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Most of the fluid used in industrial application (i.e. Oils and gas industry, food 
manufacturing, lubrication and biomedical) do not conform to the Newtonian 
postulate. In contrast to the Newtonian fluid, the viscosity of the fluid can change when 
under force to either more liquid or more solid and dependent on shear rate history. 
This behaviour of fluids is commonly known as non-Newtonian fluid. The non-
Newtonian fluid is so widespread in nature and technology resulting in very high 
interest of investigating among scientist. The Reiner-Philippoff fluid is one of the types 
of non-Newtonian fluid models that exhibiting the dilatant, pseudoplastic and 
Newtonian behaviors. Hence, this study is devoted to analyze the flow and heat 
transfer of Reiner-Philippoff fluid with the presence of first and second order velocity 
slip together with the temperature jump effects over a stretching sheet.  Partial 
differential equations of continuity, momentum and energy equations were 
transformed into the similarity equations. The obtained equations were then solved 
via bvp4c function in MATLAB software. For the validation purpose, the present model 
and its numerical solution were compared with previous established solutions under 
limiting case where the present model is condensed to be identical with the reported 
model and turn to be in very strong agreement. The consequences of pertinent 
parameters on fluid’s characteristics are analyzed in details through the plotted graphic 
visuals and tabular form.  
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Liquid, gas and even plasma can be under the same categories that is fluid where it defined as a 
substance that has no fixed shape and yields easily to external pressure. In understanding the 
movement of the fluid motion, fluid mechanics provide a platform in getting the knowledge on the 
mechanical movement of the fluid itself. The thin fluid flow closes to the boundary surface classified 
as boundary layer flow where this flow is affected by the characteristic hold by the boundary. The 
fluid itself can be divided into two which is Newtonian fluid that obey Newton law of viscosity and 
non-Newtonian fluid that did not obey the law. In boundary layer flow, some researchers have 
mathematically formulated the modelling of some fluid where one of the models known as Reiner-
Philippoff fluid model that did not consider much by the researcher even though it hold a huge in 
engineering application. Some study on Reiner-Philippoff fluid shown an interesting characteristic of 
this fluid either on the flow characteristic or the heat transfer characteristic. 

Characteristic of the fluid flow at the boundary can be affected in many ways either comes from 
the fluid itself, the external factor such as heat applied on the fluid system or the characteristic of 
the boundary. One of the effects that caused at the boundary is the stretching sheet where this effect 
has been consider by most of the researchers in boundary layer field [1]–[9]. For the case of non-
Newtonian fluid, Rahimi et al. [10] provide an approximate solution of Eyring-Powell non-Newtonian 
fluid boundary layer flow over a stretching sheet using collocation method combined with a special 
technique. With the same type of fluid, Javed et al. [11] solve the mathematical formulation using 
Keller box method of incompressible flow of an Eyring-Powell non-Newtonian fluid over a stretching 
surface. As for the non-Newtonian Reiner–Philippoff fluid model, Ahmad et al. [12] perform a study 
in obtaining the similarity solution of Reiner–Philippoff fluid boundary layer problem over a 
nonlinearly stretching sheet with variable thickness. Some researcher even extending this problem 
by induce nanofluid properties into the fluid system as studied by Ullah et al [13] that focussed on 
the thin film of Reiner-Philippoff fluid in the changeable heat transmission and radiation over a time-
dependent stretching sheet.  

Besides effect on stretching sheet, there is another condition that taken into consideration by 
some researcher in conducting their study that is slip velocity. Aziz [14] perform a numerical study 
on the velocity slip flow and thermal boundary layer over a flat plate with a constant heat flux 
boundary condition. Mukhopadhyay and Gorla [15] on the other hand present an analysis of 
boundary layer flow and heat transfer towards a porous exponential stretching sheet together with 
velocity and thermal slips are considered instead of no-slip conditions at the boundary. By 
considering stretching sheet on the boundary layer flow with velocity slip effect, Mukhopadhyay [16] 
perform an analysis on the viscous incompressible boundary layer flow towards the nonlinear porous 
stretching sheet. Besides stretching sheet was consider together with slip velocity effect, Ibrahim and 
Shankar [17] extend the study by considering dispersion of nanoparticles, magnetic field and thermal 
radiation effect over a permeable stretching sheet. Khader and Megahed [18] on the other perform 
a numerical analysis over an impermeable nonlinear stretching sheet with a power law surface 
velocity, slip velocity and variable thickness. Another study was also conducted by Khader and 
Megahed [19] where the system of equation was solved using Chebyshev spectral method compared 
to finite different approaches was induced earlier.  

Another influence that can affect the characteristic of the fluid system is caused by varies of heat 
supplied such as temperature jump. Sajadifar et al. [20] perform a numerical analysis on 
carboxymethyl cellulose aluminum oxide nanofluid through a microtube with different nanoparticles 
volume fraction on the slip velocity and temperature jump boundary conditions. The study was then 
extended by Goodarzi et al. [21] with almost the same fluid system considered earlier by focussing 
more on the analysis of different slip coefficient in optimizing the qualities of the microtube surface. 
Das et al. [22] on the other hand perform an analysis on copper-water boundary layer flow with 
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hydromagnetic convective over a permeable stretching sheet, surface slip and temperature jump due 
to solar radiation. By using homotopy analysis method, Guo et al. [23] conduct an analysis on the 
flow and heat transfer of nanofluid in the flow over a stretching sheet with variable thickness, velocity 
slip and temperature jump. Theoretical study that combining velocity slip and stretching sheet with 
temperature jump effect was conducted by Zheng et al. [24] that study on flow and heat transfer of 
stagnation point nanofluid flow with thermal radiation, velocity slip, temperature jump over a 
stretching sheet in a porous medium. The study with the same effect was also considered by Shen et 
al. [25] that consider bioconvection heat transfer of a nanofluid over a stretching sheet with velocity 
slip and temperature jump that containing gyrotactic microorganisms that caused the convection. 
The same effect also has been considered in Zhu et al. [26] and Fang and Aziz [27]. 

Based on the above discussed literature review, the study on boundary layer flow with the 
consideration of stretching sheet, velocity slip and temperature jump boundary condition was found 
significantly effecting the fluid characteristic. The literature also shown that there is still very small 
number of studies considering these effects on Reiner-Philippoff fluid model. Thus, for the best of 
knowledge, this study attempts to investigate the boundary layer flow of Reiner-Philippoff fluid flow 
over a stretching sheet in the presence of velocity slip and temperature jump effects. The fluid system 
will be modelled mathematically subjected to effect considered in this study and solved numerically. 
The analysis will then be conducted to study the flow characteristic and heat transfer occurs in the 
fluid system.  
 
2. Mathematical Formulation 

 
The flow of Reiner–Philippoff fluid past a stretching is considered. The flow configuration is 

illustrated as in Figure 1. The surface velocity is taking as  with . In this 
investigation, the second order slip factors of the velocity and the temperature jump on the sheet 
are also deliberated. Here, the surface temperature  and the ambient temperature  are 
assumed as constants. Additionally, the mass flux velocity  is applied on the surface to 

represent the surface permeability. Likewise, the radiative heat flux is  with 
 and  signifies the mean absorption and the Stefan-Boltzmann constants and given that 

 [28]. The governing equations for the present model can be written as [29]–[31] 
 

                                  (1) 

                                 (2) 

                                 (3) 

                               (4) 

 
The Eq. (1) to (4) are subjected to the following boundary conditions in Eq. (5) where the first and 

second order slip velocity and temperature jump are addressed. 
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Fig. 1. Schematic configuration of flow 

 

                           (5) 

 
The term  is the fluid density,  is the heat capacity,  is the thermal conductivity,  is the 

temperature,  and  are the first-order and the second-order velocity slip factors, respectively, 
 is the thermal slip factor, and  be the velocity components in the  direction. Besides, 
 is the shear stress with the reference shear stress ,  the limiting dynamic viscosity , and the 

zero-shear dynamic viscosity . The present model can be present three type of sheet where at 
 denotes the static sheet,  for stretching sheet and  for shrinking sheet. In this paper 

the concentration will be focus on the stretching sheet only. 
The similarity solutions are only existed by employing the similarity transformation as follows 

[30], [31]: 
 

                          (6) 

 
where the stream function  is defined by  and . Using Eq. (6), the following 
term will be obtained. 
 

                             (7) 

 
By setting , the wall mass flux velocity becomes: 
 

                                 (8) 

 
where  signify the constant mass flux parameter with and are for injection and 
suction, respectively, while  denote the impermeable surface, and  is the fluid 
kinematic viscosity. After applying Eq. (6) and (7), the complexity of Eq. (1) to (4) are reduced to the 
following similarity equations 
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                                 (9) 

                               (10) 

                              (11) 

 
subjected to: 

 

                                       (12) 

 
with the Reiner–Philippoff fluid parameter , the Bingham number , the Prandtl number  the 
thermal radiation parameter , the thermal slip parameter , the first-order and the second-order 
velocity slip parameters denoted by  and , respectively, and they are defined by: 
 

                                      (13) 

 
Note that,  is for the Newtonian fluid case, while  and  represent the shear 

thickening (dilatant) fluid and the shear-thinning (pseudoplastic) fluid cases.  
The coefficient of the skin friction  and the local Nusselt number  are given as: 

 

                              (14) 

 
where: 
 

                          (15) 

 
Here,  denotes the value of  on  and  is the surface heat flux. Using Eq. (14) and Eq. 

(15), yield 
 

                            (16) 

 
where  is the local Reynolds number.  
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3. Results and Discussions 
 
This section provides a details discussion on the outputs from numerical computational of Eq. (9) 

to (11) with respected to boundary conditions in Eq. (12) utilising the bvp4c solver in MATLAB 
software. The procedures on the proposed method are once explained in [32], [33]. The numerical 
results are then presented in the tabular and graphical forms. 

To ensure the computation on the present model is acceptable, the validation procedures are 
carried out by direct comparison between the present results with the established output for the 
case where the equations and its boundary conditions are identical. It is worth to mention that, the 
current equations can be reduced to the equations by Cortell [33], Waini et al. [34] and Sajid et al. 
[35] in certain conditions. The comparative’s results present a very strong agreement where it can 
be concluded the present model and results are adequate. The details comparative analysis can be 
found in Table 1, Table 2 and Table 3. The computation for Table 1 and 2 are done at fixed value 

 and  it can be seen the values of  significantly condensed and the quantity 
of enriched for the larger value of  physically the situation happened due to the forces built 
by the permeable plate. Table 2 also presenting at the presence radiation circumstance led to lessen 
the performance of  The output in Table 3 is presented to  strengthen the trustworthiness of 
the present outputs as the value of  concurs very well with those reported by Sajid et al. [35]. It 
can be concluded that, the strong value of Bingham number  and Reiner–Philippoff fluid parameter 

 decelerated the value of  
 

Table 1 
Values of  for different  when  and  

 Cortell [33] Waini et al. [34] Present Result 
    

    
    

 
Table 2 
Values of  for  and  when  and  

  Cortell [33] Waini et al. [34] Present Result 
     

     
     
     

     
     

 
Table 3 
Values of  for  and  when  and  

  Sajid et al. [35] Present Result 
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(0)q¢- .S

(0).q¢-
(0)g

g
l (0).g

(0)f ¢¢ S 1e l g= = = Pr 2=
S
0.5- 0.518869- 0.518869- 0.518869426-
0.0 0.677647- 0.677648- 0.677647984-
0.5 0.873627- 0.873643- 0.873642862-

(0)q¢- R S 1e l g= = = Pr 2=
R S

0.5- 0.3989462 0.399100 0.399099808
0 0.0 0.7643554 0.764357 0.764356557

0.5 1.2307661 1.230792 1.230791767
0.5- 0.2873762 0.287485 0.287483696

1 0.0 0.4430879 0.443323 0.443323143
0.5 0.6322154 0.632200 0.632199696

(0)g g l 0S = 1e =
g l
0.1 0.1 0.660273- 0.660275191-
0.5 0.1 0.380604- 0.380603982-
1.0 0.1 0.246415- 0.246414994-
0.1 0.3 0.664497- 0.664497828-
0.1 0.5 0.668484- 0.668486423-
0.1 0.7 0.672282- 0.672276683-
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The graphical results for physical interest  and  are presented for various 

value of significant parameter. Figures. 2 and 3 show the impact of and  on the variations of 
 and  at  and The increases of 

 shows an decreasing behaviour for  but increase in term of On the other hand, 

a contradict behaviour was noticed on and for parameter  with the increases of 

parameter  increase the  but decrease in term of   
 

 
Fig. 2.  vs  and  

 
The variation of  and  for various and  on the fixed 

 and  are captured on Figures 4 and 5. The increases of shows an 
increment behaviour for but decreasing in term of Conversely, a contradict 

behaviour was noticed on and for larger in value of  The decreasing trend for 

value of is obviously seen at absenteeism of first order slip ( ) however the substantial 

increment was perceived in This behavior were acceptable since the present of cause 
the flow more attached to the surface and release the energy. 

The variation of  and  for various and  on the fixed 

 and  are captured on Figures 4 and 5. The increases of shows an 
increment behaviour for but decreasing in term of Conversely, a contradict 

behaviour was noticed on and for larger in value of  The decreasing trend for 

value of is obviously seen at absenteeism of first order slip ( ) however the substantial 
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increment was perceived in This behavior were acceptable since the present of cause 
the flow more attached to the surface and release the energy. 

 

 
Fig. 3.  vs  and  

 

 
Fig. 4.  vs  and  
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Fig. 5.  vs  and  

 
The analysis on  was also conducted in Figures 6 and 7 subjected to various values of  

From the Figure 6, the increases of parameter  condense the  values significantly. It also 

detected the changes in value of  did not affecting the value of while only slightly change 
for the different of  

 

 
Fig. 6.  vs  and  
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Fig. 7.  vs  and  

 
 

 
Fig. 8.  vs  and  

 

Figures 8 and 9 presented the distribution of velocity and temperature of various values  
and  respectively. For the growing quantity of  the velocity of the fluid shows increasing trend 
but contradict for the growing of  for temperature distribution. Distributions of velocity and 
temperature profile for first slip and second slip velocity are demonstrated in Figures 10 - 13 
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respectively. Near the sheet, the increasing in the first order slip reducing the velocity of fluid but 
boosting at far from the plate. The temperature of the fluid showing increasing trend for the 
increment in first order slip quantities. However, the contradict behavior has been shown in velocity 
and temperature for the increasing of second order slip quantities. Further, it is clearly noticed all the 
distributions were fully fulfilled the boundary condition at far from the plate. It is also signifying the 
present model is correct. 

 
Fig. 9.  vs  and  

 

 
Fig. 10.  vs  and  
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Fig. 11.  vs  and  

 

 
Fig. 12.  vs  and  
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Fig. 13.  vs  and  

 
4. Conclusions 

 
This paper presented the numerical results of Reiner–Philippoff fluid flow over a stretching sheet.  

The flow is taking the consideration of thermal radiation together with first and second order slip 
velocities and also thermal slip condition. The value of suction parameter is one of the significant 
factors of variation skin friction and heat transfer. The present of velocity slip improve the skin friction 
but lagging the heat transfer coefficient. The temperature jump or temperature slip give the same 
impact as velocity slip to the heat transfer coefficient. 
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