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ABSTRACT One of the essential systems in autonomous vehicles for ensuring a secure circumstance
for drivers and passengers is the Advanced Driver Assistance System (ADAS). Adaptive Cruise Control,
Automatic Braking/Steer Away, Lane-Keeping System, Blind Spot Assist, Lane Departure Warning System,
and Lane Detection are examples of ADAS. Lane detection displays information specific to the geometrical
features of lane line structures to the vehicle’s intelligent system to show the position of lane markings.
This article reviews the methods employed for lane detection in an autonomous vehicle. A systematic
literature review (SLR) has been carried out to analyze the most delicate approach to detecting the road lane
for the benefit of the automation industry. One hundred and two publications from well-known databases
were chosen for this review. The trend was discovered after thoroughly examining the selected articles on
the method implemented for detecting the road lane from 2018 until 2021. The selected literature used
various methods, with the input dataset being one of two types: self-collected or acquired from an online
public dataset. In the meantime, the methodologies include geometric modeling and traditional methods,
while AI includes deep learning and machine learning. The use of deep learning has been increasingly
researched throughout the last four years. Some studies used stand-alone deep learning implementations for
lane detection problems. Meanwhile, some research focuses on merging deep learning with other machine
learning techniques and classical methodologies. Recent advancements imply that attention mechanism has
become a popular combined strategy with deep learning methods. The use of deep algorithms in conjunction
with other techniques showed promising outcomes. This research aims to provide a complete overview of the
literature on lane detection methods, highlighting which approaches are currently being researched and the
performance of existing state-of-the-art techniques. Also, the paper covered the equipment used to collect
the dataset for the training process and the dataset used for network training, validation, and testing. This
review yields a valuable foundation on lane detection techniques, challenges, and opportunities and supports
new research works in this automation field. For further study, it is suggested to put more effort into accuracy
improvement, increased speed performance, and more challenging work on various extreme conditions in
detecting the road lane.

INDEX TERMS Lane detection, autonomous vehicle, systematic literature review, geometric modelling,
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I. INTRODUCTION
According to a World Health Organization (WHO) report
published in June 2022, approximately 1.3 million people die
yearly from road traffic accidents [1]. As a human driver,
it is hard to remain in the correct lane and to keep the
following proper gap with the front vehicle, as the driver
needs to focus on the road for an extended time. Moreover,
humans are prone to driver fatigue, sleepiness, inattention,
and drowsiness. Besides that, using technologies in vehicles
such as smartphones, entertainment, and navigation systems
may interrupt the driver and compromise safetywhile driving.
Therefore, the costs of road traffic accidents to society are
expensive in terms of human injury and economic loss. The
development of passive and active safety systems for auto-
mobiles has resulted from the abovementioned concern. Seat
belts and airbags are examples of passive safety systems [1].

These were developed to decrease the risk of injury to the
driver and passenger from the impact of accidents. These sys-
tems have become the standard safety gear for vehicles but are
only utilized after accidents occur, but it would be far better
if the casualties were entirely prevented. As a result, active
safety technologies are becoming a talking point among
automakers and researchers [2]. The evolution of autonomous
cars started in Europe around 1986. At this time, several
car manufacturers and research institutes initiated a series
of innovative vehicle safety projects and research to obtain
practical solutions for urban traffic problems. For instance,
the European Union introduced the Generic Intelligent Driver
Support (GIDS) project under the Dedicated Road Infras-
tructure for Vehicle Safety in Europe (DRIVE) [3]. This
massive Intelligent Vehicle project aims to assist the driver’s
identification and estimation of traffic danger and, in turn,
assign a system to deal with specific hazards. The essential
goal of the development system in an autonomous vehicle is
to assist drivers in identifying driving risks and ensuring extra
safety and comfort for the driver and passengers in the car.

The Advanced Driver Assistance System (ADAS) is one of
the essential systems in autonomous vehicles for making the
driving environment safer for drivers and passengers. ADAS
aims to reduce driver error by helping to avoid vehicle colli-
sions, increase traffic efficiency, and enhance transportation
development. Adaptive Cruise Control [4], Automatic Brak-
ing/Steer Away [5], Lane-Keeping System [6], Blind Spot
Assist [4], Lane Departure Warning System [7], and Lane
Detection [8] are several examples of the ADAS module.

The lane is a traffic sign that divides a road in the traffic
system and guarantees that automobiles are driven safely
and effectively. Lane detection is a technique for automati-
cally detecting road markers to ensure that cars stay in their
assigned lane and do not collide with the vehicle in other
lanes. It has played a part in autonomous driving. As a result,
accurate lane detection allows the autonomous vehicle to
make multiple decisions and judgments about its location and
state and to ensure safe driving [9]. However, lane detection
algorithms are difficult to use because of the wide variety of
lane markers, the complex and changing road conditions and

environment, and the lane’s inherent slenderness [10]. Hence,
significant research has developed reliable lane detection
algorithms [11].

To solve this problem, various hand-crafted methods,
including geometric modeling and traditional approaches,
have been used to detect lane markers. Most conventional
detection strategies adhere to pipelines, which typically
consist of image pre-processing, feature extraction, lane
model fitting, and line tracking. The purpose of image
pre-processing is to reduce the quantity of noise in the image.
Next, the features of lanes are utilized in the feature extraction
process, extracting areas that are lanes. After that, the lane
model is fitted and tracked via various selected methods. Sev-
eral previously applied techniques for feature extraction, such
as Inverse Perspective Mapping (IPM)/Perspective Trans-
form, filtering technique, edge detection-based technique,
image district extraction, morphological operators, neighbor-
hood searching-based feature points, grayscale, threshold-
ing, clustering, heterogeneous operators, and sliding window.
These techniques help reduce noise and make it easier to
extract lanes. Next, the lane model is typically fitted with a
line segment detector (LSD) and fitting-based methods like
B-spline, quadratic, polynomial, hyperbolic, and the least
square methodology. After that, the Kalman filter, lane clas-
sification, and the parabola equation are the three most fre-
quently utilized in tracking road lane detection. In addition,
tracking is used as the post-processing step to compensate for
fluctuations in the illumination [11]. Therefore, tracking also
helps with incorrect occlusion detection induced by inade-
quate lane markers [12]. However, the traditional methods
involve a process that is more difficult and hand-crafted,
resulting in a significantly longer processing time.

The recognition of lane markings has grown significantly
more accessible, faster, and more effective in recent years,
given the proliferation of Artificial Intelligence (AI) tech-
nologies. In addition, there is no longer a need to employ
hand-crafted procedures. AI is the simulation of human
intelligence processes by computers, most notably computer
systems. Machine Learning (ML) and Deep Learning (DL)
are the two primary categories that may be used to clas-
sify most of the AI approaches used in lane detection. The
DL approach has become more popular than ML due to its
effective performance in either classification or detection,
utilizing image frames as input to the network algorithm.
This is the primary reason for the rise in popularity of the
DL method. Bayesian Classifier, Haar Cascades, Extreme
Learning Machine (ELM), Support Vector Machine (SVM),
and Artificial Neural Network (ANN) are some examples of
the ML algorithms that are utilized in this field.

Meanwhile, the use of the DL technique as a stand-alone
approach was suggested by some researchers, while many
others advised integrating this methodwith another approach.
The goal of the integration of this network is to improve the
effectiveness of the network in challenging conditions when
it comes to identifying the lane mark. Other than that, DL is
combinedwith geometric modeling. DLmergedwithML and
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DL combined with DL are all examples of the integration
of another method. Aside from that, in recent times, a new
integration idea for this method has been offered, and it
involves merging DL with an attention mechanism. This is
the latest state-of-the-art technique that has been proposed,
and there is room for further investigation.

A new study addresses this need by thoroughly examining
the implementation of various techniques in lane detection.
Thus, this paper lays a solid foundation for lane detection
methodologies, challenges, and opportunities and lays the
groundwork for more research on automation. Furthermore,
this study provides an overview of what has been done
in the last four years of literature published related to the
method used to detect the road lane. In addition, the study
focused on answering specific issues about the collecting
data equipment, lane detection learning algorithms/network
topologies, and the dataset used for lane detection systems.
This research shows the difficulties in implementing learning
algorithms and determining future research areas. It also
serves as a resource for researchers and professionals in the
lane detection sector, assisting them in the latest approaches
or developing new lane detection frameworks for accuracy
enhancement and performance under various scenarios.

The rest of the article is arranged as follows: The research
questions, review protocol consisting of search sources,
search terms, inclusion and exclusion criteria, and litera-
ture collection are all described in Section II. The literature
that was chosen and analyzed statistically is presented in
Section III. Section IV summarises the literature to address
each question, constructively evaluates the outcomes, and
highlights key points. Finally, Section V concludes the study
with some suggestions for further research.

II. SYSTEMATIC LITERATURE REVIEW
The writing for this paper consists of planned, conducted, and
observed processes. First, the planning phase has clarified
the research questions and review protocol containing the
publications sources, keywords search, and selection criteria.
The next stage is conducting a phase related to analyzing,
extracting, and synthesizing the literature collection. The last
step, the observed stage, contains the review results that
address the research questions and the objectives described.

A. RESEARCH QUESTIONS
This review’s main objective is to determine the trend of the
method implemented for lane detection in the autonomous
vehicles field and the achievement of the current latest tech-
niques. Other than that, to look into the valuable foundation
on the methods, challenges, and opportunities. Thus, pro-
viding state-of-the-art knowledge to support new research
works in this computer vision and automation field. Hence,
the three research questions (RQs) described have been stated
as follows:

1) What techniques have been implemented for lane
detection in an autonomous vehicle?

2) What equipment is being used to collect the dataset?

FIGURE 1. Search queries for each of the databases. The databases
include Scopus, Web of Science, IEEE Xplore, and Springer Link.

3) What dataset was applied for the network training,
validation, and testing?

The focused approach has been adopted while scanning
the literature. First, each article was reviewed to see if it
answered the earlier questions. The information acquired was
then presented comprehensively to accomplish the vision of
this article.

B. REVIEW PROTOCOL
The following are the literature search sources, search terms,
and inclusion and exclusion selection criteria. Also, the tech-
nique of literature collection used for this SLR:

1) SEARCH SOURCES
Scopus, IEEE Xplore, Web of Science, and Springer Link
were chosen as the databases from which the data was
extracted.

2) SEARCH TERMS
’Lane detection’ and ’autonomous vehicle’ are two prominent
search terms used to investigate the topic. The terms ’lane
detection’ can be searched using different words. The ’OR’
operator was used to choose and combined the most rele-
vant and regularly used applicable phrases. For example, the
search phrases ’lane detection,’ ’lane tracking,’ and ’lane seg-
mentation’ were discovered. The ’AND’ operator combined
individual search strings into a search query. Figure 1 shows
the complete search query for each of the databases. The
databases include Scopus, Web of Science, IEEE Xplore, and
Springer Link.

3) INCLUSION
The study covered all primary publications published in
English that used the approach for lane detection, tracking,
segmentation, or any other task related to detecting the road
lane. There were no constraints on subject categories or time
frames for a broad search spectrum. The selected articles were
published for four years, from 2018 to 2021. In addition,
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Journal papers, conference proceedings, and book sections on
the subject were included in the research.

4) EXCLUSION
Articles written in languages other than English were not
considered. Therefore, the exclusion criteria included short
papers, such as abstracts or expanded abstracts, and sur-
vey/review papers.

C. LITERATURE COLLECTION
The literature search was carried out by providing the search
strings for each database, as shown in Figure 2. These
search keywords resulted in a total of 435 publications being
returned. Next, each database’s search results were evaluated
using predetermined inclusion/exclusion criteria. The initial
screening excluded review articles and non-English journals.
After that, each manuscript was assessed based on its title,
abstract, and a short read of the content to determine if it
should be accepted or rejected. The number of articles was
reduced to 158 after this filtration. Next, after removing
duplicate papers, 114 publications were included in the full-
text review. For reasons such as publications that are not
available as full text and similar to the previous articles by the
same author, just a small number of enhancements are also
excluded. Then, 102 studies were chosen to be included in
this SLR. As discussed above, the steps to obtain the publica-
tions related to this SLR have been presented PRISMA. The
Preferred Reporting Items for Systematic Review and Meta-
analysis (PRISMA) [13] are shown in Figure 2.

III. RESULTS
Table 1 lists the chosen publications, the year of publica-
tion, the source title, and the number of citations. About
102 publications have been listed in Table 1 with the state of
references. The lists included journals, conferences, and book
chapters. Figure 3 depicts the publishing distribution from
2018 to 2021. Every year, a growing tendency in the literature
is visible in the yearly distribution displayed in Figure 3.
For example, in 2018, about 16 papers were published, and
25 articles were published in 2019. Meanwhile, 29 and
32 papers were published in 2020 and 2021. Next, from 2018
to 2021, 48 articles were published in conference proceed-
ings, 44 in journals, and ten as book chapters, as shown
in Figure 4. For example, in 2018, 11 conferences, three
journals, and two book chapters were published.

Meanwhile, for the coming year, 2019, 16 conferences,
eight journals, and only one book chapter on-road lane
detection have been published. Next, 14 conference papers,
12 journals, and three book chapters have been published
for 2020. Finally, the number of conferences published
in 2021 is down from the previous year, when just seven
articles were released. In the meantime, journal publications
have climbed to 21, with four book chapters scheduled for
release in 2021. Table 2 shows the distribution of papers
in journals. Sensors journal ranks first with five publica-
tions, followed by the Journal of Ambient Intelligence and

Humanized Computing, International Journal of Advanced
Robotic Systems, Journal of Electrical Engineering and
Technology, Multimedia Tools and Applications, and IEEE
Access ranks second with two publications per article.

Table 3 indicates the publications of lane detection in
conferences. The tables show that the Advances in Intel-
ligent Systems and Computing conference ranks first with
five publications, followed byACM International Conference
Proceeding Series, 2nd International Conference for Emerg-
ing Technology, INCET 2021, Chinese Control Conference,
CCC, IET Conference Publications, and 2018 6th Interna-
tional Conference on Control Engineering and Information
Technology, CEIT 2018 which ranks second with two publi-
cations per conference.

Table 4 shows the publications of lane detection in book
chapters. There are ten book chapters which are Advanced
Structured Materials, Lecture Notes on Data Engineering and
Communications Technologies, Transactions on Computer
Systems and Networks, Image and Graphics, Lectures Notes
in Network and Systems, Computational Intelligence in Data
Science, Databases and Information Systems, Lecture Notes
in Computational Vision andBiomechanics, Image andVideo
Technology and Computational Science and Technology.

IV. DISCUSSION
To answer the RQs, each publication was thoroughly exam-
ined with the necessary data extracted. It consists of the
primary approach and the type of dataset used in the study,
whether self-collected or acquired from an online dataset.
Each publication focuses on the dataset’s collection and
preparation for network training and testing. The findings for
each RQ in their respective sections are as follows:

A. WHAT METHODS HAVE BEEN APPLIED FOR LANE
DETECTION IN AUTONOMOUS VEHICLES?
This section explores several related studies on detecting
road lane markers. The strategies for lane detection can be
categorized into two methods based on past research: Geo-
metric modeling/traditional approaches for lane detection and
ii) Artificial Intelligence-based techniques. These are out-
lined in further detail below:

1) GEOMETRIC MODELLING/TRADITIONAL METHODS
The pipelines used by most traditional detection algorithms
comprise image preprocessing, feature extraction, lane model
fitting, and line tracking. Image preprocessing aims to remove
some of the noise from the image. Feature extraction employs
lanes’ features to extract lane-like areas. The lane model is
then fitted and tracked using a variety of methods. Feature
detection is an essential lane detection algorithm that affects
performance [10]. As a result, the preprocessing image phase
is required inmany traditional methodologies for determining
the quality of features for lane detection tasks. The construc-
tion of an area of interest (ROI), image augmentation for
extracting lane information, and removing non-lane details
are all part of image processing. The ROI extraction method
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FIGURE 2. Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Diagram. The research identified
through four database searching was 435 publications.

efficiently reduces redundant information in the image pre-
processing section by selecting the lower portion of the
image [11]. Several studies have created ROIs using vanish-
ing point detection techniques [11], [14]. Furthermore, ROI
creation minimizes image noise, although it is not resistant to
shadows or automobiles [11]. Extracting specific features to
detect lanes in the features extraction process, such as color,
edge, geometric, and so on [10]. Several techniques, such as
Inverse perspective mapping (IPM)/Perspective Transform,
filtering technique, edge detection-based technique, image
district extraction, morphological operators, neighborhood
searching-based feature points, grayscale, thresholding, and
clustering.

In addition, heterogenous operators and sliding windows
also have been used in the past to reduce the effect of noise
and to extract lanes conveniently.

The lane model is then fitted with the line segment detector
(LSD) and fitting-based methodologies, including B-spline,
quadratic, polynomial, parabola, hyperbola, and least square.
Bresenham line voting space (BLVS), vanishing point, wave-
form, geometric modeling, harmony search (HS) algorithm,
contrast limited adaptive histogram equalization (CLAHE),
random sample consensus (RANSAC), graph-based, seed
fill algorithm, histogram analysis, model predictive control
(MPC), a region-based iterative seed method, ant colony opti-
mization, scene understanding physics-enhanced real-time
(SUPER) method, nested fusion, and linear regression were
used. The Lucas-Kanade approach, Kanade-Lucas-Tomasi
(KLT), and Lucas-Kanade optical flow have matched the
lane model. Meanwhile, the most extensively used algo-
rithms for tracking road lane detection are the Kalman filter,
lane categorization, and parabola equation. Tracking is often
employed as a post-processing step to compensate for lighting
fluctuations [11]. As a result, tracking aids in incorrectly
detecting occlusion due to faulty lane markers [12].

Table 5 shows the details of the feature extraction, line
model fitting, and lane line tracking approaches used in the
geometric modeling-based lane detection method. First, fea-
ture extraction methods include several techniques such as
perspective transform, thresholding, filtering, edge detector,
image district extraction, grayscale, clustering, neighborhood
searching-based feature points, sliding window, morphologi-
cal operations, and heterogeneous operators.

Next, Line Model Fitting contains several approaches such
as LSD, fitting, BLVS, vanishing point, waveform, geo-
metric analysis, HS algorithm, CLAHE, RANSAC, graph-
based, seed fill algorithm, KLT, Histogram analysis, MPC,
a region-based iterative seed method, ant colony optimiza-
tion, SUPER algorithm, nested fusion, Lucas-Kanade optical
flow, and linear regression.Meanwhile, three techniques have
been applied for line tracking approaches the Kalman filter,
lane classification, and parabola equation. Geometric mod-
eling/traditional lane detection approaches are used in much
literature, such as by D. Kavitha & S. Ravikumar [16].

The input image is first transformed into a greyscale image
from a color image. The noise is eliminated, and edge detail
enhancement is performed for the image preprocessing pro-
cedure phase. After converting to greyscale, the author used
the adaptive median filter (AMF) to reduce/remove noise
and then used the Laplacian-based technique for contrast
enhancement. After the preprocessing stage of the task is
completed, the edges in the image are recognized using the
Canny operator for the feature extraction stage. The Hough
transform is used to fit the line model after the edges have
been detected. The Hough transform is commonly used to
extract characteristics affecting the geometry of an input
image. The lane is then detected using the hyperbola fitting
technique. Ghanem et al. [12] also proposed a geometric
modeling-based method for detecting road lanes, including
image processing, feature extraction, line fitting model, and
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FIGURE 3. Distribution publications for the year 2018-2021. The trend for the statistics of the published papers is increasing every
year. The graph show that the lane detection study is still relevant for the upcoming year.

FIGURE 4. The number of publications over the year from 2018-2021. The number of publications for journal articles and book
chapters has been increasing over the year. Meanwhile, the conference publications are fluctuating in these four year.

lane line tracking pipelines. First, the Region of Interest (ROI)
is used in the image processing stage to remove another
object unrelated to the lane markers. In the feature extraction
step, edges are extracted from the image using the Canny
approach, which is robust against noise. Second, the Hough

Transform is used to extract the line segments. After that, the
input is filtered using the standard deviation (SD) filter. This
textural filter aids in the provision of local intensity variation
information. When the texture is smoother, the SD filter’s
response is smaller. As a result, the SD filter is employed in
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TABLE 1. Chosen Publications, Source Title, and The Number of Citations.
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TABLE 1. (Continued.) Chosen Publications, Source Title, and The Number of Citations.
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TABLE 1. (Continued.) Chosen Publications, Source Title, and The Number of Citations.

this research to show the degree of pixel value variability in
a region. This SD filter computes the SD of the pixels in the
vicinity of the pixel of interest. In addition to the SD filter,
the Gaussian filter can remove noise. This study uses least-
square fitting to fit the line model. Meanwhile, the Kalman
filter is used to accomplish the lane tracking procedure in this
research since it helps to converge to actual values faster than
other methods.

After that, Gong et al. [34] used the double threshold
approach to preprocess the self-collected road image and
get the ROI. The region of interest, which includes lane
line information, is intercepted to reduce background inter-
ference on the road and improve the algorithm’s real-time
performance. The grey value of the image is then processed
utilizing image enhancement employing exponential function
transformation. After a nonlinear grey change, the low grey
value background area becomes darker, while the lane line
area becomes lighter in color. As a result, the contour of the
high-grey-valued area becomes more visible, and the contrast
improves. The method effectively increases the difference
between the lane line region and the background information,
lowering the threshold selection difficulty. The image grey
value adjustment and image smoothing were carried out only
in the significant region of the road to tackle the problems of
lane detection taking a long time and having poor noise resis-
tance. The modified Canny operator was then used to extract
the lane line edge. When the Otsu threshold was chosen, the
Kalman filter technique was used to anticipate the ideal point
in the following image series using optimized autoregressive
data processing features. The OTSU technique is an approach
for determining the image binarization segmentation thresh-
old proposed by Japanese expert OTSU. The high and low
thresholds are supposed to be known. According to the OTSU

basic principle, the image is separated into three sections:
the background part, the suspected foreground fraction, and
the foreground part. Following that, a practical multi-layer
evaluation function was constructed to implement the online
adjustment of lane lines using the straight-line fitted by the
Hough Transform. Kasmi et al. [44] is another paper that
proposed the traditional technique. Initially selecting the best
Region of In terest, the author used the conventional method
for detecting the road lane.

Following choosing the most informative ROI, the
RANSAC approach detects the segment within the ROI.
Finally, to track the road lane, the Kalman filter is used.
Next, Akbari et al. [19] used the geometric modeling tech-
nique, which uses the ROI for preprocessing and the Canny
operator to extract the edge feature, and the Hough trans-
form to filter out unwanted edges and lead to straight lines.
The vanishing point then filters out the image’s irrelev ant
straight-line segments. As a result, the B-spline clustering
and IPDA filter is also utilized in this literature to detect the
road lane efficiently. These methods are quick and easy to
use but require manual parameters. Furthermore, while they
can function well in routine situations, they cannot adjust
to changing conditions such as lighting and occlusion [10].
Furthermore, while conventional lane detection methods are
frequently quick and straightforward and can meet real-time
requirements, the road environment is constantly changing
due to weather, light, and cars. The findings are not qualified
with high accuracy [15].

2) ARTIFICIAL INTELLIGENCE
Artificial intelligence (AI) is the idea of computers, specif-
ically computer systems, imitating human intelligence
processes. Expert systems, natural language processing,
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TABLE 2. Publications of Lane Detection Through Journal.

speech recognition, and machine vision are examples of
AI applications. AI systems generally absorb enormous
volumes of labeled training data, analyze it for correla-
tions and patterns, and use them to forecast future states.
For example, machine learning and deep learning are the
AI algorithms that detect lanes. Unfortunately, most tradi-
tional lane detection systems suffer from either processing
time that does not meet real-time needs or inefficiency in

a complex environment that also fails to meet the total avail-
ability restriction of such a core function [45]. The two
branches of AI-basedmethodology described in this paper are
machine learning and deep learning-based techniques. How-
ever, deep learning has become more popular than machine
learning due to its excellent performance in either classifica-
tion or detection using image frames as input to the network
technique.
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TABLE 3. Publications of Lane Detection Through Conference.
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TABLE 4. Publications of Lane Detection Through Book Chapter.

a: MACHINE LEARNING (ML)
Machine learning is a method that combines data
and algorithms to mimic the way humans learn and
increase its accuracy over time. For example, several lane
detection experiments in autonomous vehicles have been
conducted. Bayesian Classifier, Haar Cascades, Extreme
Learning Machine, Support Vector Machine, and Artificial
Neural Network are machine learning techniques employed
in this field.

Dhanashirur [95] proposes a lane detecting framework
based onmachine learning. In this work, the dataset is initially
preprocessed using adaptive thresholding, the Otsu approach
to estimating ROI in an image. The Cascaded Dempster
Schafer Combination Rule is then used to create a form of
Bayesian learning. Finally, outliers are removed from the
post-process data using morphological procedures such as
erosion and dilation consecutively using a tiny kernel.

Afterward, Feng and Werner Wiesbeek [89] advocated
combining machine learning and deep learning. The author
handles the lane detection problem by first developing a
semantic segmentation-based technique using a 5-layer Seg-
Net segmentation neural network, divided into the encoder
and decoder networks. However, based on the segmenta-
tion results, there are segmentation uncertainties: areas not
belonging to the lane will be segmented into the lane in spe-
cific single cycles shortly, and vice versa. As a result, Bayes’
theorem can improve the segmentation’s stability. The Radial
Basis Function (RBF)-kernel and Support VectorMachine are
also tested to create a robust model for detecting the road lane.

The detection of sharply curved lanes remains a complex
problem. As a result, Fakhfakh [45] suggested a unique
curved lanes characterization and estimation algorithm based
on a Bayesian framework for estimating multi-hyperbola
parameters to recognize curved lanes under challenging set-
tings. First, the trajectory over each section is modeled by
a hyperbola, whose parameters are computed using the sug-
gested hierarchical Bayesian model. Next, the input image is
preprocessed to extract contours, characterizing the extracted
lanes by fitting them to the chosen analytical model. Finally,

a Bayesian approach is proposed to accurately define the
curving lane over the entire image by estimating the hyper-
parameters of the N hyperboles.

b: DEEP LEARNING (DL)
Due to the advancement of deep learning, numerous strategies
have been presented to increase the performance of lane
detecting tasks using this approach compared to previous
methods [15]. Recent improvements in DL architectures have
considerably impacted the refinement of derived features for
lane detection tasks. Neural networks have handled tradi-
tional ROI generation, filtering, and tracking approaches [11].
The Convolutional Neural Network (CNN) is used in the
majority of deep learning methods [57], [111]. As CNN has
grown in popularity, new concepts and systems have been
offered [10].

Furthermore, with its remarkable feature extraction capa-
bilities, Convolutional Neural Network (CNN) has been
widely employed in computer vision since AlexNet [112].
As a result, many excellent neural networks have been pro-
posed. Because of its simplicity and modular nature, it has
been widely utilized as a backbone network. ResNet varia-
tions, such as ResNet [113] and ResNeXt [114], have been
released recently. Lane detection is another application of
these networks [11]. Other methods for detecting lanes in
continuous frames include CNN, Recurrent Neural Network
(RNN), and Long Short-Term Memory (LSTM) [22]. Also,
the Deep Learning method’s Fully Convolutional Network
(FCN) [6] is commonly used for semantic segmentation,
and it has been swiftly adopted in numerous ways [115],
[116], as well as lane detection approaches [117], [118].
An encoder-decoder structure [119], as well as an end-to-
end architecture, are two network model structures that are
frequently employed in many computer vision tasks [15],
[120], [121]. Semantic segmentation approaches [122], [124]
are also applied to identify the background and lane pixels.
Then, to get lane location [10], instance segmentation meth-
ods [125] are utilized.
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TABLE 5. Feature Extraction, Line Model Fitting and Line Tracking Techniques for Geometric Modelling-Based Method in Lane Detection.

In recognizing the road lane, the DL adaptation approach
can be used in various ways. Several researchers advised
employing the DL methodology independently, and others
suggested integrating it with another method. Incorporating
this network increases the network’s efficiency in detecting
the lane mark under challenging settings. DL + geometric
modeling, DL+ML, and DL+DL are examples of methods
that can be combined with another. Aside from that, com-
bining DL with an attention mechanism has recently been

presented as a novel means of integrating this technology.
This is a new proposed state-of-the-art technique that other
researchers can investigate further.

i) CONVENTIONAL DEEP LEARNING
Several works of literature built a lane detection system using
this article’s stand-alone deep learning-based technique. For
example, Wu et al. [29] proposed a convolutional neural
network-based method for recognizing lanes in driving video
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images. The expectation line represents an autonomous vehi-
cle’s driving behavior in greater detail. Using the long short-
term memory-based approach, the predicted line is then used
to estimate the vehicle’s future trajectory. Due to prior infor-
mation, autonomous cars may drive smoothly by combining a
convolutional neural network with long short-term memory-
based techniques (convLSTM).

Similarly, Sun et al. [71] use atrous convolution and spatial
pyramid pooling techniques to construct a new network-
based deep learning method for lane detection. LaneNet
is used to build the network, consisting of one encoder
and two decoders. The Embedding Decoder and the Binary
Decoder are the names of the two decoders. The author
uses a sequential mix of the Atrous ResNet-101 and the
Spatial Pyramid Pooling (SPP) networks to replace LaneNet’s
original encoder. Meanwhile, the Embedding Decoder and
Binary Decoder architecture are similar, except for the num-
ber of output dimensions. The suggested lane detection sys-
tem in [77] is based on the Drive Works LaneNet pipeline,
which uses camera images. This paper presents an integrated
framework for autonomous driving based on the NVidia deep
neural network multi-class object identification framework,
the lane detection framework, and the free space detection
framework. This framework can also be used for localiza-
tion based on map matching, mapping, and path planning
in autonomous driving solutions. Finally, in [80], Philion
proposes a revolutionary, utterly convolutional lane detection
model that learns to decode lane structures instead of depend-
ing on post-processing to infer structure.

Meanwhile, Dawam and Feng proposed a computer vision-
based road surface marking identification system in [46],
serving as an additional layer of data for AVs to choose
from. The authors used YOLOv3 in the cloud to train the
detector to recognize 25 different road surfacemarkings using
over 25,000 images. The experiment results show that the
detection accuracy and speed are reasonably good.

Traditional approaches based on handcrafted characteris-
tics are less reliable and computationally expensive due to the
lack of distinguishing features and several road occlusions.
Muthalagu et al. [35] proposed stand-alone deep learning
to deal with this by learning both the lane markings seg-
mentation and the localization and geometry of each lane
in the form of critical points using a compact and efficient
multi-stage Convolutional Neural Network (CNN) architec-
ture. The proposed methodology combines a lane mask pro-
posal network with a lane key-point determination network
to correctly estimate the key points representing the vehicle
lanes’ left and correct lane markings. Finally, Dewangan
et al. [37] suggested a semantic segmentation architecture
encoder-decoder network. A hybridmodel based onUNet and
ResNet has been adopted in this direction. First, the image
was down-sampled, and the required features were identified
using ResNet-50 as a segmentation model. Then, UNet was
used to up-sample and decode the segments of the images
using the detected features.

ii) DEEP LEARNING + GEOMETRIC MODELLING
Several researchers combine a deep learning-based method-
ology with geometric modeling methods to increase the effi-
ciency of detecting the road lane. While training on manually
labeled data, deep neural networks have demonstrated their
potential to reach competing accuracy and time complexity.
However, the lack of segmentation masks for host lanes in
adverse road environments limits the applicability of fully
supervised algorithms to such a situation. To address this
issue, Yousri et al. [23] propose combining classical computer
vision techniques and deep learning approaches to establish a
reliable benchmarking framework for lane recognition tasks
in complicated and dynamic road scenarios.

To begin, researchers tested an automatic segmentation
method based on a series of traditional computer vision
approaches. This technique generates appropriate weak labels
by precisely segmenting the semantic region of the host
lane in the complex urban images of the nuScenes dataset
utilized in this framework. To begin with, the checkerboard-
based calibration technique is used to correct distortion.
Then, using the vertical mean distribution (VMD) approach,
an adaptive region of interest (AROI) is chosen. Finally, the
author employs the progressive probabilistic Hough trans-
form (PPHT) to locate the lane region and calculate the van-
ishing point. To limit the undesirable consequences of such
off-lane information, filtering must be done by masking areas
of the images. As a result, the author segments the road using
an adaptive algorithm based on a horizon line. The Canny
approach is then used to deal with the arbitrary lane shapes
discovered in the photos. Because the lane lines are parallel,
straight, and of varying colors, image processing techniques
retain and enhance these characteristics. Then, color space
conversion and morphological processes ensure precise lane
segmentation. The morphological top-hat procedure is com-
monly employed to separate the image’s brighter portions
from their darker surroundings. In the photos, bright pixels
depict lane lines.

As a result, top-hat operation aids incorrect lane iden-
tification in unforeseen lightning variations by denoising
and enhancing contrast. After using the perspective trans-
form, line fitting is required to complete the segmentation
stage to identify the lane region and improve lane features.
Next, a sliding window search is used to iterate over dif-
ferent line shapes for more flexible fitting when dealing
with arbitrary forms. Finally, the images are unwrapped to
the standard view using the inverse perspective transform,
and ground truth labels are constructed using single-channel
conversion. SegNet, Modified SegNet, U-Net, ResNet, and
ResUNet++ are five state-of-the-art FCN-based architec-
tures trained and benchmarked using the data. The work’s
contributions include the first time ResUNet++ was intro-
duced on the lane detection task, where it outperformed
the other tested models, and the introduction of a robust
lane detection using an ensemble-based approach, as well as
testing the models by looking at the ensemble prediction of
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the top three models in shadowy scenes and obscuring road
scenarios.

Traditional computer vision (CV) techniques are often
time-consuming, require more processing resources, and
employ complex algorithms to analyze the lane images’
detailed properties. This research [24] proposes a deep con-
volutional neural network (CNN) architecture that avoids the
complexities of existing CV techniques to address this issue.
As a result, CNN is considered a viable method for lane
marking prediction, although improved performance neces-
sitates hyper-parameter modification. An S-Shaped Binary
Butterfly Optimization Algorithm (SBBOA) is used in this
paper to improve the initial parameter setting of the CNN.
This method chooses the relative CNN parameters for precise
lane marking. The suggested SBBOA optimized CNN frame-
work extracts the lane’s pixel attributes before using the CNN
architecture to predict the lane. In this study, each lane line
is considered as a specific circumstance. The SBBOA-CNN
classifier determines which pixel belongs to which lane and
turns that knowledge into a parameter description.

Next, Kanagaraj et al. [25] show how to improve the
efficiency of autonomous vehicles by using Convolutional
Neural Networks with Spatial Transformer Networks and
real-time lane detection. First, the pipeline converts a real-
time image to grayscale and smoothes the edges with a Gaus-
sian Blur to reduce noise. Applying a Canny function to aid
edge detection is the next step in the process. The edges in
the image are obtained after performing the Canny process
by measuring the gradients of adjacent pixels. A significant
change in gradients can identify an edge. Because the lanes
will be found in the bottom half of the image, a region of
interest is constructed that corresponds to that portion of the
image. A Hough transformation is used to obtain the image’s
lane lines in the next stage. A single long lane line separates
the left and right lanes. This is accomplished by filtering the
lines based on their slope to determine which lines belong to
which range and disregarding the others. The left and right
lanes for the region of interest are found this way. The next
step is to overlap the lane lines with the original image to
combine the images. The camera calibration matrices and
distortion coefficients are computed before performing a dis-
tortion correction to raw images and creating a threshold
binary image using color transform and gradients. After that
a perspective transformation creates a bird’s-eye view of
the image. Even when lane lines in an image are parallel,
perspective causes it to appear to converge from a distance.

It is easy to remove the curvature of lane lines from this
perspective. The convolution is then used with a sliding win-
dow tomaximize the number of heated pixels in eachwindow.
The Spatial Transformer Network (STN) then interpolates
images using a learnable transformation that removes spatial
invariance. The STN block enhances the classifier’s accuracy
when used in a convolutional neural network. Due to input
changes, convolutional neural networks might suffer from a
lack of robustness. Scale, viewpoint, and backdrop clutter are
examples of these variances. The STN aids in the reduction of

these difficulties brought on by input variability. Because of
its versatility, an STN can be introduced into any model area.
They can also be trained using only one backpropagation
algorithm.

Zhan and Chen [73] suggested a lane line detection tech-
nique based on image processing and deep learning based
on the FPGA development platform to accomplish the fast
lane line detection effect of structured roadways, with speeds
up to 104 FPS. First, the camera captures road data, which
is then transferred to the FPGA as image data via the AXI
protocol. This part aims to convert data into RGB24 format,
including data format conversion and transmission interface
conversion. The image from the camera is first subjected to
data preprocessing, which provides for data format conver-
sion and transfer interface conversion. In addition, an image
processing approach that includes threshold segmentation,
inverse perspective transformation, and lane line quadratic
curve fitting is used to detect lane lines. The final output
detection results are the curvature radius of the present lane,
the lane’s bending direction, the path and distance of the
vehicle deviating from the lane center, and so on. At the same
time, the lane line coordinates are provided to enable the lane
line type identification module to intercept the identification
area dynamically. As a result, this study uses the deep learning
(CNN) method to detect lane markers and display the output
image.

The authors of [101] present a new lane marking detection
system based on lane structure analysis and convolutional
neural networks (CNNs). The pavement that serves as the
background for the lane markers is first removed in a prepro-
cessing stage. Following that, a region of interest is created
using a set of local waveforms from local images, and a CNN
classifier is used to find lane marking candidates. Finally, the
lane geometry analysis stage determines whether the item is
a lane marking. A map relative localization method based on
road lane matching [49] is developed. When GNSS data is
neither exact nor unavailable, the technique provides lane-
level location accuracy for autonomous vehicle driving. As a
lane detector, the DarkSCNN neural network was deployed.
The inverse perspective transform processes the detection and
fits it to the polynomial.

Meanwhile, the Modified Iterative Closest Point algorithm
compares two-point clouds: one created using HD-map data
and the other using camera data. Furthermore, in [79], images
from a front-view camera are captured and fed into a seman-
tic segmentation network to extract features for detecting
road lane markings. The network is first built using the
U-Net architecture, a convolutional neural network designed
for biomedical image segmentation. The Hough Transform
method is then used to determine the segmentation network’s
output lines. Unfortunately, Hough Transform also produces
a lot of lines from segmented images. As a result, theK-means
Clustering technique is investigated to compute and identify
the best line for each road lane marking.

Then, using a combination of semantic segmentation and
optical flow estimation networks, Lu et al. [20] proposed
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a fast and reliable lane detecting approach. The study was
divided into lane segmentation, lane discrimination, and
mapping. First, a robust semantic segmentation network
was developed for keyframe segmentation, and a fast and
slim optical flow estimation network was employed to track
non-key frames in lane segmentation. The density-based spa-
tial clustering of applications with noise (DBSCAN) was
used to identify lanes in the second part. Finally, a mapping
approach for translating lane pixels from the pixel coordinate
system to the camera coordinate system and modeling lane
curves in the camera coordinate system is proposed, provid-
ing feedback for autonomous driving.

First, the preprocessing of input frames in [75] involves
removing most of the sky region and performing the auto-
mobile dashboard. The frame is then scaled to a resolution
of 360× 480. This frame is then input into the lane marking
segmentation network, which segments out the visible lane
marking pixels before using graph-based algorithms to detect
instances of segmented lane markings.

The instance segmented output is subjected to perspective
transformation (bird’s eye view), followed by an attentive
voting-based clustering approach and polynomial curve fit-
ting, which yields the final result. Finally, the author created
a lane segmentation network with stride convolutions and
stride deconvolutions with relu activation in hidden units
using the deep learning method, a CNN-based methodol-
ogy. The research [108] developed a Spatio-temporal, deep
learning-based lane boundary recognition approach that can
detect lane boundaries accurately in real-time under complex
weather circumstances and traffic scenarios. The algorithm
is divided into three parts: first, perform the inverse perspec-
tive transform and lane boundary position estimation using
lane boundaries’ spatial and temporal constraints; second,
classify the boundary type and regress the lane boundary
position using convolutional neural networks (CNN). Finally,
the author optimizes the CNN output and uses Catmull-Rom
(CR) spline fitting to conduct lane fitting.

Then, in [65], a comprehensive method for detecting lanes
and impediments on the road is proposed. A combination of
deep learning and a traditional image processing framework
was developed for detecting lanes. When the DL approach
and the conventional method are combined, data collection
time and effort are reduced while performance is maintained.
The author first proposed the LiteSeg network architecture.
The acquired RGB image is the network’s input, and the
output is a lane segmentation map with two classes: lane
and non-lane. MobileNetV2 is the backbone network with
a depth-wise and inverted residual structure. However, the
LiteSeg network, which uses the MobileNetV2 backbone,
cannot detect all lanes correctly. Because the acquired data
contain a lot of noise and fragmentation, the author offers
a Hough transform-based lane detection method to fix the
problem. In addition, the author creates a lane model using
a quadratic polynomial to deal with curvy lanes. After that,
the resulting candidate segments are fitted into the lane
model using Polynomial curve fitting. The road ROI is then

determined using the obtained outermost lanes. After that, the
defined ROI will be forwarded to the depth processing task to
be processed further.

Finally, the literature in [105] introduced the model
pipeline, which consists of three modules: binary semantic
segmentation, clustering, and curve fitting. The semantic
segmentation module analyzes pixels in an image to see if
they belong to a lane line or the background. The clustering
module clusters the lane points to form different lane line
instances. When the instance segmentation is completed the
perspective, transformation converts the image into a bird’s-
eye view. Finally, a curve fitting technique precisely identi-
fies each lane line. To ensure excellent temporal efficiency,
the author uses MobileNet as the backbone of CNN in the
semantic segmentation module. Furthermore, MobileNet is a
valuable model for mobile and embedded vision applications
since it uses depth-wise separable convolution. In addition,
the author clusters points that correspond to various lane lines
using the K-Means clustering algorithm.

iii) DEEP LEARNING + MACHINE LEARNING
Amachine learning-based strategy is also chosen to integrate
with DL to boost the efficiency of lane detection tasks and
combine DL with the old method. Lane detection utilizing
road features-based algorithms and color feature-based algo-
rithms, according to Zhang et al. [50], cannot achieve satis-
factory performance due to several constraints. For example,
the number of lanes is frequently not set, and techniques
for detecting lanes are sometimes erroneous. Furthermore,
Hough transform-based algorithms interpret straight lines
as lanes, leading to street lamps being mistaken for lanes.
Similarly, adverse weather, such as rain, will impact lane
detecting. Likewise, inadequate lighting and a night setting
will produce poor results. However, there are yet no practical
solutions for dealing with such issues. As a result, standard
approaches are ineffective in detecting lanes in complex traf-
fic situations. In addition, lane detection should be done in
real-time. Most algorithms, however, fail miserably at this
goal. As a result, by modeling the sophisticated traffic situa-
tion, this literature provides a quality-guided lane recognition
algorithm that can successfully manage various lanes. The
author first uses chessboard images for camera calibration
to determine the correspondence between the real-world and
image coordinate systems. They then use prior knowledge
and picture quality scores to capture image regions of interest
that only include lane information. After that, they create a
two-stage CNN architecture for lane detection that uses a
binary lane mask for lane matching. The author then created
a multimodel feature fusion approach for training an SVM to
classify image regions. From the lane and non-lane areas, the
author created a 137-D multimodel feature by combining a
128-D histogram of gradient (HOG) and a 9-D color moment.
They then train an SVM to classify various locations. Next,
they use a slidingwindow approach to build a set of additional
regions from the image and SVM to select lane regions for
testing. Finally, using image segmentation, they train an SVM
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to split the image into lane-information sections and non-lane
information regions.

Afterward, Feng et al. [89] combine DL and ML for lane
detection. Deep learning (5-Layer SegNet)-based approach
is used first to detect the lane. However, as the segmentation
results show, there are segmentation uncertainties as to which
areas not belonging to the lane will be divided into the lane
in specific single cycles and vice versa. Therefore, Bayes’
theorem is used to make the segmentation more stable. As a
result, an RBF-kernel SVM (Support Vector Machine) is also
tested.

iv) TWO SERIAL DEEP LEARNING
Traditional techniques have yielded significant results but
have limitations: (1) lane awareness is challenged by varying
weather conditions and illumination. Furthermore, previous
methods lack a unifying framework for describing various
scenes and (2) the inefficiency of using photos owing to
potential label noise. J. Liu [72] introduced a lane detec-
tion framework for autonomous vehicles based on learn-
ing a comprehensive reference quality-aware discriminative
gradient deep model, which uses two types of deep net-
works. To detect the presence of a lane, the author first cre-
ates a gradient-guided deep convolutional network because
the gradient value of the lane edge is greater than that of
other regions. Then use the entire reference image quality
assessment (FR-IQA) method to find more discriminative
gradient signals while also utilizing geometric characteristics.
Following that, a recurrent neural layer reflects the spatial
distribution of identified lanes using difficult-to-define visual
cues. Finally, the noisy features are abandoned using the
sparsity penalty, and only a small percentage of the tagged
images are used in this paper. Next, Zou et al. [126] propose
a deep hybrid architecture that combines the convolutional
neural network (CNN) with the recurrent neural network for
lane detection using the same strategy (RNN). A CNN block
abstracts information from each frame. The CNN features
of several continuous frames with time-series properties are
subsequently sent into the RNN block for feature learning and
lane prediction.

Pihlank and Riid [69] introduced a novel neural network-
based method that integrates autoencoder structural compo-
nents, residual neural networks, and densely linked neural
networks. The proposed architecture consists of three identi-
cally structured connected neural networks that combine the
architectures of symmetrical AE (with dimension reducing
encoder and expanding decoder), ResNet, and DenseNet,
with feature map concatenation providing shortcut connec-
tions between encoder and decoder layers. Z. M. Chng et al.
presented two state-of-the-art algorithms, SCNN+RONELD
and ENet-SAD + RONELD, in [55]. Furthermore, as this
research indicates, convolutional neural networks (CNNs)
are used to train deep learning models in recent state-of-the-
art lane detecting algorithms. While these models perform
admirably on train and test inputs, they perform poorly on
unknown datasets from various contexts. This study proposes

a real-time resilient neural network improvement for active
lane detection (RONELD), using deep learning probability
map outputs to identify, track, and optimize active lanes. They
adaptively extract lane points from probability map outputs,
detect curved and straight lines, and then use weighted least-
squares linear regression on straight lanes to correct fractured
lane edges caused by edge map fragmentation in real images.
Finally, by tracking previous frames, the author hypothesizes
genuine active lanes. Finally, Pizzati et al. [58] proposed
an end-to-end system based on two cascaded neural net-
works that run in real-time for lane boundary identification,
clustering, and classification. They train a CNN for lane
boundary instance segmentation as a first step. Then, they
extract a description for each observed lane boundary and
run it through a second CNN. Instead of lane markings, CNN
has been trained to recognize lane boundaries. Then, instead
of semantic segmentation, they use instance segmentation on
lane boundaries. Mask R-CNN, for example, is a cutting-
edge network segmentation technique. ERFNet was also
chosen as their baseline model. As a result, this paper uses
another CNN to classify each lane boundary, linking the
identified boundaries with the ground truth. Furthermore, the
architecture for this work is based on H-Net.

v) DEEP LEARNING WITH ATTENTION MECHANISM
In the past, state-of-the-art lane detecting algorithms have
outperformed traditional methods in complex scenarios, but
they also have limitations. For instance, only a certain num-
ber of lanes can be spotted, and the cost of detection time
is sometimes prohibitive. Human vision’s attention mecha-
nism and methods make network learning more concerning.
Zhang et al. [9] presented a real-time lane recognition system
based on an attention strategy to address this issue. The
proposed network comprises an encoder module that extracts
lanes’ features and two decoder modules, a binary decoder
and an embeddable decoder, that forecast lanes’ instance
feature maps. The author employs biologically inspired atten-
tion in the encoder to extract features holding a wealth of
information about the target area. A correlation between
the characteristics produced through convolutions and those
extracted by attention is developed to learn the contextual
information. The contextual information is combined with
features from up-sampling in the decoder to compensate for
the lost detailed information. The binary decoder assigns each
pixel to two categories: lane or backdrop. The distinct lanes
are obtained by using an embeddable decoder. The binary
decoder’s outputs are then used as one of the inputs to the
embeddable decoder, which directs the production of exact
pixel points on the lanes.

Li et al. developed a unique Lane-DeepLabmodel for high-
definition maps [15]. Two new features are included in the
suggested method: 1) It optimizes the encoder structure by
adding an attention module to the ASPP module; 2) It uses
the SEB to merge high-level and low-level semantic informa-
tion to obtain more great features. Furthermore, in compli-
cated scenarios with changeable weather, the proposed model

VOLUME 11, 2023 3745



N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review

employs the attention mechanism and contextual seman-
tics to fuse information to determine the lane line for the
environment.

Munir et al. [11] combine the deep learning-based algo-
rithm with the attention mechanism to detect the road
lane. Lane detection with a dynamic vision sensor (LDNet)
is suggested in this paper, which is constructed as an
encoder-decoder with an atrous spatial pyramid pooling block
followed by an attention-guided decoder for predicting and
decreasing false predictions in lane detection tasks. There is
no need for a post-processing step with this decoder. The
authors suggested LDNet, a novel encoder-decoder architec-
ture for detecting lane marking using detailed event cam-
era images. LDNet simplifies full-resolution detections by
extracting higher-dimensional features from an image. The
authors also added an ASPP block to the network’s core,
which increases the feature map’s appropriate field size with-
out increasing the number of training parameters. Addition-
ally, adopting an attention-guided decoder increases feature
localization in the feature map, obviating post-processing
requirements.

Furthermore, lane detection is essential in advanced driver
assistance and autonomous driving systems. However, lane
detection is affected by various conditions, including some
problematic traffic scenarios. The ability to detect multiple
lanes is also critical. R. Zhang et al. [10] presented RS-Lane,
a lane recognition method based on instance segmentation,
to address these issues. This approach is built on LaneNet
and takes advantage of ResNeSt’s Split Attention to increase
feature representation on slender and sparse annotations such
as lane markings. Self-Attention Distillation is used in this
paper to improve the network’s feature representation capa-
bilities without adding inference time. The input photos can
be correctly processed in the preprocessing module, making
it easier to extract features later. The driving image and
associated annotation are translated to a standard format used
by the model. The annotated data are utilized for training the
network to achieve lane segmentation in the model training
step. Denoising and fitting are used in the post-processing
stage to obtain the final results from the model’s output.
The network employs the encoder-decoder framework to
conduct semantic and instance segmentation simultaneously,
as proposed by LaneNet. The encoder’s backbone is ResNeSt,
which presents a Split-Attention mechanism. As a result, the
authors add twomore DAS lines to the network to improve its
feature extraction capabilities. SAD allows a network to learn
from itself without external data. The lower layers can learn
the higher feature representation by mimicking the attention
maps of the higher layers. Because the lower layers’ ability to
represent features increases, the higher layers, and the entire
network benefit.

As a result, the decoder executes a deconvolution oper-
ation to decode the encoder’s feature maps and performs
upsampling and classification. The decoder has five lev-
els that correspond to the encoder’s layers one-to-one. The
author used Unet’s skip-connect approach to concatenate the

encoder and decoder outputs to make the most of the global
context information. There are two branches in the decoder’s
final layer: binary branch and embedding branch. This study
generates the binary branch and embedding branch outputs
using two convolutional layers with a 1 × 1 kernel. The
binary branch produces semantic segmentation. The embed-
ding branch makes a three-channel map, meaning each pixel
has a 3D embedding vector. The segmentation map output is
utilized as a mask, and the mask is applied to the embedding
map to generate only the lane pixels embedding the map.
The author then applies mean-shift clustering to produce
clusters for each lane and the actual outcome of instance
segmentation. As a result, the lane model is fitted using cubic
spline interpolation.

B. WHAT EQUIPMENT IS BEING USED TO COLLECT THE
DATASET FOR THE TRAINING PROCESS?
The input data is the most critical aspect for detecting the
road lane.Moreover, dataset preparation is essential for theAI
approach, especially during training. As a result of the great
dataset preparation in the network model, autonomous cars
can manage behavior and make judgments. After reviewing
the journal, paper conferences, and a few book chapters,
numerous works of literature contained self-collection of data
and were also done online. In addition, some researchers
compile their dataset for AI training only, then compare it
to a publicly available benchmark dataset. On the other hand,
several researchers only use self-collect data for training and
validation. Meanwhile, several researchers have relied only
on the public dataset for training and validation. In road
lane marking, radio detection and ranging (radar), a cam-
era, a global positioning system (GPS), and light detection
and range (LiDAR) have all been used for the self-collect
dataset [23]. Other than that, there are also data from the
online simulator collected in various works of literature.

This subsection will describe the details of equipment
implementation for self-collect data in lane detecting.
In 2018, 13 published articles used cameras, and one pub-
lished paper used a simulator for data collection. Next,
in 2019, 15 published papers used cameras, and one published
paper used a simulator and radar for data collection, respec-
tively. Furthermore, in 2020, about 12 published articles used
the camera to collect the dataset. Meanwhile, one paper pub-
lished utilized lidar, OpenStreetMap, and HD map to collect
datasets, respectively. Finally, by 2021, about 13 articles used
a camera, and one paper used an HD map to acquire the data
set.

1) CAMERA
To begin, the camera can be used to extract road markings.
As a result, various cameras have been used, including
webcams, Wi-Fi sports camera sensors, Kinect cameras,
smartphone cameras, monocular cameras, and stereo vision
cameras. Monocular cameras are a cost-effective choice;
however, they don’t provide depth information. On the other
hand, stereo vision cameras allow for the inference of depth
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information and hence the reconstruction of three-dimensional
scenarios for increased functionality, such as collision detec-
tion [19]. Furthermore, the reliability and ability of cameras
to record every circumstance of the road environment in
any direction have recently been enhanced [23]. Therefore,
vision sensors are also becoming more effective and less
expensive due to current deep learning algorithms [37]. How-
ever, despite the prevalence of camera sensors, deep learning
algorithms offer a high degree of generalization and learn the
crucial elements of the driving environment across multiple
layers.

According to the literature, most researchers utilize a cam-
era to detect lane markings. The literature recommended
using the camera to self-collect data: Khan et al. [110] used
the camera to acquire data. The road image was recorded
with a single camera sensor to detect the road marking on the
vehicle’s front side. As a result, a smartphone camera was
placed on the front windshield of the experimental car. The
datasets used in this study were from videos captured with a
SamsungGalaxyAlpha smartphone (SM-G850F). The image
was captured at 30 frames per second mode without video
stabilization and had a 1920 x 1080 (.mp4) pixels resolution.
The total number of videos applied in the experiment is 15,
with 22,500 photos retrieved from them. The images were
taken under various imaging situations, including lighting,
traffic, and climate. The host vehicle was driven according to
the two-second safety guideline during data collection. Main-
taining a safe following distance is critical when driving a car,
and autonomous driving requires that distance to be estab-
lished. As a result, the two-second safety guideline criterion
is utilized to verify a safer following distance at any speed.
According to the rule, any vehicle in front of the driver’s
car should be kept at least two seconds behind the driver’s
vehicle. Therefore, about 22500 images of roadswere taken at
various times of the day and night, with varying lighting and
occlusions such as shadows, intricate backgrounds, traffic,
light rain, rains, and snow. Images with an after-rain effect
can also be obtained. The dataset was taken with a camera
installed on the dashboard, and the data gathering took place
in Selangor and Kuala Lumpur. The remaining images in the
dataset (light rain, rain, after rain, snow) were collected from
the internet. They were recorded throughout the day and night
under various lighting conditions obstructions and consisted
of reflection effect complicated background.

Next, Liu et al. [53] deliberately chose roads with shadows,
tire skid tracks, and noise. Around Lafayette, Indiana, the
author filmed local roads and Interstate Highway 65. Each
video clip is about 15 seconds long, allowing the images
captured to focus on the desired road features. The video was
segmented once the data was collected, and the images were
extracted every six frames. In the end, 23,088 useful photo
bits were gathered. Bhupathi and Hasan Ferdowsi [47] also
use a camera to capture videos. Utilizing the multiple sliding
windowmethod, the accuracy of lane detection is assessed on
four video sequences. The camera’s position should be fixed
and usually expected to be in the vehicle’s center. Next, a

Toyota Prius autonomous driving research prototype vehicle
with Nvidia Drive PX 2 and a Sekonix GMSL Camera was
used by Kemsaram andDas [77]. In a car, AGMSL connector
connects a Sekonix GMSL Camera to a Drive PX 2. Drive a
vehicle that has the PX 2 in the trunk. The Sekonix GMSL
camera is mounted near the rear-view mirror, behind the
front windshield. The data set includes multi-frame images
sampled from the driving video.

The video has a frame rate of a vertical resolution of
720 pixels and a width resolution of 1280 pixels with
30 frames per second. Next, the images are dissected and eval-
uated. However, the quality of several pictures is poor due to
the lighting and brightness. This emphasizes the significance
of lane prediction. Therefore, the training image sample rate
is quite significant. The continuous visuals may be highly
similar if the pace is high, rendering the model meaningless.
As a result, just one image out of ten is chosen for the training
dataset. Therefore, the training data set should increase the
lane detection model’s identification performance. In addi-
tion, the training set should include more images of the
curving lane. To begin, more images with curving lanes are
extracted from the video. Then, the images with the least
pixels are chosen. These images are also altered to create new
ones.

The authors then employed a random sample of Zibo
city road datasets consisting of three road scenarios: shadow
occlusion, lane line wear, and bright illumination [34]. The
visual data set in every road situation is collected in the video,
which contains about 800 images of typical road scene graphs
selected from the collected footage. In addition, 2400 graphs
are used in computer simulation investigations. The frame
had a resolution size of 512 × 682 pixels. As a result of
the camera specifications, all of the original images in the
experiment are greyed out. To reduce the vehicle’s hindrance
on the camera view.

[100] uses a camera positioned 21.5cm above the center
of the rear axle and 27cm in front. The test data is acquired
while the automobile is driven manually to follow the track’s
lane. Although the data is captured at 60 frames per second
(fps) using the test platform’s onboard camera, the evalu-
ations are performed offline to ensure a fair comparison.
Finally, in [106], the author employed video sequences with
1225 frames with a resolution of 640 × 480 pixels of com-
plex metropolitan streets, which incorporate difficult traffic
situations such as diverse pavement types, passing cars, faded
writings, and numerous shallows. In addition, after rain, the
author collected a new dataset to test the robustness in various
climates. There are 1706 frames in total in these databases.

A Mobileye camera vision sensor was placed ahead
of the window shield in [127], and it had a vari-
able updating rate of 50 to 130 milliseconds. The yaw
rate sensor, which was mounted near the vehicle’s cen-
ter of gravity and updated every ten milliseconds, was
used. Each wheel had its speed sensor updated simul-
taneously with the yaw rate sensor. A Micro AutoBox
DS1501 additionally controlled the car from dSPACE Inc.,
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FIGURE 5. Self-driving car ‘Tu Lian’ with the camera mounted in the
vehicle for data collection. POINT GREY BFLY-PGE-23S6C-C camera sensor
was mounted in the ‘Tu Lian’ for data collection.

which used the controller area network (CAN) bus to
log data from each sensor. The dataset was collected
by Lee and Moon [99] using the self-driving automobile
’Tu Lian,’ as shown in Figure 5. POINT GREY BFLY-PGE-
23S6C-C camera sensor was mounted in the ‘Tu Lian’ for
data collection. The focal length of the mounted camera is
2246 millimeters, and the camera was calibrated first.

The in-vehicle camera collects information about the road
environment Xiao et al. [109]. The road views are acquired
using a Basler pia1900-32 gm/gc industrial camera, and
the system is based on monocular vision. This lens has an
8 mm focal length. The maximum frame rate for a picture is
32 frames per second. The image has a 1,920 × 1,080-pixel
resolution. The images are transferred from the camera to
the computer through a Gigabit Ethernet interface. The road
video data was collected in Erdos, Inner Mongolia, to ver-
ify the proposed algorithm’s effectiveness and robustness.
These data include tree shadows, pedestrians, vehicle tres-
pass, extreme shadow and light, curves, etc.

Next, Zhan and Chen [73] used a camera to acquire the
data, which they then fed into an FPGA as image data using
the AXI protocol. Next, the detection outcome for the real
dataset collected from the author’s autonomous vehicle was
published in [15]. The visual images were chosen from a
video with a 3 km duration consisting of road lines, road
signs, zebra lines, and double solid lines. The proposed
approaches are then tested using a dataset of 314 Estonian
orthoframe photos highways with a resolution of 4096 ×
4096 pixels. In literature [69], an image segment training
and validation dataset is built using 249 of the 314 prepro-
cessed images. There are 36497 image segments in this train-
ing/validation dataset, each with a size of 224 × 224 pixels.
Next, the images [93] were obtained from open roadways
and were 960 × 540 pixels in size. To recognize lane fea-
tures from actual road images, 6000 images were collected,
comprising 2000 images each for straight, curved, and lane
change sections. In addition, in [87], the author used a dataset
of sceneries from the roadways located at KAIST in Daejeon,
South Korea. VSTC-V200G camera installed on a car is used
to collect the dataset. The video comprises 640 × 360 pixels
of resolution at 20 frames per second with 4335 images.

Several works of literature use a different camera sen-
sor than a standard camera. For example, Lu et al. [20]
self-collected the data set to validate the presented lane

detection model. The self-collected data set came from a
cheap and average webcam with noticeable occlusion, blur-
ring, and poor illumination in its images. The author gathered
over 6000 images, which included varied real-world traffic
situations. The dataset for the lane detection challenge is
collected using the Kinect camera and the webcam camera.
The author of [65] used a Kinect camera installed in a 1:7
RC car to evaluate the system’s performance in a tiny driving
environment. The dataset contains 1000 labeled images and
numerous complex examples to test the algorithm on.

The Wi-Fi sports camera sensor is used in [16] to
track the entire route taken by the AV. This Wi-Fi-enabled
camera sensor transmits actual video to a smartphone for
monitoring. The collected footage is sent to smartphones
and cloud storage servers for additional processing through
a radio transmitter. A computer vision-based algorithm per-
forms the analysis. The real-time data collection aids with
vehicle security and lane detection. Furthermore, the system
can improve the functionality of this task by utilizing a Wi-Fi
sports type of camera. The employed camera sensor contains
a 2 inches screen size and a resolution of the optical sen-
sor of approximately about 12 megapixels. The zoom range
on this camera is reasonably priced, and it supports High
Definition (HD) video. Furthermore, this camera is simple
to set up and use. It can also be connected to a smartphone
to track the car. However, for non-volatility, availability, and
accessibility, this technique sends the data to cloud storage.
Finally, a computer vision technique is applied to process the
collected data to identify lanes.

On the other hand, lane detection can be performed using
infrared sensors. It is vital to capture live traffic data to detect
the road lane, which is why the Wi-Fi sports camera is used.
Many video frames are involved because the data is in the
form of video, and each video framemust be processed before
the vehicle may be warned.

Next, Moon et al. [102] collected the video images for
the tests with a resolution of 640 x 360 since numerous
video clips contain 24 or 29 frames per second (fps). As a
result, the execution time for each frame must be less than
1/24 s (14 41.7 milliseconds) or 1/29 second (1434.5 ms).
In addition, the images of various road circumstances, such as
evening conditions, many noises present, and situations in a
tunnel, are used in this work. Finally, in [74], road images are
collected with an iPhone at a frame rate of 30fps and 1334×
750 resolution, with the camera sensor installed on the rear
mirror. The area in front of the vehicle is depicted in this
image, including trees, a road, cars, pedestrians, and a side
view.

2) LIDAR
There are two primary benefits of using the camera. First,
this sensor delivers extensive surroundings and is currently
the cheapest and most dependable modality for automotive
applications. However, this sensor is sensitive to light levels,
necessitating a filtering step. LiDAR sensors can be used to
solve this problem. For example, regardless of the lighting

3748 VOLUME 11, 2023



N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review

circumstances, it is practicable to detect whether a LiDAR
beam has intercepted asphalt or road painting [128]. This is
especially useful when dealing with shadows and darkness,
which cameras have trouble handling. Furthermore, LiDAR
provides a centimeter-accurate three-dimensional picture of
the world. LiDAR, on the other hand, it’s more costly than
cameras. Nonetheless, advancements in optical technology
and rising demand will lower the price of LiDAR.

3) SIMULATOR
Little research in lane detection uses simulators to collect
data for training and validation. For example, L. Tran and
M. Le [129] used a dataset of around 4000 training images
to train a segmentation model for 20 hours, with 2000 images
annotated. The information comes from the CARLA simula-
tor. Besides that, the training dataset for Unity3D simulation
is then collected by M. C. Olgun et al. [107]. A setting was
built that resembled the author’s real-life roads. An AI con-
troller language in an automobile allows it to appropriately
follow waypoints between lanes in a given scenario. Frames
representing the car’s maneuver are saved in a jpg file; mean-
while, image routes, speed, and steering information are kept
in CSV format. This dataset’s loss value is more consistent
than the manually collected dataset. The lane tracking train-
ing dataset contains 12531 authentic images supplemented
with 20000 images. Next, in [51], the author employed a
pioneer robot vehicle to mimic two different track settings.
The program finds the lane using this visual input from the
Gazebo simulator. Based on lane identification findings and
Matlab output, it calculates the vehicle’s angular and linear
velocity.

4) RADAR
A high-resolution automotive radar prototype is utilized to
collect data in [12], [13], and [89]. The modulation mode of
this radar sensor is FMCW (Frequency Modulated Contin-
uous Wave). The baseband signal can calculate range, rela-
tive radial velocity, object angle, and reflection magnitude.
The signal processing chain begins with a 2-dimensional
FFT (Fast Fourier Transform), CFAR (Constant False Alarm
Rate), peak detection, and themaximum likelihood angle esti-
mation technique. The axis of the estimated azimuth angle is
evenly spaced. The detecting sites’ positions and the object’s
range will fit into a fan-shaped grid-like pattern.

5) HD MAP
The dataset for lane recognition from HD maps is self-
collected in several research. As a navigation back-
end, all commercial autonomous vehicles use accurate
high-definition maps with lane markings. However, the
majority of high-definitionmaps are currently producedman-
ually. The generation of high-definitionmaps for autonomous
driving using auto-assisted multi-category lane recogni-
tion [15]. The HD map is defined as a map that consists
of the precise coordinates of road lanes in the Universal
Transverse Mercator (UTM) coordinate system, as described

in [49]. Other elements such as road signs and traffic lights
are included, but only road lanes are used in this publication.
When a new camera frame is received, the author queries all
lanes from the HD map within a given radius of the most
recent position estimation. This study, for example, used a
distance of 20 meters. Because lane line detection takes time,
the author should employ the stance when the camera is
triggered. The road lane matching module uses information
from the front camera to detect lanes and a slice of an HD
map near the most recent localization estimate as input. The
module determines the best modification for aligning camera
lanes to the HD map with the slightest error. The algorithm
utilized is the Iterative Closest Point algorithm.

6) OPENSTREETMAP
OSM datasets have been employed in intelligent transporta-
tion systems for various purposes, including road-level local-
ization [130] and lane-level determination [131]. Road
detection utilizing images obtained from a camera relies on
road priors and contextual information. First, the road back-
bone is built using an OSM map based on the number of
lanes and lane width. The image is then projected with this
road geometry, considering the uncertainty associated with
the ego-vehicle stance. Finally, before the detection of a lane,
the result is used.

The study in [132] uses OSM data before creating a more
precise map. After that, the authors provide OSM data and
proprioceptive sensor fusion architecture. In the meantime,
a similar approach derived from OSM was used to identify
ego-lane marking in LiDAR point clouds [44]. Nodes, Ways,
and Relations [44] are the three crucial components of OSM
data. Nodes are the geometrical elements that represent GPS
positions. For example, the roadways network is defined by
byways, a detailed list of nodes. As a result, each way (road)
is made up of segments [130]. In other words, being a part of a
segment is similar to being a part of an OSMWay. As a result,
the map matching problem should be recast as matching a
GPS point to a segment. As a result, the author employs the
map-matching technique described in [130] to select the best
path (road). However, as discussed in this literature, the OSM
data lacks precise information.

C. WHAT WAS THE DATASET USED FOR THE NETWORK
TRAINING, VALIDATION, AND TESTING?
TuSimple [75], KITTI, Caltech, Cityscapes, ApolloScape,
and CULane datasets are online road scene datasets or bench-
marks that provide training data for various uses. In this
section, several popular public datasets will be discussed.
The network must be given a meaningful dataset to operate
efficiently [107].

1) TUSIMPLE DATASET
The TuSimple dataset is a publicly available traffic-detection
data set (light traffic and clear lane markings). Its label for the
training dataset consists of continuous lane curves that start at
the bottom of the input image and continue until the horizon
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passes over the vehicles [75]. It consists of large datasets with
training, and the testing number is 326 and 2782 in both bad
and excellent weather conditions, respectively [35]. They are
recorded at various times of the day on two road lanes, three
road lanes, and four road lanes or extra highway roadways.
The resolution of these RGB input images is 1280 × 720
pixels. Each image also includes the 19 frames with the
unlabeled dataset. The annotations are JSON format, show-
ing the lanes’ x-position at different discretized y-positions.
The literature that used the TuSimple dataset for training or
validation has been discussed in this section. In their research,
Y. Sun et al. [71] utilize this public lane detection dataset. The
author generates ground truth instance segmentation maps by
drawing lines along with the pixel coordinates of each lane.
The lines have a thickness of 15 pixels.

In addition, different labels are assigned to various lanes.
The author divided the dataset into three parts: a train set
with 3268 images, a validation set with 358 images, and a
test set with 2782 images, respectively. Next, the TuSimple
dataset was utilized by Lu et al. [20] to validate the pro-
posed lane detection model. The dataset employed in this
study has good visual clarity, no blur, and a low detection
difficulty. Besides that, the TuSimple dataset is also used in
experiments carried out in [24]. In this study, the TuSimple
dataset contains almost 7000 video segments. Each video
clip comprises twenty frames in total. Seventy percent of the
videos are used for learning in the network, twenty percent
for validation, and 105 for testing. In detail, the training,
validation, and testing sets contain 4900, 1400, and 700 video
clips, respectively. The sample of TuSimple datasets images
was taken in a variety of climatic factors. Next, Pizzati et al.
[58] used this dataset, which consisted of 6408 images with
a resolution of 1280 × 720 images divided into training and
testing datasets with 3626 and 2782 images, respectively. The
TuSimple dataset is unique because it annotates complete
lane boundaries instead of lane markings. As a result, this
dataset is perfect for this research.

Moreover, this dataset is used as a training and test-
ing dataset in [72], with about 3600 training images and
2700 testing images. The author stated that the TuSimple
dataset comprises a variety of weather scenarios and is a
massive dataset for measuring lane detection performance.
Furthermore, this literature presented a strategy using the
spatially convolutional neural network (SCNN) method [19].
Although the TuSimple dataset includes various road situ-
ations, including straight lines, curving lanes, splitting and
merging lanes, and shadows, only straight and curvy lane
scenarios were employed in this study.

This dataset was also utilized in the literature [35] to
evaluate their strategy. Next, Chng et al. run lane detection
experiments on the TuSimple test sets in [55]. According
to the literature, this dataset is relatively simple, taken dur-
ing the daytime along highways in excellent or moderate
weather, and contains ground truths annotated on the last
frame of each twenty-frame clip. The author manually selects
the lane markers demarcating the active lane for detection

and comparison in the tests for each frame with ground
truths labeled. The TuSimple lane dataset consists of 3,626
picture sequences. These are highway driving scenes from the
driver’s perspective. Each sequence contains 20 uninterrupted
frames captured over the one-second time frame. The last
frame of each series, i.e., the 20th image, is labeled with lane
annotations. In addition, this literature adds labels to every
13th frame in each sequence to augment the dataset. Finally,
[105] used the TuSimple lane dataset on the lane detection
task to train and test deep learning-based techniques.

2) KITTI DATASET
The KITTI [133] benchmark is also popular data for road
scenes. It contains various information regarding the road
scene, including color pictures, stereo images, and laser point
data. Jannik Fritsch and Tobias Kuehnl of Honda Research
Institute Europe GmbH generated the KITTI Vision bench-
mark dataset [133]. There are 289 training and 290 test
images in the road and lane estimate benchmark. Urban
unmarked (UU), urban multiple marked (UMM), urban
marked (UM), and hybridization of the three categories are
the four categories that the pictures of road scenes fall into.
The training dataset consists of 98 images; meanwhile, the
testing dataset consists of 100 images. Ground truth was
created in the KITTI dataset by manually annotating the
images. It is offered for two types of road terrain: the road area
(all lanes combined) and the lane (the current lane where the
vehicle is traveling). For example, Shirke&Udayakumar [54]
employed the KITTI dataset for region-based segmenta-
tion using an iterative seed approach for multilane iden-
tification. Aside from that, in another article, Shirke and
Udayakumar [66] also used the KITTI vision benchmark
dataset in their experimentation. Next, this public dataset
KITTI also was then used to validate the algorithm’s per-
formance in [37]. Last but not least, P. Lu et al. [27] used
the benchmark’s testing dataset to validate the suggested
technique.

3) CALTECH LANE DATASET
This dataset [134] contains four video clips captured through-
out Pasadena, California, at distinct intervals of the day.
The resolution of each video clip is 640 x 480 pixels and
includes varying lighting and illumination situations, lane
markings, sun glint, pavement types, shadows, crosswalks,
and congested environments. In addition, this dataset also
consists of urban streets, both straight and curved [101] was
tested using the Caltech [134] dataset. Aside from that, the
proposed methodology by Akbari et al. [19] was compared
to two model-based methods using the Caltech Lane dataset.
The author used about 1,224 labeled datasets in this literature,
with 4,172 lanes extracted from four video clips collected
from numerous urban roadways.

4) CITYSCAPES DATASET
Cityscapes’ high-resolution and finely labeled training
images [135] are well-known. On the other hand, this data
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offers semantic segmentation labels but not lane informa-
tion [28]. Next, the author of [15] uses the Cityscapes dataset
to test the network for broad semantic segmentation and
multi-category lane line semantic segmentation tasks. The
semantic comprehension of urban street sceneries from the
perspective of a car is the focus of this literature. The collec-
tion contains 5000 photos with high-quality pixel-level anno-
tations with 2975 training datasets, 500 validation datasets,
and 1525 test datasets.

5) APOLLOSCAPE DATASET
Apollo has six separating markings, four guiding markings,
two stopping lines, 12 turning markings, and other pixel-
level lane markings and lane characteristics [28]. With about
19040 photos, this is a vast data collection (training sets
are 12400, validation sets are 3320, and test sets are 3320,
respectively). In addition, a stopping line, a zebra line, a sin-
gle solid line, a single dash line, a double solid line, and
other semantic segmentation information can also be found
on the road. However, some ground area near lane lines
is easily mistaken for lane markings [28]. The following
works used the ApolloScape dataset for training and testing.
For instance, in [15], the author analyses the network for
generic semantic segmentation tasks and multi-category lane
line semantic segmentation using the ApolloScape dataset.
As the author knows, this dataset is challenging to work with
because it includes high-quality pixel-level ground truth of
over 110 000 frames and lane elements such as six separating
markings, four guiding markings, two stopping lines, and
12 turning markings, among others. Furthermore, the author
employs multi-class training in this experiment. ApolloScape
offers three different datasets; however, they only used one for
the lane detection task in this literature.

6) CULANE DATASET
The CULane dataset can be considered more challenging,
and many datasets include normal conditions and eight com-
plex settings such as crowded, night, and online. On the
other hand, the TuSimple dataset is more straightforward
than CULane. Therefore, several frames in CULane lack
lane markers (e.g., at light traffic crossroads). The studies
in [55] were carried out on test sets of one of the most widely
used and extensively utilized lane detection datasets [5]. The
CULane train set is used to pre-train themodels. Furthermore,
this dataset comprises several challenging driving scenarios
and ground truths annotated on all frames (e.g., congested
city streets and night scenes with poor lighting). Besides, it is
a simple dataset collected during the daytime along highways
in excellent or moderate weather.

Most public datasets for lane detection, such as TuSimple,
Caltech, Kitti, CULane, and Cityscapes, are currently pro-
posed for urban roadways. The TuSimple is widely used in the
literature, as evidenced by the publications chosen. It is the
most often used dataset among academics in lane detecting
studies. Tusimple has been used to test many algorithms [1],
[5], [20], [21], as it was the largest lane detection dataset

before 2018. This dataset contains 3626 training photos and
2782 testing images on highway roads. It is intended for
ego-road lane recognition; however, it does not distinguish
between lane marker kinds or offers space between lanes.
TuSimple, on the other hand, is a simple dataset collected
during the daylight along highways in excellent or moderate
weather, with ground facts only labeled on the last frame
of each clip of twenty frames [18]. Caltech is the second
most used dataset for lane detection. The Caltech Lanes
dataset contains four video sequences (or sub-datasets) in
urban settings, totaling 1225 images, which have been used in
some previous research [6], [9], [13], [21], [28]. Aside from
that, the Kitti and CuLane datasets are well-known online
datasets for lane detecting tasks. The Kitti road has two sorts
of annotations: road segmentation, which covers all lanes,
and ego-lane, which designates the lane in which the car is
presentlymoving. For examples of past research that used this
dataset, see [21], [28], and [32]. CULane, on the other hand,
features various challenging driving circumstances, including
congested roads or highways with low lighting. As a result,
it is rarely preferred by researchers for detecting the lane.
[1], [8], [11], [16], [18] are some of the algorithms that
use this dataset. Some CULane frames lack lane markers
(for example, crossing traffic light crossings) [18].

Furthermore, there are usually three sets of dataset par-
tition for training the models: training set, validation set,
and test set. The training set will be used to fine-tune the
model’s parameters. Meanwhile, the validation set (which
can be ignored if just one model is supplied) and the test set
(which will be used to quantify the model’s accuracy) will
be used to compare alternative models applied to that data.
Normally, the proportions of these partitions are 70/20/10.
The divisions of the dataset from multiple prior studies pro-
vided in this study were presented in this portion of the SLR,
as illustrated in Table 7. The division of the dataset consists
of a training set, validation set, and test set in percentages.
The popular dataset, such as TuSimple, are mostly divided
into 60% training and 40% testing set. Meanwhile, the Kitti
dataset is divided into 50% training and 50% testing. Next,
the NuScenes data set is divided into 90% training and 10%
validation. Therefore, there is also a dataset used by previous
researchers where the data distribution is not the same. For
example, CULane dataset distributed to 60% training, 10%
validation and 30% testing [36], 65% training, 10% valida-
tion and 25% testing [80], and 75% training and 25% testing
set [55]. The previous CamVid, dataset has been divided into
80% training and 20% testing [65], 60% training and 40%
testing [119].

D. LEARNING OUTCOMES FROM THE RQs
According to the literature analysis, it is shown that in just
four years, the development of the lane detection task from
the traditional-based method, which requires many pipeline
processes, to the existence of the Artificial intelligence field,
which is an intense learning-based strategy, the study will
be easier and more efficient. For instance, deep learning
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algorithms have a high degree of generalization and learn
essential aspects of the driving environment. However, there
is always space for development in speed and accuracy, par-
ticularly in adverse weather situations, when applying the
deep learning-based approach. Thus, several works of litera-
ture have advocated the integration of this method. Therefore,
integrating DL and attention mechanism becomes a state-
of-the-art approach still new in this field as it just began
to introduce in 2020. Therefore, only a few studies in the
literature have studied lane detection using deep learning
and the attention mechanism. The attention mechanism was
previously utilized primarily in natural language processing
(NLP), but it is now broadly used in computer vision, partic-
ularly in the medical field. Thus, it can be explored more in
the automation field.

Next, the self-collected dataset can be acquired using var-
ious sensors, including cameras. It has been found that the
camera is the most popular sensor for lane detection appli-
cations. This is because cameras have improved in reliability
and are likely to capture any situation on the road from any
angle. In addition, vision sensors are becomingmore effective
and cost-efficient due to recent deep learning techniques.
Moreover, due to the widespread use and efficiency of cam-
era sensors, deep learning algorithms can learn the crucial
features and characteristics of the driving environment across
multiple layers in the model. Next, there are primary benefits
of using the camera. This sensor delivers extensive informa-
tion about the surroundings and is currently the most cost-
effective and dependable method for automotive applications.

Besides the camera, LiDAR, radar, HDmap, simulator, and
OSM are also used as equipment for data collection. It is
due to the camera sensor being affected by light conditions,
which necessitates a filtering process. Therefore, during the
data collection using the camera, the driver must ensure that
the range distance between the experiment vehicle and the
front car is always suitable. Then, the same range distance
for better quality input image will be obtained. Other than
that, there are dangerous and consumes time to collect the
dataset using a camera, especially during the rainy/monsoon
season. Especially in Southeast Asia, there is a time when
heavy drop rain will continue for the whole week. In addition,
it is difficult to collect the dataset in an urban area at a specific
time, for example, during peak hours, when there would be
many vehicles on the road and stuck in traffic jams. However,
cameras are less expensive than LiDAR. Meanwhile, OSM
data is devoid of precision information.

Next, the simulator is commonly used for modeling lane
detection and used as equipment for data collection. There
are several advantages when using the simulator to collect the
dataset for training, testing, and validation. One of the advan-
tages is that it is not time-consuming and non-dangerous
because it is not involved with the physical and natural envi-
ronment. Therefore, it can create many conditions, especially
extreme conditions such as rain, snow, fog, etc.

Other than the self-collect dataset, there are also sev-
eral available online datasets in the market. Various

repositories exist for a dataset on lane detection, such as the
TuSimple dataset, KITTI vision benchmark dataset, CULane
dataset, Cityscapes dataset, and Caltech dataset. This dataset
is straightforward, has a variety of image situations, and has
already been labeled for the training dataset. TuSimple is
the most popular dataset since it incorporates different road
conditions, including straight lines, curving lanes, splitting
and merging lanes, and shadows. Not only that, but the
TuSimple dataset also includes lane detecting images with
lower illumination.

Furthermore, the TuSimple dataset collects data from roads
in fair or moderate weather, with two lanes/three lanes/or
more lanes, and a variety of traffic scenarios, including clear
lane lines with excellent image quality, no blur, and rela-
tively simple identification challenges. Unfortunately, even
though several ready companies with Level 5 autonomous
cars are claimed, the available data for extreme conditions is
still limited. The learning results from RQs 1, 2, and 3 are
summarised in Table 6. The table contains the technique
deployed for 102 selected publications with the dataset type
and equipment for the self-collect dataset.

E. GENERAL DISCUSSION ON ADDRESING THE SPECIFIC
ISSUES BASED ON COMPUTER VISION TECHNIQUE
Most geometric modeling/conventional approaches rely on
or follow pre-processing feature extraction, lane model fit-
ting, and lane tracking to detect the lane. For lane detec-
tion tasks, image pre-processing is required to determine
the quality of features. In addition, this approach needs
manually alter the parameters, although this procedure is
efficient and uncomplicated. Furthermore, previous methods
based on handcrafted features to detect lanes are limited in
scenarios using edge, texture, or color information, which
requires complicated post-processing modules to perform.
Likewise, in many complex procedures, these approaches
function inadequately. Therefore, traditional computer vision
(CV) techniques are time-consuming and resource-intensive
and rely on complicated algorithms to analyze the delicate
aspects of lane images. In addition, the number of lanes is
frequently not fixed, and techniques for detecting lanes are
sometimes erroneous. Straight lines, for example, are treated
as lanes by Hough transform-based algorithms, which may
cause street lamps to be mistaken for lanes.

Furthermore, poor weather, such as rain, will impact lane
detection. Likewise, inadequate lighting and a night setting
will produce poor results. However, there are yet to be
practical solutions for dealing with such issues. As a result,
conventional approaches are ineffective in detecting lanes
in complex traffic situations. In addition, it must work in
real-time. Most algorithms, however, need more of this pur-
pose. Therefore, traditional techniques have yielded signifi-
cant results. However, they have several limitations: (1) lane
detection is challenged in varying weather conditions and
illumination. Furthermore, previous methods need a con-
sistent framework for detecting various scenes and (2) the
inefficiency of using images due to label noise.
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Following that, due to the advancement of deep learn-
ing, numerous solutions have been suggested to enhance the
achievement of computer vision works in contrast to conven-
tional approaches. Despite the prevalence of camera sensors,
deep learning algorithms offer a high degree of generalization
and learn the essential elements of the driving environment
across multiple layers. In contemporary state-of-the-art lane
detection techniques, convolutional neural networks (CNNs)
are also used to develop deep learning models. CNN is also
created for image classification problems in deep learning-
based technology, in which it can extract features from the
images it receives. However, the image’s output is one-
dimensional data that can only forecast which images belong
to which sorts of objects.

Furthermore, numerous low-level characteristics were lost
in the pooling layers of CNN.As a result, input changesmight
cause convolution neural networks to lose robustness. Scale,
viewpoint, and backdrop clutter are examples of these vari-
ances. Furthermore, while these models perform admirably
on train and test inputs, they perform poorly on unknown
datasets from various contexts. The FCN network can over-
come these issues and detect more accurate two-dimensional
data. Even the deep learning-based technique offers numer-
ous advantages. However, they have a high computing cost,
which can sometimes increase training loss and result in a
vanishing gradient issue [37].

In the past, advanced detecting algorithms such as deep
learning have outperformed traditional methods in complex
scenarios, but they have limitations. For example, despite the
importance of multilane detection, only a limited number of
lanes can be detected, and the cost of detection time is fre-
quently prohibitive. Therefore, various factors influence lane
detection tasks, including specific complex traffic scenarios.

Attention mechanisms have improved NLP and CV exten-
sively. The employment of an attention mechanism improves
feature localization in the feature map and eliminates the
need for post-processing. Therefore, as lanes are long and
thin for lane detection, there are considerably fewer annotated
lane pixels than background pixels, which is challenging for
a model to learn. Hence, the attention processes in feature
maps can emphasize crucial spatial information. The atten-
tion mechanism, in particular, can boost the weighted infor-
mation of lane line objectives while reducing unnecessary
data. It adds to the complexity of network learning. However,
as the author is aware, more research needs to be done on
using the attention mechanism in lane detecting tasks. In this
research area, many different forms of attention mechanisms
can be used at the same time. As a result, the study’s future
direction can be investigated by applying another type of
attention mechanism that has yet to be deployed.

F. ISSUE ON TECHNIQUE RELATED TO DATA
The existing ADAS act as a driver’s aid, and many issues still
need to be addressed or improved to achieve the objective of
safe and enjoyable autonomous driving on real-world roads.
In a real-world scenario, a lane recognition system should

continue to work throughout the year, regardless of whether
it is sunny or cloudy, day or night, summer or winter, urban
or rural, crowded or clear, and so on. The main challenge is to
make the lane recognition approach resilient and prosperous
under various driving conditions.

From the literature’s selection, there are several issues on
lane detection techniques that are related to data, such as:

1) IMBALANCED DATA SET PROBLEM
Extremely imbalanced data set problem because the back-
drop class contains the majority of the lane pixels in the
image. In addition, the amount of backdrop pixels is sig-
nificantly more than the number of lane pixels due to the
lane’s slenderness. It may be challenging to pick up on such
characteristics [1]. Aside from unbalanced data, the quality
of acquired data and annotations also restricts the capacity of
various methods [2]. As a result of the limitations imposed by
available datasets, lane approaches developed on one dataset
are unlikely to be applied to another. To address this issue,
state-of-the-art transfer learning and attention mechanisms
must be implemented. Aside from that, a more generic dataset
that replicates real-world road conditions should be inves-
tigated for the confined dataset. Furthermore, as this sector
develops, more data sets are projected to become avail-
able for researchers, particularly with the advent of entirely
autonomous cars [3]. However, researchers are also hindered
by the lack of datasets, necessitating the creation of new
databases to allow for additional algorithm testing. The new
databases can be created using synthetic sensor data from
a test vehicle or by generating driving scenarios using a
commercially available driving simulator. Similarly, more
research is needed in the following areas.

2) VARIATION AND CHANGEABLE LANE MARKINGS
With the vast diversity of lane markers, the complex and
changing road circumstances, and the lanemarkings’ inherent
thin properties, some scenarios, such as no line, shadow
occlusion, and harsh lighting conditions [1], provide few or
no visual signals. Therefore, detecting the lanes from the
image in these scenarios can be difficult. According to the
findings, traditional approaches work in a controlled envi-
ronment and have numerous problems regarding robustness
difficulties caused by road scene fluctuations. In addition,
the lanes’ inconsistency, curvature, and varied lane patterns
make detection much more difficult. Daytime has gotten a
lot of attention in the past, but nighttime and rainy situations
have gotten less attention. Furthermore, it is apparent from the
literature that, in terms of speed flow conditions, they have
previously been examined at speeds ranging from 4 km/h
to 80 km/h, with high speed (above 80 km/h) receiving less
attention. Occluding overtaking vehicles or other objects and
excessive illumination make lane identification and tracking
difficult. Although reflector lanes are specified with several
colors, lane markings are usually yellow and white. The
number and width of lanes vary per country. There may be
issues with vision clarity due to the presence of shadows.
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The visibility of the lane lines was reduced due to various
weather conditions, such as rain, fog, and snow. Visibility
may be decreased in the evening. The performance of lane
detection and tracking algorithms suffers due to these issues
in lane recognition and tracking. As a result, developing a
dependable lane detection system is a difficult task.

3) INTERFERENCE AND ILLUMINATION VARITIONS
According to [4], lane-like interferences, such as guardrails,
railways, utility poles, pedestrian sidewalks, buildings, and
so on, will interfere with the existing traditional method,
such as the HT-based algorithm. As a result, it has struggled
in various challenging settings, including lane kinds, road
surfaces, nighttime, and other environmental factors (shadow,
rain, etc.). When a vehicle drives at night, the intensity of
the region illuminated by headlights, for example, is several
orders of magnitudes higher than the backdrop. As a result,
even though the lane markers contrast nicely with the road
surface in human vision, portions of lanes are overexposed.
The host car then casts its shadows on the road surface as
it enters or exits a tunnel or drives beneath a bridge. As a
result, the road may have complicated painted road surface
markings, utility lines, and buildings, which can cause the
HT-based lane recognition algorithm to provide misleading
edges and textures. On rainy days, reflection from the wet
road may induce glare and image overexposure, resulting
in lane detection failure in some instances. In addition to
lane-like interferences, lighting fluctuations make dividing
line recognition more challenging. Under artificial light, the
system failed to recognize road lane characteristics in bright
or wet road conditions with significant reflection on rainy
days. Using assumptions to delete the misleading edges far
from the host lane during the pre-processing step may be
one technique to lower the false-positive rate under such
scenarios. Another option is to employ feature-basedmachine
learning algorithms. This could be one of the areas research
could be conducted. However, such approaches would only
be able to benefit roads not included in the training set
and tend to overfit in images and lane markers. As a
result, classic techniques such as model predictive controller
(mpc) have worse performance in bad weather and pose
issues in controlling high illumination or shadows, according
to [3].

G. UNCERTAINTIES MANAGEMENT
Working with inaccurate or incomplete information is what
uncertainty entails. This study contains numerous sources of
uncertainty, including data noise and an imprecise model.
The solution systematically evaluates multiple keys until an
excellent or good-enough set of features andmethods is found
for a given problem.

1) NOISE
Noise is the term for variation in an observation. Both the
inputs and the outputs are affected by this unpredictabil-
ity. Genuine data, like the real world, is a tangled mess.

Therefore, maintaining skepticism about data and developing
techniques to anticipate and battle uncertainty is crucial. The
solution to this problem is to invest some time analyzing
data statistics and creating visualizations to aid in identifying
those anomalous or unusual cases: this is what data cleansing
is all about.

2) INCOMPLETE COVERAGE OF THE DOMAIN
A random sample is a set of observations picked randomly
from a domain with no systematic bias. A certain amount
of bias will always exist. This arises when a model needs
more data and knowledge, commonly occurring when there
aren’t enough samples to train the Artificial Intelligence.
While some bias is inherent, uncertainty grows if the sample’s
degree of variance and bias is an unsatisfactory representation
of the task for which the model will be utilized. For example,
in lane detection, researchers may detect a lane in a highway
area only if the road is in good condition and there are
few vehicles present except during rush hour. Aside from
that, lane detection in normal situations is far easier than in
extreme conditions. The painted lane marking is chosen at
random. However, it can only be used in one instance. The
scope can include highways, cities, rural areas, and normal,
rainy, and foggy circumstances. The sample must have an
acceptable amount of variance and bias to represent the task
for which the data or model will be utilized. There will
only be some observations in any of the initial investiga-
tions. This implies that some cases will always go unnoticed.
There will be areas of the problem domain that need to be
covered. Two options are splitting the dataset into train and
test sets or resampling methods like k-fold cross-validation.
This technique can be used to deal with ambiguity in the
dataset’s representativeness and to assess the performance of
a modeling procedure on data that isn’t included.

H. ANALYSIS OF PERFORMANCE EVALUATION METRICS &
ITS SIGNIFICANCE
Various performance indicators are available, but the most
frequent are accuracy, precision, F-score, and receiver oper-
ating characteristic (ROC) curves. The accuracy rate should
reflect the algorithm’s global output if the dataset is balanced.
The accuracy demonstrates the accuracy of optimistic pre-
dictions. The lesser the amount of ’’false alarms,’’ the higher
the accuracy. The recall, also known as the true positive rate
(TPR), is the proportion of positive cases that the algorithm
accurately detects. As a result, the better the recall, the more
accurate the algorithm finds positive instances. The F1 score
is the harmonic mean of Precision and Recall, and because
they are merged into a single metric, it may be used to
compare algorithms. The harmonic mean is employed instead
of arithmetic since it is more sensitive to low values. As a
result, if an algorithm is accurate and has a high recall, it has
a decent F1 score. These parameters can be calculated as
individual metrics for each class or overall metrics for the
algorithm.
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I. CROSS-VALIDATION FOR EVALUATING AND
COMPARING MODULES
Cross-validation is a technique for testing how well a sta-
tistical analysis applies to a different dataset. Typically, the
model is trained on a known dataset. This dataset is referred
to as the training dataset. However, the model must work on
an unknown dataset in real-time. Cross-validation is used to
see how well a prediction model works with an anonymous
dataset. The model may have a high degree of accuracy
when the original validation division does not reflect the
entire population. However, it will be of little help in practice
because it can only work with limited data collection. When
it comes across data outside its scope, the system cannot
recognize it, resulting in poor accuracy. It is verified how
accurate the model is on many diverse subsets of data when
cross-validation is employed in machine learning. As a result,
it ensures that it generalizes well to data collected in the
future. It enhances the model’s accuracy. Cross-validation
might help avoid overfitting and underfitting. When a model
is trained ’’too well,’’ overfitting develops. It occurs when the
model is sophisticated and has a large number of variables in
comparison to the number of data. In such cases, the model
will perform admirably in training mode but may not be
accurate when applied to a new data. It is because it is not
a generalized model. Underfitting happens when the model
does not fit the training data instead of overfitting. As a
result, it is unable to generalize to new data. It’s because the
model is simple and lacks sufficient independent variables.
In data analysis, both overfitting and underfitting are unde-
sirable. It should always strive for a balanced approach or a
just right paradigm. Overfitting and underfitting can both be
avoided by cross-validation. Machine learning necessitates
extensive data analysis. Cross-validation is a great way to
get the machine ready for real-world circumstances. As a
result, the system is prepared to take in new data and general-
ize it to make correct predictions. However, to the authors’
knowledge, previous research in the lane detection sector
does not generally discuss or describe any cross-validation for
evaluation. It is possible to state that it is a biased experiment
that requires additional examination in this sector.

J. LIMITATION OF SYSTEMATIC LITERATURE REVIEW
BASED ON RESEARCH QUESTIONS
Referring to the research questions, RQ1, RQ2 and RQ3,
there are existing of certain limitations as listed as follows:
-

1) RQ1
The results from previous research demonstrate that in most
circumstances, lane detection accuracy is about 96 percent
under normal conditions. Heavy rain, on the other hand,
significantly impacts the efficiency of lane marker detection.
In addition, external factors such as weather, visual quality,
shadows, and blazing, as well as internal factors such as lane
marking that is too narrow, too broad, or unclear, degrade
the performance. Moreover, it has been observed that the

system’s performance suffers due to unclear and deteriorated
lane markers. Therefore, one of the most significant issues
with current ADAS is the ambient and meteorological envi-
ronments substantially impacting the system’s functionality.

2) RQ2
Regarding lane marking, camera quality is crucial, and
an adjacent vehicle may obscure the lane signs during
overtaking. Therefore, the algorithm’s accuracy is determined
by the camera used. Images were captured using monocular,
stereo, and infrared cameras. From the literature, a stereo
camera outperforms a monocular camera.

3) RQ3
Approximately 60% of the researchers have used self-
collected datasets in their research.

K. LIMITATION, FUTURE SCOPE AND CONTRIBUTIONS OF
THE CURRENT WORK
The limitations and future scope of the current work can
be categorized into methods, datasets, and model network
architecture.

1) METHODS
Limitations: Most geometric modeling/conventional appro-
aches rely on or follow pre-processing feature extraction, lane
model fitting, and lane tracking to detect the lane. For lane
detection tasks, image pre-processing is required to deter-
mine the quality of features. In addition, this approach needs
manually alter the parameters, although this procedure is
efficient and uncomplicated. Furthermore, previous methods
based on handcrafted features to detect lanes are limited in
scenarios using edge, texture, or color information, which
requires complicated post-processing modules to perform.
Likewise, in many complex scenarios, these approaches func-
tion inadequately. Therefore, the traditional computer vision
(CV) techniques are time-consuming and resource-intensive
and rely on complicated algorithms to analyze the delicate
aspects of lane images. In addition, the number of lanes is
frequently not fixed, and techniques for detecting lanes are
sometimes erroneous. Straight lines, for example, are treated
as lanes by Hough transform-based algorithms, which may
cause street lamps to bemistaken for lanes. Furthermore, poor
weather, such as rain, will impact lane detection. Likewise,
inadequate lighting and a night setting will produce poor
results. However, there are yet no practical solutions for
dealingwith such issues. As a result, conventional approaches
are ineffective in detecting lanes in complex traffic situations.
In addition, it must work in real-time. Most algorithms, how-
ever, suffer from a lack of this purpose. Therefore, traditional
techniques have yielded significant results. However, they
have several limitations: (1) lane detection is challenged in
varying weather conditions and illumination.

Furthermore, previous methods need a consistent frame-
work for detecting various scenes and (2) the inefficiency
of using images due to label noise. Following that, due to
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the advancement of deep learning, numerous solutions have
been suggested to enhance the achievement of computer
vision works in contrast to conventional approaches. Despite
the prevalence of camera sensors, deep learning algorithms
offer a high degree of generalization and learn the essential
elements of the driving environment across multiple layers.
In the past, advanced detecting algorithms such as deep
learning have outperformed traditional methods in complex
scenarios, but they have limitations. For example, despite the
importance of multilane detection, only a limited number of
lanes can be detected, and the cost of detection time is fre-
quently prohibitive. Therefore, various factors influence lane
detection tasks, including specific complex traffic scenarios.
Attention mechanisms have improved NLP and CV exten-
sively. The employment of an attention mechanism improves
feature localization in the feature map and eliminates the
need for post-processing. Therefore, as lanes are long and
thin for lane detection, there are considerably fewer annotated
lane pixels than background pixels, which is challenging for
a model to learn. Hence, the attention processes in feature
maps can emphasize crucial spatial information. The atten-
tion mechanism, in particular, can boost the weighted infor-
mation of lane line objectives while reducing unnecessary
data. It adds to the complexity of network learning. However,
as the author is aware, only a little research has been done on
using the attention mechanism in lane detecting tasks.
Future Scope: In this research area, many different forms

of attention mechanisms can be used at the same time. As a
result, the study’s future direction can be investigated by
applying another type of attention mechanism that has yet to
be deployed.

2) DATASET
Limitations 1: Extremely imbalanced data set problem
because the backdrop class contains most of the lane pixels
in the image. The amount of backdrop pixels is significantly
more than the number of lane pixels due to the lane’s slen-
derness. It may take time to pick up on such characteristics.
Aside from unbalanced data, the quality of acquired data and
annotations also restricts the capacity of various methods [2].
Future Scope 1: State-of-the-art mechanisms such as trans-

fer learning and attention mechanisms can be implemented.
Aside from that, a more generic dataset that replicates real-
world road conditions can be investigated for the confined
dataset. Furthermore, the new databases can be created using
synthetic sensor data from a test vehicle or by generating
driving scenarios using a commercially available driving
simulator.
Limitations 2: Changeable lane markings and illumination

variations. The wide diversity of lane markers, the complex
and changing road circumstances such as no line, shadow
occlusion, provide few or no visible lane lines, the inconsis-
tency of the lanes, the curvature of the lane, and the varied
lane pattern make detection much more difficult. Accord-
ing to the findings, traditional approaches work in a con-
trolled environment and have numerous problems regarding

robustness difficulties caused by road scene fluctuations.
Furthermore, occlusion from overtaking vehicles or other
objects and excessive illumination make lane identification
and tracking difficult. Other than that, the visibility of the lane
lines was reduced due to weather conditions such as rain, fog,
and snow. The performance of lane detection and tracking
algorithms suffers due to these issues in lane recognition
and tracking. In addition, according to [4], lane-like inter-
ferences, such as guardrails, railways, utility poles, pedes-
trian sidewalks, buildings, and so on, will interfere with the
existing traditional method, such as the HT-based algorithm.
As a result, it has struggled in various challenging environ-
ments, including night time and other environmental factors
(shadow, rain, etc.).

Furthermore, the host car then casts its shadows on the road
surface as it enters or exits a tunnel or drives beneath a bridge.
As a result, the road may have complicated painted road
surfacemarkings, utility lines, and buildings, which can cause
the HT-based lane detection algorithm to provide misleading
edges and textures. On rainy days, reflection from the wet
road may induce glare and image overexposure, resulting in
lane detection failure in some instances. In addition to lane-
like interferences, lighting fluctuations make dividing line
detection more challenging. Under artificial light, the system
failed to recognize road lane characteristics in bright or wet
road conditions with significant reflection on rainy days.
Future Scope 2: Employ feature-based learning models to

control lousy weather, illumination, and shadow issues.

3) MODELS NETWORK ARCHITECTURE
Limitations: Working with inaccurate and incomplete infor-
mation is what uncertainty entails. This study contains
numerous sources of uncertainty, including data noise and
an imprecise model. Noise is the term for variation in an
observation. Both the inputs and the outputs are affected by
this unpredictability. Genuine data, like the real world, is a
tangled mess. Besides, a random sample is a set of obser-
vations picked randomly from a domain with no systematic
bias.

Nevertheless, a certain amount of bias will always exist.
This arises when a model needs more data and knowledge,
commonly occurring when there aren’t enough samples to
train the model. While some bias is inherent, uncertainty
grows if the sample’s degree of variance and preference is an
unsatisfactory representation of the task for which the model
will be utilized.

For example, in lane detection, researchers may detect a
lane in a highway area only if the road is in good condition
and there are few vehicles present except during peak hours.
Aside from that, lane detection in normal situations is far
easier than in extreme conditions. The painted lane marking
is chosen at random. However, it can only be used in one
instance. The scope can include highways, cities, rural areas,
and normal, rainy, and foggy circumstances. The samplemust
have an acceptable amount of variance and bias to represent
the task for which the data or model will be utilized. There
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TABLE 6. The Learning Results From RQs 1, 2, and 3.
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TABLE 6. (Continued.) The Learning Results From RQs 1, 2, and 3.
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TABLE 6. (Continued.) The Learning Results From RQs 1, 2, and 3.
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TABLE 6. (Continued.) The Learning Results From RQs 1, 2, and 3.

TABLE 7. Dataset Partition.

will never be all of the observations in any of the initial
investigations. This implies that some cases will always go
unnoticed. There will be areas of the problem domain that
are not covered.

Future Scope: Invest some time analyzing data statistics
and creating visualizations to aid in identifying those anoma-
lous or unusual cases. This is what data cleansing is all
about. Therefore, splitting the dataset into train and test sets
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TABLE 8. Comparison of this slr with the already done review articles.

or using resampling methods like k-fold cross-validation.
This technique can be used to deal with ambiguity in the
dataset’s representativeness and to assess the performance
of a modeling procedure on data that isn’t included in the
training.
Contributions: Combining deep learning approaches with

other techniques yields significant performances. The merg-
ing of networks and attention mechanism was proposed
to learn more discriminative features of road lanes than
the stand-alone deep learning approach to significantly
increase the detection accuracy of the road lane. These meth-
ods/innovations regarding more precise lane detection are
necessary to enable a real-time lane detection system. There-
fore, the model’s accuracy and speed should be improved in
normal and extreme conditions.

L. COMPARISON WITH ALREADY DONE REVIEW ARTICLES
This SLR is compared with the other review articles that have
previously been completed. As a result of the SLR, it was
discovered that most of the currently published research falls
into one of the categories presented and discussed in Table 8.

V. CONCLUSION AND FUTURE RECOMMENDATIONS
This review article is concluded by analyzing the outcomes
andmaking recommendations for subsequent initiatives. This
section describes all lane detection methods, self-collect
dataset preparation equipment, the top three most popular
online datasets, fundamental problems in this field, and the
state-of-the-art that can be investigated for future research.

A. CONCLUSIONS
The analysis from this SLR shows that the selected literature
used various methods and structures, with the input dataset
being one of two types: self-collected or acquired from an
online public dataset. In the meantime, the methodologies
include geometric modeling and traditional methods, while
AI includes deep learning and machine learning. CNN, FCN,
and RNN are examples of deep networks and architectures.

The use of deep learning has been increasingly researched
throughout the last four years. Some studies used stand-alone
deep learning implementations for a single-lane detection
problem or multiple-lane implementations. Other than that,
some research focuses on merging deep learning with other
machine learning techniques and classical methodologies to
improve efficiency.

On the other hand, recent advancements imply that atten-
tion mechanism has become a popular strategy to combine
with deep learning methods to increase performance. Using
deep algorithms in conjunction with other techniques also
showed promising outcomes. This SLR will pave the path for
more studies to be accomplished to build more effective lane
detection methods. In addition, more precise methods for use
in real-world industrial settings are required. We plan to build
on the findings of this study in the future, emphasizing cre-
ating a network with high-speed performance and efficiency
that can be implemented in real-time.

B. FUTURE DIRECTIONS AND RECOMMENDATIONS
The following directions for future contributions to the
discipline should be focused on based on the findings of
this SLR:

1) For exact feature learning, accurately labeled lane data
is required for deep network training.

2) Increases the number of publicly available online pub-
lic datasets that cover a wide range of scenes.

3) More imbalance management approaches should be
investigated, such as computational cost, speed perfor-
mance, and algorithm/network training error.

4) Combining deep learning approaches with other tech-
niques yields significant results, which merits further
investigation.

5) The merging of networks and attention mechanisms
has improved performance, but additional research is
needed.

6) They are developing approaches and technologies for
lane detecting that are more efficient in speed and

VOLUME 11, 2023 3761



N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review

precision. The model’s accuracy and rate under normal
and extreme situations should be enhanced to enable
real-time detection.

7) The computational load is reduced. Therefore, training
time, memory, and CPU resources should all be mini-
mized via efficient learning algorithms.
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