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Abstract: A model of two-phase flow involving non-Newtonian fluid is described to be more reliable
to present the fluid that involves industrial applications due to the special characteristics in its
behavior. Many models of non-Newtonian fluid were discovered in the last few decades but the
model that captured the most attention is the Williamson model. The consideration of the existing
particles in the Williamson flow (two-phase Williamson fluid) will make the model more interesting
to investigate. Hence, this paper is aimed to explore the flow of two-phase Williamson fluid model
in the presence of MHD and thermal radiation circumstances. The obtained ordinary differential
equations after the transformations are solved using the Runge-Kutta Fehlberg (RKF45) method. The
flow is considered asymmetric since it moves over a vertical stretching sheet with external stimuli.
The result displays variation in dust phases compared to the fluid phase under distribution of velocity
and temperature. It can be concluded that the fluid–particle interaction (FPI) parameter lessening the
motion of fluid and heating characteristics. In addition, the upsurges on skin friction and heat transfer
are resulting from the rising FPI. Furthermore, the presence of Williamson parameter increases the
skin friction while causing degenerations on heat transfer of flow.

Keywords: two-phase flow; non-Newtonian fluid; Runge-Kutta Fehlberg (RKF45) method

1. Introduction

The fact that it has substantial claims in many engineering glitches such as in petroleum
industries, power makers, preservation of nuclear devices, food dispensation and many
others, the study of two-phase flow has fascinated the courtesy of many scholars. There are
many types of two-phase flow that cover solid–liquid, liquid–liquid, gas–solid, and also the
combination of gas–liquid. The combination of the fluid phase and solid phase (particles)
in fluid nature is very common since it occurs in many real-life situations. For instance,
we may take a look at the case of corpuscle in plasma. The blood and lymph cells can be
identified as corpuscle (solid) that suspend in liquid of human body. Besides that, one can
see the situation of two-phase flow in boiling flow along the intrusion to the geothermal
reservoirs and condensate flow of cold surface in heating pipes and porous insulators. The
symmetrical flow can be easily found if the geometry considered is general plate but when
it comes to the complex geometry, the flow will be asymmetric.
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Since the focus of this research is on the flow features, the important aspects to be con-
sidered is the fluid phase type which can be classified as Newtonian and non-Newtonian
fluids. Recently, the studies of non-Newtonian fluid have shown robust development.
Non-Newtonian fluid differs from the Newtonian fluid in terms of its non-linear connection
between stress level and strain due to the dependency of the fluid viscosity deformation.
Some studies on Newtonian and non-Newtonian fluid were carried out independently con-
sidering the fluid phase only but some focused on both the fluid and solid phase. The avail-
able discussion on the particular topic were highlighted by Niknam et al. [1], Han et al. [2],
Zokri et al. [3], Khan et al. [4], Basha et al. [5], Kumar et al. [6], Rehman et al. [7] and
Ali et al. [8]. The pseudoplastic characteristics were explained by the Williamson model
which is significant for a non-Newtonian type of fluid. This model is developed to present
the visco–elastic shear thinning fluid at which the viscosity decreases at the improvement
of the shear stress rate. Other models which explain quasi-plastic fluids included the
Ellis model, the Cross model together with the Carreaus model and the power-law model.
However, limited attention was given to the Williamson’s flow. Supported by experimental
output, the endeavor on the Williamson model started in 1929 by Williamson [9]. Fur-
ther investigations on this respective model have been continued by many researchers.
Khan et al. [10] tackled the suspension of nanoparticles in a Williamson fluid flow over a
nonlinear stretching sheet. The investigation on the Williamson fluid moving over a nonlin-
early stretching surface embedded with viscous dissipation with the presence of thermal
radiation was reported by Megahed [11]. Raza et al. [12] and Salahuddin et al. [13] studied
the topics of the Williamson fluid with radiation towards the stretchable geometry and
MHD Williamson fluid embedded with exponential viscosity, respectively. Abdal et al. [14]
recently discussed the thermal bioconvection dusty Williamson nanofluid caused by an
expanding sheet under non-Fourier flux together with radiation circumstance.

However, all the mentioned references are mostly limited to the single-phase flow.
The non-Newtonian fluid exploration together with dust particles (two-phase flow) is very
scarce and quite interesting to be discovered due to its soundness in presenting the real
existing complex fluid in many industrial works. Kasim et al. [15] investigated the fluid
and solid interaction of the dusty Casson model over a stretching sheet. The conclusion
highlighted the velocity profile which was substantially more affected by the variance in
FPI for all the discussed profiles than the temperature profile. Bilal et al. [16] documented
the case of Couette flow under viscoelastic with dust particles over a rotating frame. The
finding has revealed that the increase in the rotation parameter had caused the retardation
in the velocity of dust particles and fluids. The Maxwell’s dusty nanofluid embedded with
temperature-dependent viscosity together with the influence of solar radiation, surface
suction, and changeable surface tension was studied by AlQdah et al. [17]. It was revealed
that the strong FPI has improved the Nusselt number. Furthermore, only one former
work by Abdal et al. [14] is identified to focus on dusty Williamson nanofluid from an
extending sheet. Therefore, the present work aims to contribute to the progress of two-
phase Williamson fluid over a vertically stretched sheet in the presence of MHD and
thermal radiation effects. The mathematical model is set under a Newtonian heating (NH)
state. However, the discussion in this paper is mainly focused on the results when the
FPI parameter varies. The solution procedures begin with the transformation of partial
differential governing equations (PDEs) into ordinary differential equations (ODEs) to
form utilizing similarity variables which are then solved using the Runge-Kutta Fehlberg
(RKF45) method.

2. Mathematical Formulation

This study aims to reveal the steady flow of a two-dimensional incompressible dusty
Williamson fluid over a vertical stretched sheet. It is assumed that the sheet’s origin is at the
edge of the x-axis and stretched under uw(x) = ax. The Newtonian heating (NH) is applied
at the bottom of the plate. The flow has been induced with the align magnetic field for
angles ranging from 0◦ to 90◦. Furthermore, the flow was embedded with thermal radiation.
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The size of the particle was assumed to be spherical and variations of the particle’s volume
fraction as well as buoyancy are ignored with no interacting particles. Figure 1 portrays the
flow configuration.
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Figure 1. Flow configuration of Dusty Williamson fluid.

The governing equations for the dusty Williamson fluid are described with fluid phase
and dust phase. After undergoing Boussinesq and boundary layer approximations, the
governing equation are

Fluid phase [18]:
∂u
∂x

+
∂v
∂y

= 0, (1)

u ∂u
∂x + v ∂u

∂y = ν ∂2u
∂y2 +

√
2νΓ ∂u

∂y
∂2u
∂y2 +

ρp
ρτv

(up − u)

− σuB0
2

ρ sin2 α1,
(2)

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

∂2T
∂y2 +

ρpcs

τTρcp

(
Tp − T

)
− 1

ρcp

∂qr

∂y
(3)

Dust phase [19]:
∂

∂x
(up) +

∂

∂y
(vp) = 0, (4)

ρp

(
up

∂up

∂x
+ vp

∂up

∂y

)
=

ρp

τv
(u− up), (5)

ρpcs

(
up

∂Tp

∂x
+ vp

∂Tp

∂y

)
= −

ρpcs

γT
(Tp − T) (6)

The NH boundary condition are embedded in the model and can be expressed as [20]

u = uw(x) = ax, v = 0, ∂T
∂y = −hsT at y = 0

u→ 0, up → 0, vp → v, T → T∞, Tp → T∞ at y→ ∞
(7)

Note that, the expression of qr which obeys the Rosseland approximation takes the
form of [21]

qr = −
4σ∗

3k∗
∂T4

∂y
(8)

The variables involve in Equations (1)–(8) are summarized as follows:



Symmetry 2023, 15, 203 4 of 9

(u, v) velocities components of the fluid along x and y axes(
up, vp

)
velocities components of the particle along x and y axes

µ viscosity of the fluid
ρ density of fluid
ρp density of dust
α1 aligned angle
τv = 1

k relaxation time of particles phase
k Stoke’s resistance (drag force)
cp specific heat of fluid
cs specific heat of dust particle
T temperature of fluid
Tp temperature of particle
γT thermal relaxation time
qr radiative heat flux
a positive constant
hs heat transfer parameter
σ∗ Stefan-Boltzmann constant
k∗ Absorption parameter
T4 coefficient linear function of temperature

The Taylor’s series is applied to expand T4 about T∞ as

T4 = 4T∞
3T − 3T∞

4 (9)

In view of Equation (9) into Equation (8), Equation (3) can now be expressed as

u
∂T
∂x

+ v
∂T
∂y

= k
(

1 +
16T∞

4σ∗

3kk1

)
∂2T
∂y2 +

ρpcs

τTρcp

(
Tp − T

)
(10)

The similarity transformations that suit the considered model are ([22–24])

u = ax f ′(η), v = −(av)1/2 f (η), η =
( a

v
)1/2y, θ(η) = T−T∞

T∞

up = axF′(η), vp = −(av)1/2F(η), θp(η) =
Tp−T∞

T∞
,

(11)

where u = ∂ψ/∂y and v = −∂ψ/∂x in which ψ signifies stream function. Equations (1), (2),
(4)–(6) and (10) are now transformed to ordinary differential equations as follow

f ′′′ (η) + f (η) f ′′ (η)− ( f ′(η))2 + λ3 f ′′ (η) f ′′′ (η)

+βN(F′(η)− f ′(η))−M sin2 α1 f ′(η) = 0,
(12)

(
1 +

4
3

R
)

θ′′ (η) + Pr f (η)θ′(η) +
2
3

βN
(
θp(η)− θ(η)

)
= 0 (13)

(
F′(η)

)2 − F(η)F′′ (η) + β
(

F′(η)− f ′(η)
)
= 0, (14)

θp
′(η)F(η) +

2
3

β

Prγ

(
θ(η)− θp(η)

)
= 0 (15)

The boundary conditions (7) are changed to

f (0) = 0, f ′(0) = 1, θ′(0) = −b(1 + θ(0)) at η = 0

f ′(η)→ 0, F(η)→ 0, F(η)→ f (η),

θ(η)→ 0, θp(η)→ 0 at η → ∞

(16)

The prime (′) terms are denoted as derivatives to η. The parameters obtained after
employing Equation (11) are listed below



Symmetry 2023, 15, 203 5 of 9

N = ρp/ρ mass concentration of particle phase

M = σB0
2/ρa magnetic field parameter

β = 1/aτν fluid-particle interaction

Pr = µcp/k Prandtl number

γ = cs/cp specific heat ratio of mixture

b = −hs(v/a)1/2 conjugate parameter for NH

λ3 =
√

2a3/vΓx Williamson parameter

R = −4σ∗T∞
3/kk∗ radiation parameter

The expression of C f and Nux are

C f =
τw

ρU2
∞

, Nux =
aqw

k(Tw − T∞)
(17)

where τw and qw are

τw = µ0

[
∂u
∂y

+
Γ√
2

(
∂u
∂y

)2
]

y=0

, qw = −k
(

∂T
∂y

)
y=0

(18)

Using Equations (17) and (18), the skin friction and Nusselt number coefficient ac-
quired by expressions

C f Rex
1
2 =

(
f ′′ (0) +

λ3

2
( f ′′ (0))2

)
, NuxRex

− 1
2 = b

(
1 +

1
θ(0)

)
(19)

3. Numerical Procedure and Scope of Investigation

The established method for solving system of ODEs are the Crank–Nicolson method,
Runge–Kutta–Fehlberg method, bvp4c, Keller-box method and shooting method. The
method of Crank–Nicolson is said to be an unconditionally stable scheme but it involves
more computations per time step which results in complexity in finding the solutions.
Compared to the RKF45 method, the shooting method, bvp4c and Keller-box method are
not self-starting but require the guess of an initial value or condition which led to the
instability in generating an output. For that reason, the RKF45 method is implemented in
determining the solutions for Equations (12)–(16) by means of its stability, simple to use
and acquired self-starting. The computation is conducted by setting the supreme boundary
layer thickness for velocity and temperature distribution to be η∞ = 6 with the purpose of
satisfying the boundary conditions. The results are visually presented to reveal the flow
behavior of two phases characteristics.

The scope of this study is limited to the study on the interaction parameter of a fluid
and solid where the focus of parameter β is highlighted.

4. Results and Discussion

The characteristics of dusty Williamson fluid correspond to the involved parameters
are observed through the plotted graph. Before proceeding with the analysis of this
study, a comparative study between the current results and established works needs to be
performed to guarantee the authentication of the obtained results. Therefore, the numerical
values from the current study for the limiting cases, as in Table 1, are compared with
Salleh et al. [23] who tackled the numerical solution of Newtonian fluid without dust
particles using the Keller box method and also the exact values by Turkyilmazoglu [25]
who analytically solved the micropolar fluid under the absence of the material parameter
and wall permeability parameter. It can be noticed that a close agreement between the
present results and analytical as well as numerical results is achieved, thus validates the
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present numerical algorithm and graphical results. Specifically, the rising Pr values from 3
to 100 has deteriorated the temperature profile.

Table 1. Comparative study of θ(0) when M = λ1 = β = N = 0, γ→ ∞ and b = 1.

Pr Salleh et al. [23] Turkyilmazoglu [25] Present

3 6.02577 6.05158546 6.051585531
5 1.76594 1.76039543 1.760395438
7 1.13511 1.11681524 1.116818808
10 0.76531 0.76452369 0.76452521

100 0.16115 0.14780542 0.147805745

The computation work is then conducted in a way that the values of several parameters
such as M = 1, α1 = π/4, β = N = 0.5, b = 0.3, Pr = 10, R = 0.2, λ1 = 0.1 and γ = 0.1
are kept constants throughout the study unless for the varied parameters. It is worth
mentioning the value Pr = 10 was taken from the established document by Basha et al. [5]
who established the Falkner–Skan Williamson nanofluid. Since the present study devoted
the computational output of the varied values of β; therefore, only the respective parameter
will be discussed graphically.

Figures 2 and 3 display about the variation of β on distribution of velocity and tempera-
ture, respectively. The flow of Williamson fluid experiences the deceleration of fluid motion
and acceleration of dust particles. This observation can be explained theoretically that as β
increases, the relaxation time on dust particles, τv decreases on account of dust particles
are adjusting its velocities to be in the same rate with the motion of fluid. This motivates
the dust particles to accelerate until they reach the maximum fluid flow. Consequently,
the fluid physically experiences drag forces (Stoke’s Law) when in contact with the dust
particles, causing the fluid motion along with its associated momentum boundary layer to
retard. A similar trend is observed in the temperature of both phases when β is enlarged
from 0.5 to 2.0. The thermal boundary layer is slightly increased due to the incremented β
value. It is noticed for both the velocity and temperature profiles, the dust phase showcases
a significant graph variation while the fluid phase displays the opposite.
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When the fluid begins to move along the surface, the nearest fluid is dragged, which
activates the force coming from friction and counter on flow direction. Along with it, heat
starts to move throughout the fluid and surface. When constructing the wall of devices,



Symmetry 2023, 15, 203 7 of 9

these conditions must be taken into consideration as their features can survive high shear
stress and temperature. In conjunction with this, the influence of λ3 on C f Rex

1/2 and
NuxRex

−1/2 with different values of β are illustrated in Figures 4 and 5. The respective
outputs are very important since the captured behavior can be used to determine the
relation in the presence of the fluid and the dust particle. The increasing trend of C f Rex

−1/2

can be seen as its magnitude value keeps growing as λ3 and β are enhanced. Figure 4
explains the drag-like force generated when the fluid is in contact with dust particles,
causing a decrease in the acceleration of the fluid’s velocity. Therefore, it can be assumed
that the drag force is strengthened by the addition of dust particles, which then enhances
the wall shear quantities. The negative sign of C f Rex

1/2 related to the force on the activities
by the surface and fluid. For the physical quantity of NuxRex

−1/2, as in Figure 5, reveals
a decreasing trend in responce to the development effect of λ3 for a fixed value of β.
Nevertheless, the numerical value appears to rise when β is variously increased for a
definite value of λ3.
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5. Conclusions

The flow of the dusty Williamson fluid with thermal radiation and align magnetic
accompanied by boundary conditions of NH is analyzed. The mathematical equations of
this two-phase flow model are solved by using RKF45 method on the Maple software. It
can be concluded that the presence of dust particles affected the Williamson fluid in which
its flow propensity changes, as shown in the displayed figures. In addition, this study also
delves into the behavior of dust particles in a non-Newtonian fluid. Results obtained here
are expected to provide understanding on the two-phase flow from the mathematical point
of view. It can be concluded that

• The rising fluid particle interaction has decreased the velocity of fluid phase and
increased the velocity of dust phase.

• The incremented fluid particle interaction has increased the temperature of the fluid
phase and decreased the temperature of the dust phase.

• The skin friction coefficient has increased due to the fluid–particle interaction and
Williamson parameter.

• The heat transfer has increased by reason of the rising fluid–particle interaction and
decreased because of the Williamson parameter.
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