesis. The higher the rank, the less probable it is that the compounds in the 

training set have a probability relationship with the hypothesis. The best hypothesis is the most valuable hypothesis. 
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2.2. Validation of Pharmacophore Model 

The most acceptable pharmacophore model was chosen from 10 pharmacophore hypotheses produced 
using the approach described by Liu et al., 2020. A test set of IV inhibitors ranging in activity from more active 
to less active was picked from a variety of sources to create a test set (Figure 3). The substances in the test set 
corresponded to each of the 10 hypotheses, and the results were shown on a heatmap (Figure 4 C). The 
heatmaps revealed that hypothesis 10 (HHHAA) was the most appropriate of the ten pharmacophore 
hypotheses (Figure 4 B). As shown in Figure 4 A, a1 and a2 were involved with the carbonyl (=O) group and 
the nitro (-NO2) group. The b1 and b3 features were defined by the phenyl group, and the b2 features involved 
the halogen (Cl). 

 

 
 
Figure 3. The Test Set (More Active to Less Active) for Pharmacophore Model Validation of Influenza A Virus. 

 
Figure 4. HipHop pharmacophore Generation. (A) The HipHop-Hypo10. The color of the pharmacophore features, 

namely, HBA and H are green and blue, respectively. (B) HipHop-Hypo10 chemical features. (C) The heat map of the 10 

hypotheses in the test. 

2.3. Pharmacophore-based Virtual Screening 

In the in-house database, 340 UA derivatives were practically tested using the prior model, HipHop-
Hypo10. Twenty-three (23) compounds were chosen based on a fit value of ≥3.6 from the pharmacophore 
filtering and then carried out in a molecular docking procedure (Table S2). 

2.4. Molecular Docking with Selected Compounds 

Molecular docking is a computer tool that helps researchers better understand how proteins interact 
with their ligands. The native location, orientation, and conformation of ligands that bind to the active region 
of the target protein are predicted using this approach [13]. The crystal structure of IV A virus neuraminidase 
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in complex with 5-(2-chlorobenzyl)-2-hydroxy-3-nitrobenzaldehyde (PDB ID: 5FDD) [14] was acquired from 
the Protein Data Bank (www.rcsb.org). The crystal structure consists of four chains (A, B, C, and D), with all 
four chains being used. Using the DS3.1, the co-factor and water molecules were eliminated, and hydrogen 
was added. In the current work, pharmacophore screening yielded 23 compounds, which were then molecular 
docked with IV A H1N1 polymerase (PDB ID: 5FDD). In addition, the DS3.1 programme was utilized to 
examine the precise interactions of the best compounds that bind well to the active region with both bonded 
and non-bonded interactions. These compounds had a lower binding energy than the reference molecule (co-
crystallized ligand), indicating that they bind to the active site of NA more effectively. According to the 
molecular docking studies, all 23 compounds had a stronger binding relationship than the co-crystallized 
ligand. 

Compound-4 was shown to have the highest binding affinity for creating a ligand-protein complex with 
H1N1 polymerase, with a binding interaction of-54.6676 kcal/mol. The output of the molecular docking 
simulation may be used to see the molecular interaction between the ligand and the binding site of H1N1 
polymerase. During the creation of the ligand-protein complex, compound-4 interacted with six amino acid 
residues, forming three hydrogen bonds with Leu91, Tyr29, and Glu104 (Figure 5B). Compound-133, which 
came after compound-4, performed well in complex binding with H1N1 polymerase (binding interaction of -
52.2823 kcal/mol). The compound-133 made two hydrogen bridges with Tyr29 and Lys122 and interacted 
with eight amino acid residues (Figure S1). The binding affinity of compounds-140 and compounds-185 was 
55.5848 and 52.4477 kcal/mol, respectively. Compound-140 was also discovered to establish hydrogen bonds 
with Tyr29, Lys39, Leu91, and Arg109 residues (Figure S2). Furthermore, molecule-185 was shown to mediate 
hydrogen bonds with Glu65, Arg69, and Leu91 residues (Figure S3). 

Furthermore, all of these compounds have an RMSD value of less than 2.0 Å, indicating that all ligand 
poses generated during docking simulations were verified and accurately reflected the basic ligand-protein 
interactions in real time. On the other hand, as previously indicated, the four best ligands interacted with the 
critical residues on the IV H1N1 polymerase. 

  

 
 

Figure 5. Molecular docking interaction analysis of (A) co-crystallized ligand and (B) Lead compound (compound-4) 

with Influenza A (5FDD). 

2.5. ADMET Prediction 

It would be advantageous to resolve issues that might result in lead compound loss in preclinical and 
clinical studies, such as poor pharmacokinetic profiles and hazardous consequences. From a cost standpoint, 
using in-silico methods to estimate the likely pharmacokinetic characteristics and toxicity of the hit 
compounds would be advantageous. The four compounds acquired following molecular docking (4, 133, 140, 
and 185) were then exposed to ADMET modules. 

ADMET experiments in DS3.1 were used to evaluate compounds (4, 133, 140, and 185), and the exact 
results are presented in Table 4. All ligands are deemed drug candidates for future ADMET investigation 
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based on these criteria, with the standard value compared to the co-crystallized ligand. Human intestinal 
absorption (HIA), aqueous solubility, blood brain barrier (BBB) penetration, plasma protein barrier (PPB) 
penetration, and hepatotoxicity are among the expected ADMET characteristics. 

According to the ADMET prediction findings examined with the value of >150, three substances were 
assessed to be efficiently eaten in the human gut. Table 3 shows that the chosen compounds and the reference 
(co-crystallized ligand) compound both exhibit positive human intestinal absorption (HIA+), indicating that 
they are easily absorbed in the human intestine. Compounds 4, 133, and 185 with the vanillin moiety, in 
particular, exhibited a capable logarithm of the molar solubility value range of -5.398 to -5.006, respectively. 
These compounds, like co-crystallized ligand, have good aqueous solubility, whereas compound-140 has poor 
solubility, resulting in better absorption and distribution properties for the selected compounds and the 
reference (co-crystallized ligand) compound. Only compound-4 was predicted to have a plasma protein 
binding of ≥90%. The plasma protein binding (PPB) model suggests if a drug will be substantially bound to 
blood carrier proteins (≥90% bound) [15], and the better compound binds to the plasma protein, then consider 
that compound as a better drug. The permeability of the Blood-Brain Barrier was predicted to be quite high 
for all of the drugs (BBB). Depending on where a medicine must be targeted and its toxicity profile, crossing 
the BBB might be useful or detrimental [16]. In the BBB-plot, all substances lie outside of a very high Blood-
Brain Barrier permeability, suggesting that they can traverse BBB and hence pose no risk of nervous system 
toxicity. This programme was also used to predict the hepatotoxicity potential of the chosen ligands. All of the 
chemicals were discovered to have a hepatotoxic profile, which implies they might cause liver damage. 

 
Table 3. ADMET analysis of the compounds. 

Compound 
Number 

HIA AS BBB PPB Hep 

 PSAa ALogP98b Levelc Log(Sw)d Levele LogBBf Levelg Predictionh Predictioni 

4 130.41 4.59 2 -5.00 2 0 4 1 1 

133 120.32 4.17 2 -5.24 2 0 4 0 1 

140 144.09 4.16 2 -7.10 1 0 4 0 1 

185 168.44 3.10 3 -5.39 2 0 4 0 1 

Co-
crystallized 
ligand 

80.93 3.88 0 -4.52 2 -0.23 2 1 1 

HIA: Human Intestinal Absorption, AS: Aqueous Solubility, BBB: Blood Brain Barrier Penetration, PPB: Plasma Protein Binding, Hep.: 

Hepatotoxicity 
aPolar surface area (PSA) of more than 150 (extremely low absorption). 
bLog P (Alog P98) depending on atoms (≤2.0 or P ≥ 0: extremely low absorption). 
cEstimation of human intestine absorption level: 0 (excellent), 1 (moderate), 2 (low), 3 (very low). 
dThe molar solubility log (Sw) based 10logarithm (25oC, pH = 7.0) (suitable drug-like substances: 6 <log(Sw) ≤ 0). 
eEstimated level of water solubility; 0 (extremely low), 1 (very low), 2 (low), 3 (good), 4 (optimal), 5 (too soluble), 6 (warning: molecules 
with one or more unknown Alog P calculation). 
fExtremely strong penetrants (log BBP ≥ 7) 
gEstimation of the Level blood brain barrier penetration: 0 (extremely high penetration), 1 (strong), 2 (moderate), 3 (poor), 4 (extremely 
poor penetration) (undefined). 
hEstimation of Plasma-protein binding (0: <90 %; 1: ≥90 %). 
iEstimatopn of Inhibition of the cytochrome P450 2D6 enzyme (0: non-inhibitor; 1: inhibitor). 
jEstimation of Hepatotoxicity (0: non-toxic; 1: toxic). 
 

2.6. Drug-likeness Properties 

In the early stages of drug development, drug-likeness analysis is critical. Lipinski's rule of five (RO5) 
states that a drug-like molecule must have a molecular weight (MW) of 500 Da, five hydrogen bond donors 
(HBDs), ten hydrogen bond acceptors (HBAs), and a topological polar surface area (TPSA) of less than 140 Å2, 
with only one number of violations permitted [17]. 

According to Table 4, only compounds 4 and 133 showed a decent chance of excellent absorption, with 
logP values of 5.12 and 4.70 respectively, among four compounds (4, 133, 140, and 185) where the acceptable 
range is ≥5. The TPSA values of compounds 4 and 133 were determined to be 128.19 Å2 and 119.37 Å2, 
respectively, which were both less than 140 Å2, indicating that both compounds were acceptable. Despite the 
fact that compounds 4 and 133 have a smaller range of rotatable bonds (1) <10, they have limited 
conformational flexibility. Furthermore, the compounds 4 and 133 have low molecular weights of 400.43 and 
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504.54 g/mol, respectively, due to the presence of seven and eight hydrogen bond acceptors (nON) below ten 
and four and two hydrogen bond donors (nONH) below five. Finally, within the 20-70 range, compounds 4 
and 133 contain 29 and 37 atoms, respectively. Only compounds 4 and 133 were determined to meet Lipinski's 
criteria after a thorough examination of the data. 

 
Table 4. Drug-likeness Properties of Best Compounds for Influenza A Virus 

Compound 

Number 

MiLogP TPSA n. A. MW n ON n 

ONH 

n. V. n. R. Vol 

4 5.12 128.19 29 400.43 7 4 1 6 357.14 

133 4.70 119.37 37 504.54 8 2 1 6 444.48 

140 4.02 141.36 41 586.44 8 4 1 7 449.02 

185 1.55 166.02 39 530.53 10 5 1 6 455.33 

Milog P: segregation constant ≤5 

TPSA: Topological polar surface area ≥140Å2 

nA: atomic number 20 - 70 

MW: molecular weight ≤500 

nON: number of hydrogen-bonds acceptor ≤10 

2.7. CYP Isoform Study 

The biotransformation of numerous xenobiotics in the human body requires cytochrome P450 (CYP450) 
enzymes. Although there are more than fifty isoforms of this enzyme family, CYP1A2, CYP2C9, CYP2C19, 
CYP2D6, CYP3A4, and CYP3A5 are commonly regarded the most important CYP450 enzymes since they 
metabolize 90% of medications [13]. The CYP3A4 isoform, which is connected in 50% of the drug's metabolism 
and has an intestine and kidney, is the first and most important isoform [18]. Moreover, the isoforms CYP2C9, 
CYP2C19 and CYP1A2 are active in 15%, 12% and 11% of drug metabolism, respectively [19]. The cytochrome 
P450 mixed-function oxidase system, which includes CYP1A2, is involved in the human body's xenobiotic 
metabolism [20]. The CYP2C9 gene codes for an enzyme located in the endoplasmic reticulum, a cell structure 
involved in protein processing and transportation [21]. Compounds including steroid hormones and fatty 
acids are broken down (metabolized) by the CYP2C9 enzyme. The CYP2C9 enzyme is also involved in the 
breakdown of warfarin, a medicine that thins the blood and prevents blood clots. This enzyme also aids in the 
metabolism of other anti-inflammatory medications like ibuprofen [22]. Profiling the drug candidate's 
interaction with these enzymes is critical for determining if the drug might cause toxicities or interact with 
another drug in the body, resulting in a pharmacological effect that is ineffectual [23]. The activity of this 
enzyme's metabolism is reduced by a CYP450 inhibitor [24]. It's critical to determine if the medication 
candidate at issue can inhibit a specific isoform of the CYP enzyme. Good medication is defined as drugs that 
do not become opponents of all CYP isoforms [25]. Inhibitors have the potential to harm an enzyme's metabolic 
capacity. Compound-4 results in a negative value for the CYP2C19, CYP2D6, and CYP3A4 isoforms. Table 5 
contains the summary data. The CYP2C19 gene codes for an enzyme that is found mostly in liver cells in the 
endoplasmic reticulum, a cell structure that is involved in protein processing and transport [26]. Many 
medicines that effect on the central nervous system, such as antidepressants, antipsychotics, and central 
opioids, are metabolized by CYP2D6. This enzyme is encoded by a polymorphic gene, with 7% of Caucasians 
('low metabolizers') displaying no enzymatic activity [27]. CYP3A4 is a vital enzyme in the body that is mostly 
present in the liver and gut. It oxidizes tiny foreign organic molecules (xenobiotics), such as poisons or 
medications, so they may be eliminated from the body [25]. 
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Table 5. CYP Inhibitor od Best Compound for Influenza A Virus 

Compound 
Number 

Inhibitor Log Kp (skin 
permeation) CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 

4 Yes No Yes No No -5.02 cm/s 

133 No Yes Yes No Yes -6.23 cm/s 

Co-crystallized 
ligand 

Yes Yes Yes No No -5.27 cm/s 

No= non-inhibitor; Yes= inhibitor 

2.8. Molecular Dynamic (MD) Simulation 

Through a 50 ns classical MD simulation analysis, the stability of the complexes between IV A and the 
final small molecule (Compound-4) was investigated. To investigate the dynamic behavior of the molecules, 
many metrics were extracted from either the MD simulation trajectories of every complex, including the 
RMSD, RMSF, RoG, and intermolecular hydrogen bonds. Table 7 shows the average, maximum, and lowest 
values of RMSD, RMSF, and RoG. 

 
Table 6. Average, maximum and minimum protein-RMSD, ligand-RMSD, protein-RMSF, ligand-RMSF and RoG 

Complex  
Protein 

RMSD 

Ligand 

bound 

RMSD 

Protein 

RMSF 

Ligand 

bound 

RMSF 

Protein 

RoG 

Ligand 

bound 

RoG 

Average  1.85 Å  1.4 Å  15.5 Å  7.25 Å  16.05 Å  16.4 Å 

Maximum  2.7 Å  2.1 Å  26 Å  12.5 Å  16.6 Å  16.7 Å 

Minimum  1.0 Å  0.7 Å  5 Å  2 Å  15.5 Å  16.1 Å 

 

The stability of protein-ligand complex was determined using the protein backbone RMSD computed 
from the MD simulation trajectory. The greater the RMSD, the more likely the protein is to be unfolded, and 
the lower the RMSD, the more likely the protein is to be folded. The system equilibration is defined by a low 
fluctuation or constant variation in RMSD. Each frame's backbone RMSD was determined and is shown in 
Figure 6. As shown in Figure 6, the protein backbone RMSD was steadily raised up to around 16 ns, and then 
reached equilibration until the simulation ended. There were no abnormal or atypical backbone deviations 
discovered. The average RMSD of the backbone may be used to estimate the protein's deviation during MD 
simulation. When attached to Compound-4, the backbone average RMSD was determined to be 1.85 Å which 
is considered perfectly fine for small and globular protein [28]. The protein-ligand combination was clearly 
stable during the simulation, as seen by the low RMSD and continuous variation. 
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Figure 6. Influenza A backbone RMSD bound with compound-4 
 
During the MD simulation, it's crucial to keep an eye on the ligand's divergence from its natural 

structure. Compound-4 was found to be nearly constant throughout the experiment. Compound-4 showed a 
little variation, which might be attributable to the molecule's orientational shift. The maximum ligand RMSD 
was discovered to be 1.4 Å for compound-4, as shown in Table 6. In the same plot, it was observed that the 
ligand RMSD was not significantly larger than the protein RMSD which indicates that ligand does not diffuses 
away from the initial binding site. 

The amino acid residues of protein molecules serve a key role in achieving the stability of complex. The 
RMSF parameter may be used to investigate the variability of individual amino acid residues. The RMSF of 
all IV A amino acids was calculated using MD simulation trajectories, and the results are shown in Figure 7. 
IV A amino acids were shown to differ in a similar way when attached to compound-4. The difference between 
the highest and average RMSF might provide insight into simulation variation. When IV A was bonded with 
compound-4, the aforementioned value was determined to be 7.5 Å which maintained a stable RMSF value 
over time [29]. According to Aldahham et al. [30], the above data clearly substantiated the low fluctuation of 
the amino acid residues in the dynamic states. The limited variation of amino acid residues in dynamic 
situations was clearly demonstrated by the above data. 
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Figure 7. RMSF of amino acid residues of Influenza A bound with compound-4 

 
The RoG, computed from the MD simulation trajectory, was used to investigate the compactness of IV 

A bound with compound-4. Each system's RoG was calculated and is shown in Figure 8. Surprisingly, the 
entire system remained compact throughout the experiment. Throughout the experiment, there was not a 
single complex with an unexpected departure. The difference in RoG values between the greatest and lowest 
IV A binding with compound-4 was determined to be 0.35 Å. It is quite interesting that proposed molecular 
system ow deviation and compactness explained the rigidity and stability of the complexes [30]. It's fascinating 
that the suggested molecular systems maintained their compactness in the same way that the co-crystallized 
ligand did. The stiffness and stability of the complexes were explained by minimal deviation and compactness. 

 
 

Figure 8. The radius of gyration of Influenza A bound with compound-4 

 
Throughout the simulation, protein interactions with the ligand were detected. Understanding the 

stability of the projected protein–ligand combination requires H-bond interaction analysis (Figure 9). The 
ligand's ability to fit into the binding site is aided by H-bonding. Tyr29, Glu65, Asp93, Gly104, Gly106, Val107, 
and Tyr115 demonstrated H-bond interaction with Compound-4. With Tyr29 and Glu104, compound-4 
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formed an H-bond. These residues participating in interactions with ligand indicating that it was highly stable 
throughout the simulation. In docking investigations, comparable interactions were detected as well. 

 
 

Figure 9. Number of Hydrogen bonds of Influenza A bound with compound-4 

 
In a nutshell, the lead compound-4 was found to bear a bulky moiety (Figure 10). It has been reported 

that bulky moieties such as prenylated moiety demonstrate strong antiviral activity against the IV. For 
instance, the compound containing the prenyl moiety, Elsholtzioxin, showed anti-IV efficacy against strain 
A/WSN/33/2009 (H1N1) with a 47.19% inhibition rate [31]. It is also supported by the discovery that 
compound-4, which contains a bulky bearing moiety, may play an important role in influenza A inhibition 
activity. 

 
 

Figure 10. Lead Compound (Compound-4) as Potential anti-Influenza A Virus. 
 

In summary, the lead compound (Compound-4) was shown to have a good fit value of 3.71868. From 
the docking result, compound-4 has also been found to have a strong binding affinity to the N-terminal region 
of the influenza strain H1N1 polymerase acidic subunit with a binding energy of-54.6676 kcal/mol. 
Furthermore, based on the interaction analysis, compound-4 established three hydrogen bonds with the 
residues Leu91, Tyr29, and Glu104 and one hydrophobic contact with the residue Ile43. The lead compound-
4's drug-likeness and ADMET properties were both satisfactory. The interaction of a drug candidate with P450 
(CYP450) enzymes is essential for evaluating whether the drug will induce toxicities or interact with another 
medication in the body, resulting in a pharmacological effect with no inhibitor to CYP2C19, CYP2D6 and 
CYP3A4 isoforms. 
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3. CONCLUSION 

According to the computational analysis, the current study was able to uncover a unique and useful 
chemical with a strong binding attraction to IV A. Furthermore, the projected high negative binding energy 
values of these drugs support our hypothesis that they have the potential to block IV A. The information 
gathered from this study will be extremely useful in improving the identification of IVA target-specific 
therapeutic compounds. The current study also shows that the NA enzyme of H1N1 is a viable therapeutic 
target for the anti-IV A properties of the currently examined compounds. On the basis of ADMET prediction, 
drug profiling, and CYP isoform analysis, the current computational investigations explore compound-4 has 
the potential to be a viable and successful anti-IV A drug. Furthermore, MD simulations for 50 ns revealed 
that the ligand interactions with the residues of IV A are part of the essential residues for structural stability 
and functionality. The findings will be beneficial since they will give insight into the efficacy of a drug when 
compared to a reference co-crystallized ligand before chemical and biological tests are carried out. 

4. MATERIALS AND METHODS 

4.1. Data Collection and Preparation 

To develop common feature-based pharmacophore models, three structurally different co-crystallized 
ligands, active against IV A from three proteins (PDB codes: 5FDG, 5FDD, and 4ZI0), were utilized as the 
training set. Table 1 lists the molecular characteristics of these compounds. The test set consisted of four 
compounds, ranging from the most active to the least active, IV A (Figure 3). The Discovery Studio (DS3.1) was 
used to prepare and optimize all of the compound. 

4.2. Pharmacophore Model Generation 

Three anti-IV A co-crystallized ligands from three target proteins with the PDB codes 5FDG, 5FDD, and 
4ZI0 were utilized to construct HipHop pharmacophore models (Table 1). In this study, the co-crystallized 
ligands of target proteins were selected as the training set of compounds randomly. For all ligands, the primary 
value was set to 2 and the maximum-omit feature was set to 0. The pharmacophore module "Feature 
Mapping" was utilized to identify the relevant chemical attributes of the training set compounds before 
constructing the HipHop pharmacophore model. Subsequently, as building components for the 
pharmacophore model, hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic feature 
(HC), hydrophobic aliphatic (HAL), hydrophobic aromatic (HAR), positive ionizable (PI), and aromatic ring 
(AR) were chosen. The "BEST" algorithm was used to develop 255 conformations under a 20 kcal/mol energy 
barrier in order to get a varied set of conformations. Table 2 lists and ranks the derived pharmacophore models 
with significant common chemical features. 

4.3. Validation of Pharmacophore Model 

On the basis of the fit findings acquired with test sets, the hypothesis regarding pharmacophore is 
verified. The test sets (Figure 3), which range from the most active to the least active chemicals, were prepared 
following a similar process as the training set [32]. In this study, the test set of compounds was selected based 
on the IC50 value (0.0039 to ≤50 µM). The hypothesis was then tested utilizing the "Ligand Profiler module" to 
investigate if the Fit Value could be used to determine the active compounds. 

4.4. Pharmacophore-based Virtual Screening 

The validated pharmacophore model HipHop-Hypo10 was utilized to screen 340 UA derivatives, which 
were obtained from our previous publication [19]. All of these compounds were optimized in DS3.1, with 
HipHop-Hypo10 being employed to screen compounds utilizing "Screen Library module" in DS3.1. The 
number of conformations was set to 255 while the conformation technique was set to BEST. The rest of the 
parameters were left at their default settings. Lastly, the selected pharmacophore hypothesis was linked to 
specific chemical compounds that were linked to the structure activity relationship (SAR) [33]. 
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4.5. Protein Preparation 

The crystallized structure of the target protein was downloaded from the Protein Data Bank 
(https://www.rcsb.org/) with the PDB code 5FDD [14]. This protein entry is the crystallized structure of the 
N-Terminal Region of Influenza Virus Polymerase Acidic, which co-crystallized with an inhibitor called (2Z)-
4-[1-benzyl-4-(4-chlorobenzyl) piperidin-4-yl]2-hydroxy-4-oxobut-2-enoic acid. In order to prepare for the 
next steps, the structure was cleaned. Inserting the missing amino acid residues and removing substitute 
conformations, removing water and ligand molecules, adding missing loop regions, optimization of loop 
regions using the CDOCKER algorithm, minimization of loop regions, and protonation of the structure were 
all part of the preparation process. The binding site was defined by the position of the pocket containing the 
co-crystallized ligand. 

4.6. Ligand Preparation 

340 UA derivatives in our in-house database (Supplementary Table S1) were retrieved from our 
previous publication [19] and constructed by utilizing the ChemDraw professional software to generate a two-
dimensional (2D) shape of all compounds. For each compound, a proper complexation condition was created 
when creating conformations of low energy rings at the standard pH range of 5.0–9.0. At the CHARMm force 
field, the topology was optimized/utilizing the conjugate gradient approach, with divergence gradients of 0.1 
kcal/mol, 0.01 kcal/mol, and 0.001 kcal/mol, respectively [33]. The produced two-dimensional (2D) structural 
molecules were decided to be encoded to three-dimensional (3D) format and equipped for docking study 
using DS3.1 and the CHARMm force field. Throughout the docking investigation, the randomized 
conformational number was set to 10. The co-crystallized compounds of proteins were employed as reference 
compounds. 

4.7. Molecular Docking with Selected Compounds 

In the docking studies, the receptor was designated as the pre-prepared protein model, and the binding 
site was identified as the location of the co-crystallized ligand found in the crystal structure. In this virtual 
screening study, the values acquired for the protein-co-crystallized ligand complex were used as the reference. 

The CHARMm force field is used by the CDOCKER in DS3.1 [34], which uses grid-based molecular 
docking to allow numerous ligands to dock against a single protein receptor. The grid box consisted of 0.31 
Å× -29.21 Å× -15.09 Å points around the active region, with an available grid spacing of 9.10 Å, with other 
parameters set as default. During the refining, it keeps the receptor stiff while allowing the ligands to be 
flexible. High-temperature molecular dynamics is used to create the random ligand conformations, which are 
then followed by random rotations to imitate annealing and complete force field reduction. 

Binding energy was determined in kcal/mol, with lower values indicating stronger interactions 
between the ligand and the protein. Using DS3.1, the 2D and 3D interaction forms of the docked complex were 
utilized to detect amino acids present in the ligand–protein binding site. The computed binding energy of the 
ligand-target complex was used to rank 23 UA derivatives that were docked into the receptor model. The top 
hits were chosen based on their binding energies being higher (more negative) or comparable to that of a co-
crystallized ligand when in combination with the receptor. 

4.8. ADMET Prediction 

The ADMET profile may be used to estimate potential and safety before it is placed on the market 
through absorption, distribution, metabolism, excretion, and toxicity. Unwanted property compounds 
frequently increase costs and cause significant stress in patients [35]. Consequently, it is essential to forecast 
ADMET characteristics during hit detection and optimization. Consequently, forecasting ADMET 
characteristics throughout hit identification and improvement is critical. The ADMET properties of the tested 
compounds were determined using the DS3.1 programme. The Chemistry at CHARMm (Harvard 
Macromolecular Mechanics) force field was used first, followed by the production and minimization of the 
compounds using the formulation for tiny compounds procedure. The ADMET properties technique was then 
used to carry out these tests using the DS3.1 software's "Small Molecules" option. 
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4.9. Drug-likeness Properties 

The Molinspiration Cheminformatics server (http://www.molinspiration.com) was utilized to evaluate 
the bioactivity score of chosen compounds. Large chemical databases are evaluated in this computational 
chemistry approach in order to uncover potential novel medication candidates. This computational chemistry 
method scours a huge number of chemical databases in search of potential new drug candidates [36]. The 
Molinspiration program's miscreen engine evaluates drug ingredients against inactive substances, utilizing 
strong Bayesian statistics after analyzing a training set of active configurations (in extreme situations, even 
though a single active substance is important to produce a functional design). It is just essential to know the 
SMILES or SD file structures of active substances; no knowledge of the active region or binding complex is 
needed. The nine descriptors include log-P, topological polar surface area, molecular weight, number of atoms, 
number of ON, number of ONH, number of violations, number of rotatable bonds, and volume to Lipinski’s 
rule. 

4.10. CYP Isoform Study 

SwissADME (http://www.swissadme.ch) software was used to investigate additional variables that 
influence drug digestion within the body [18].The cytochrome P450 enzyme (CYP) was also investigated, 
particularly a CYP inhibitor. This forecaster is part of the isozyme family, which is involved in drug 
biotransformation. Using the SwissADME online software, the presence of a CYP inhibitor was determined 
by entering the code yes for inhibitor presence and no for non-inhibitor absence. For a compound, if it shows 
a yes code, it was eliminated in the post-analysis process. 

Medication metabolism through CYP is critical for a variety of drug interactions in the body, which can 
lead to toxicity, diminished pharmacological properties, and horrible drug reactions. Inputting molecules to 
be assessed for ADME, physicochemistry, drug-likeness, pharmacokinetics, and medicinal chemistry friendly 
qualities on http://www.swissadme.ch in a web browser brings up the SwissADME submission page [18]. 
The real input for computation is this list, which may be found on the right-hand side of the submission page. 
It may be modified like any other text, and SMILES can be typed or pasted. One input molecule per line is 
characterized by a SMILES and optionally a name separated by a space in the list. If the name field is left blank, 
SwissADME will generate an identity for you. It's worth noting that both the buttons for transferring the 
drawing to the SMILES list and conducting the computation are dynamic, meaning they'll only work if the 
operation is possible. 

4.11. Molecular Dynamic (MD) Simulation 

MD simulations was carried out to comprehend the dynamic behavior of the examined IV A protein 
and compound-4 dietary components under a time-dependent microcanonical ensemble. The structural 
behavior of food substances linked to the IV A protein in dynamic states was specifically investigated using 
an all-atoms conventional MD simulation during a time span of 50 ns. The full MD simulation was carried out 
using the Amber20 software [37] package loaded on a Linux operating system environment with a system 
configuration of 10th Generation Intel Core i9-10885H and NVIDIA® GeForce RTXTM 2070. The IV A protein 
and the compound-complex was encapsulated in the truncated octahedron of the TIP3P water model [38]. In 
order to neutralize the complicated system and keep the system's ionic strength at 0.1 M while simulating, an 
appropriate or necessary amount of Na+ and Cl- were also injected to the entire system. The force fields ff14SB 
and GAFF2, respectively [39] were used to create the topology files for protein and small molecule. The 
simulation execution was carried out using the pmemd.cuda module of Amber20. A Langevin thermostat kept 
the temperature of the entire protein-ligand system at 300K. The Monte Carlo barostat was used to adjust the 
collision frequency to 2 ps-1 at 1 atm [38]. The covalent bonds connected with hydrogen atoms were restricted 
using the SHAKE algorithm. The eight threshold was used to address short-range electrostatic interactions, 
and the particle mesh Ewald approach was used to address long range electrostatic interactions [40]. Prior to 
the start of simulation production, the solvent and ions were equilibrated over a 10 ns time period utilizing 
NVT and NPT ensembles [41]. A number of trajectories analyzing parameters, including RMSD, root-mean-
square fluctuation (RMSF), radius of gyration (RoG) and an entire hydrogen bond interaction profile, were 
estimated from the entire simulation trajectories after the MD simulation run was complete in order to 
investigate the stability of all protein-ligand complex. 
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