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A novel hybrid of Nonlinear Sine Cosine Algorithm and Safe Experimentation
Dynamics for model order reduction
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Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia

ABSTRACT
The current study introduces the hybridization of the Nonlinear Sine Cosine Algorithm (NSCA)
and Safe Experimentation Dynamics (SED) as a novel optimization method for model order
reduction of high-order single-input single-output (SISO) systems. Reciprocated synergism
between both meta-heuristic algorithms is achieved by appropriating the nonlinear position-
updated mechanism of NSCA for enhanced exploration/exploitation competencies and profi-
ciency of SED inmaximizing stagnation avoidancewithin the local optima. Named theNSCA-SED
algorithm, the applicability of the proposed method is assessed by scholastic adoption of a
sixth-order numerical transfer function towards two independent high-order systems enclosing
Double-Pendulum Overhead Crane and Flexible Manipulator. Experimentation results further
suggested NSCA-SED as the superior alternative in terms of execution robustness and consis-
tency excellence against other available optimization-based methods for tackling model order
reduction. Exemplified simulations sequentially demonstrated considerable improvements by
the employment of NSCA-SED over conventional SCA following respective enhanced propor-
tions of 97.17%, 13.17% and 29.03% for Example 1, Example 2 and Example 3.
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1. Introduction

Accelerated technological growth and advancement
within current industries and societies have driven the
development of scientific mechanisms, which stream-
line humanized tasks. Fundamentally depicted by
the expression of complicated high-order equations,
updated structures enclosing urban traffic, modern
power and digital communication networks are vastly
fabricated. However, the emergence of engineering
and scientific challenges within system design, anal-
ysis, synthesizing and modelling facing consecutive
trends of upward scaling owing to the systems’ intrin-
sic high dimensions and reciprocated nonlinearities
further stipulates the requirement for a specific algo-
rithmic procedure like model order reduction (MOR)
towards resolution.

MOR is conceptualized within the engineering sec-
tor for lowering the complexity of otherwise immensely
complicated high-order dynamic structures. Being a
mechanism that guides scholars and practitioners alike
on apprehensions simplified systems and enables the
reduction of required simulation and computation
investments, the application has received widespread
adaptation across numerous academic areas includ-
ing engineering, renewable energy, track handling and
electromagnetic systems. Revolutionary improvement
has also been presented by many academicians in the

previous decade for greater estimating precision of the
developed reduction models, with the implementation
of optimization algorithms, such as Krylov subspace
[1], Hankel norm approximation method [2], Padé
approximation [3] and Routh Hurwitz [4]. Because of
the adequate outcomes from these approaches, preva-
lent setback ensues in the form of declined operational
precision and consistency facing high-order dynamic
models [5].

Thereafter, an exemplary solution has been pursued
by academicians through the development of updated
meta-heuristics algorithms, which undergo reduced-
order modelling upon prior fixation of cost/objective
functions. Due to their extensive competencies in
maintaining systems’ stability ensuing transition
between high-order and reduced-order systems,
employment ofmodernizedmeta-heuristics approaches
towards settling encountered challenges across MOR
structures has indeed received vast attention among
scholastic communities in recent years. This is pri-
marily exemplified by Mukherjee et al. [6] regarding
the implementation of a Genetic Algorithm (GA) for
systematic model order reduction. The Big Bang Big
Crunch (BBBC) method was then recommended by
[7] for a similar purpose without foregoing the exist-
ing stability of the initial system. The complexity of
a MOR structure was also addressed via [8] through
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the adoption of Particle Swarm Optimization (PSO),
with the employment of the Cuckoo Search Algorithm
(CSA) alongside its derived algorithms being subse-
quently explored within the research by [9]. Follow-
ing this, Bhatnagar and Gupta [10] in the context of
high-order linear time-invariant systems have seen the
application of Grey Wolf Optimizer (GWO) towards
parametric optimization of their reduced-order mod-
els. A comparative study was then attempted by Nair
et al. [11] in 2017 centering the efficacy of Ant Lion
Optimizer (ALO) against alternative reduced-order
approaches, including CSA and Gravitational Search
Algorithm (GSA).

On another note, the GOA method was exam-
ined by Guha et al. [12] as a model reduction
technique. Such endeavour has, nonetheless, been over-
shadowed by subsequent publication from Singh [13]
in 2018, which successfully proposed the Sine Cosine
Algorithm (SCA) as a superior MOR algorithm for
high-order continuous structure against other effica-
cious order-reduction methods, including PSO, Ele-
phant Herding Optimization (EHO) and Nelder-Mead
Simplex Algorithm (NMSA), while maintaining an
admirable operational simplicity. Moreover, optimiza-
tion approaches, such as Harris Hawk Optimization
(HHO) [14] and Salp Swarm Optimization (SSO) [15],
have simultaneously emerged as exploitable algorith-
mic alternatives withinmodern academic and real-time
MOR applications. With efficiency being established as
a fundamental basis for the presumed effectiveness of
the aforementioned MOR algorithms, estimating the
precision of an order-reduced model would, therefore,
be determined by the theoretical robustness of the spec-
ified optimization method. However, similar setbacks
have been principally unveiled for most of the dis-
cussed techniques on extensive computation interval
and premature convergence.

Uncovered shortcomings have consequentially
driven scholastic examinations of better optimiza-
tion alternatives through attempts of meta-heuristics
hybridization, enclosing integrated algorithmic appro-
aches, such as Particle Swarm Optimization-Differen-
tial Evolution Algorithm (PSO-DV) [16], Grey Wolf
Optimizer-Chaotic Firefly Algorithm (GWO-CFA)
[17], Particle Swarm Optimization-Bacterial Foraging
(PSO-BF) [18], Bacterial Foraging-Modified Particle
Swarm Optimization (BF-MPSO) [19], Particle Swarm
Optimization-Gravitational Search Algorithm (PSO-
GSA) [20], and Average Multi-Verse Optimizer and
Sine Cosine Algorithm (AMVO-SCA) [21].While such
methods exploit the aggregated competencies of diverse
optimization algorithms in resolving issues concerning
model order reduction, their efficacious performances
in the fabrication of lower-order systems are, nonethe-
less, offset by elevated complicatedness from exist-
ing coefficients that demand increased computational
efforts and temporal investments. With this in mind,

successive academic directions should acknowledge
the need for hybridized optimization framework with
reduced complexity and fewer foreseeable coefficients.

Ensuing previous discussion, this research is espe-
cially set to explore a contemporary hybridized
algorithm known as Nonlinear SCA-Safe Experimenta-
tion Dynamics (NSCA-SED) with a definite mission of
developing an efficient and uncomplicated optimiza-
tionmethod formodel order reduction. Being an essen-
tial segment to the proposed hybridization, the NSCA
approach, as primarily reported by Suid et al. [22]
in 2018, has been an updated variation inspirited by
the conventional SCA from [23]. Upon revising exe-
cution regulation of the original algorithm through
the incorporation of a nonlinear decreasing position-
updated procedure, the updated algorithmic variant has
succeeded in the resolution of optimization setbacks,
including the identification of liquid slosh system [24]
and energy generation of wind plant [25]. On the other
hand, the SED method, which falls within an alterna-
tive subset of single-agent algorithms, is understood as
a game-inspired optimization method that capitalizes
on repetitions of multi-player stages towards strategic
selections among existing solutions in conformity with
its formerly specified strategic modification mecha-
nism. Initially introduced within the founding paper by
Marden et al. [26], an individual agent or player within
the SEDmethodwould rely on its specific probability to
maneuver in a random pattern. Supported by a stable
performance record and convenient implementation
among other single-agent algorithms, the applicability
of said approach has since transpired across numerous
engineering-related functions, including pantograph-
catenary system [27], DC/DC buck–boost converter
[28], and hybrid electric vehicles energy management
system [29]. As such, an integration between NSCA
and SED algorithms is anticipated to combine the
nonlinear exploration/exploitation competency of the
former and the random perturbation nature of the lat-
ter for increased outcome precision at appropriated
operational simplicity. Currently proposed NSCA-SED
approach has been principally preferred to tackle chal-
lenges encountered amidst the MOR process, with
concurrent accounts for the problem’s heightened com-
plexity and the potential emergence of multimodal
error, which further complicates the minimization
of cost functions. This study would then present as
founding research, regarding the implementation of
multi-agent single-agent hybridization, formodel order
reduction.

The efficacy of the introduced NSCA-SED design
as a robust model order reduction algorithm has
been fundamentally validated above the structural
mechanisms of one common high-order numeri-
cal system and two real-time high-order systems.
A comparison has subsequently proceeded between
the simulated performance of the proposed approach
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Table 1. List of notations used in this paper.

Gh(s) High-order system.
Gr(s) Reduced-order system.
ci and di Numerator and denominator scalar constants of the

high-order system.
vi andwi Numerator and denominator scalar constants of the

reduced-order system.
u(t) Input signal.
yh(t) and yr(t) Output of the original high-order system and the

reduced-order system.
fj Objective function of agent j.
Xij(k) Position of the agent j in the i-th dimension.
Rd Set of real number vector.
Pi Destination position in the i-th dimension.
P Current best solution obtained.
n Number of agents.
r1 Parameter to determine the next position’s stage.
r2 Random numbers between [0, 2π ].
r3 Random numbers between [0, 2].
r4, r5, r6 Random numbers between [0, 1].
r̂1 Newly proposed parameter to determine the next

position’s stage.
a Coefficient in r1 and r̂1
k and Kmax Current iteration and final iteration.
α and β Coefficients to adjust the ratio of exploration and

exploitation phases.
� Coefficient that defines the probability of using the

newly updated design variable.
tf Final simulation time.
ξ Step size gain of the design variable.
zlo and zuplb and ub Lower and upper bound values of design variable.
zi and z̄i Current design variable and current best design

variable.

and previously published optimization techniques for
model reduction, including Padé approximation [3],
GWO [10], ALO [11], SCA [13] GOA [12], AMVO-
SCA [21], and iSCA [22] by benchmarked error
indices of Integral-Square-Error (ISE), Integral-Time-
Square-Error (ITSE), Integral-Absolute-Error (IAE),
and Integral-Time-Absolute-Error (ITAE). Appraisals
of nonparametric statistics in accordancewithWilcoxon’s
signed-rank analysis and block plot illustrations were
further conducted for uncovering the comparable effec-
tiveness of the proposed algorithm against its prede-
cessor. Hereafter, notations and symbols as necessar-
ily employed within this paper have been listed and
described in Table 1.

The sectional distribution of the current paper has
been systematically organized as follows: Formulated
problem as encountered within the MOR process is
described in Section 2. A comprehensive explanation
of the NSCA-SED algorithm as contemporarily intro-
duced for resolution of encountered setbacks within
MOR is further outlined in Section 3. Following this,
results acquired from the experimented simulation are
discussed in Section 4,with conclusive remarks and rec-
ommended future scholastic direction of the current
study being subsequently explained in Section 5.

2. Problem formulation

The MOR process is purposed for model order reduc-
tion facing an examined continuous-time SISO sys-
tem for relieving the involved arithmetic simulation,
while diminishing the required investment for numer-
ical computation.

A secured high-order SISO system appropriating an
accurate transfer function ( � ≥ m) is hereby consid-
ered:

Gh(s) = Nh(s)
Dh(s)

= cmsm + · · · + c2s2 + c1s + c0
d� s� + · · · + d2s2 + d1s + d0

(1)

where scalar constants for the numerator and denom-
inator are individually represented by respective nota-
tions of ci(i = 0, 1, . . . ,m) anddi(i = 0, 1, . . . , �), respec-
tively. As such, this study is aimed to exhaustively lower
the order of transfer function Gh(s) without unneces-
sarily jeopardizing the precision and conceptual fun-
damentals of its conventional model. Specified trans-
fer function towards the system’s order reduction is,
therefore, derived as follows:

Gr(s) = Nr(s)
Dr(s)

= vpsp + · · · + v2s2 + v1s + v0
wqsq + · · · + w2s2 + w1s + w0

(2)

where scalar constants for numerator and denomi-
nator of the reduced-order system (ROS) are inde-
pendently represented by the respective notations of
vi(i = 0, 1, . . . , p) and wi(i = 0, 1, . . . , q). q < � is
subsequently affiliated to remark a higher value of
order Gh(s) over order Gr(s). Graphical representa-
tion enclosing undertaken mechanism towards model
order reduction is then thoroughly outlined in Figure
1, with the input, the output as registered from the
conventional system Gh(s), and the output as regis-
tered from the reduced-order system Gr(s) being inde-
pendently represented by respective notations of u(t),
yh(t) and yr(t). In this case, an identical input signal
has been applied towards operationalization ofGh(t) =
L−1{Gh(s)} and Gr(t) = L−1{Gr(s)} in yielding their
consequential outputs of yh(t) = Gh(t)u(t) and yr(t) =
Gr(t)u(t). Inverse Laplace for the transfer function
is further represented by notation L−1. Whereas the
objective function would be executed upon discovering
the error between yh(t) and yr(t).

The current study essentially uncovers unknown
scalar constants for the respective numerator and
denominator of ROS within the order Gr(s) by the
implementation of specified meta-heuristics approach
for minimization of the following objective function:

F(θ) =
∫ tf

0
[yh(t) − yr(t)]2dt. (3)

for the design variable of

θ = [v0, v1, . . . , vp,w0,w1, . . . ,wq] ∈ Rd (4)

where d = p + q + 2, with a vector comprising real
numbers within its element being represented by nota-
tion Rd. Notation F typically denotes the Integral
Square Error (ISE) concerning outputs between trans-
fer functions of examined high-order and reduced-
order systems. Scholastic predisposition is deliberately
recognized on the criterion of ISE minimization given
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Figure 1. Illustration of the model order reduction process.

its nature for swift erroneous elimination within tran-
sient and steady-state responses. The main problem as
formulated for the current paper is, therefore, described
as follows:

Problem 2.1: Under the circumstance where system
Gh(s), input data u(t) and output data yh(t) are known,
design variables in (4) conforming Gr(s), which mini-
mizes the objective function F should be identified.

3. Model order reductionmethod

This section focuses detailed explanation of the spec-
ified technique employed for order reduction through
the implementation of Nonlinear SCA-SED (NSCA-
SED) as the contemporarily introduced hybridized
optimization algorithm.

3.1. Overview of Sine Cosine Algorithm (SCA)

SCA is a multi-agent-based optimization approach
known to operate in accordance with simple sine and
cosine trigonometric functions. It directly identifies
the common nature of multi-agent-based algorithms,
arrays of search agents would be fabricated within the
SCA, while speculatively distributed across an estab-
lished search area as denoted by

arg min
Xj(1),Xj(2),...

fj(Xj(k)) (5)

where the objective function and position vector of j are
represented by fj and Xj, respectively. Destination posi-
tion is eventually determined by algorithmic retention
of superior positions throughout the updated iterations.
Operationalized fine-tuning process would cease upon
reaching themaximum literation, in which the position
of the individual agent would be revised based on the
sine and cosine functions as follows:

Xij(k + 1) =

⎧⎪⎪⎨
⎪⎪⎩

Xij(k) + r1 × sin(r2)
×|r3Pi − Xij(k)| if r4 < 0.5,

Xij(k) + r1 × cos(r2)
×|r3Pi − Xij(k)| if r4 ≥ 0.5,

(6)

for the iterations k = 0, 1, 2, . . . , with the updated posi-
tion of agent j and destination position within the i-th
dimension being separately represented by respective
notations of Xij(k) and Pi. The expression is hereby
simplified by denoting the vector of the destination
position by a notation P as the updated current best
solution. SCA’s core parameters that have been arbi-
trarily deposited are then represented by r2, r3 and
r4, with the adopted actual magnitude of operational
value being subsequently represented by the symbol
||. Notably, the registered range following positional
movement as arbitrarily yielded across the designated
span of [0, 2π], which deserts or approaches, the desti-
nation position is defined by the parameter r2.Whereas
arbitrary weight of the destination position as ran-
domized across the designated span of [0, 2], which is
purposed towards stochastic expansion (r3 > 1) and
reduction (r3 < 1) of registered range approaching the
current position is defined by the parameter r3. Inter-
changing sine and cosine functions as outlined within
Equation (6) as arbitrarily obtained across the desig-
nated span of [0, 1] are further defined by the param-
eter r4. Among others, the aforementioned explana-
tion has, therefore, ascertained the parameter r1 as the
coefficient, which manoeuvres the algorithm’s ensuing
position between both independent stages of explo-
ration and exploitation. Required equilibrium between
exploration and exploitation competencies would be
maintained in adherence to the equation r1 as given by

r1 = a − k
a

Kmax
(7)

where the total sum of iterations and the updated iter-
ation is independently represented by notations Kmax
and k, with aas a constant. Under the scenario where
r1 > 1, SCA would be probed to explore the globalized
search region. Alternatively, the algorithm would limit
its exploration within the local search region should
r1 ≤ 1.

3.2. Overview of Safe Experimentation Dynamics
(SED)

Safe Experimentation Dynamics (SED) is a game-
theoreticmethod that characterizes individual elements
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within the design variable as independent players [26].
Random movements of individual players would then
rely on formerly established probability by mean of
loss function minimization towards succeeding spec-
ified optimized objective or design variable. On the
accounts where z signifies the design variable, it shall
be iteratively revised by SED in accordance with the
updated criteria of

zi(k + 1) =
{
h(z̄i − ξ r6) if r5 ≤ �,
z̄i if r5 > �, (8)

for k = 0, 1, . . . , where independent arbitrary numbers,
as consistently segregated across the span of [0, 1], are
represented by symbols r5 and r6, coefficient, which
describes the employment probability of the contem-
porarily revised design variable, is represented by the
symbol �, while having its step size gain being repre-
sented by the symbol ξ . With the vector of the current
best design variable as updated amidst iterative progres-
sion being denoted by notation z̄, the i-th elements for
z and z̄ are further represented by symbols zi and z̄i,
respectively. Function h from Equation (8) is, therefore,
given by

h(·) =
⎧⎨
⎩

zup if z̄i − ξ r6 > zup,
z̄i − ξ r6 if zlo ≤ z̄i − ξ r6 ≤ zup,

zlo if z̄i − ξ r6 < zlo,
(9)

where formerly determined values for the design vari-
able’s lower and upper bounds are independently rep-
resented by notations zlo and zup, respectively.

The main aptitude of SED essentially capital-
izes on its ability in retaining superior design vari-
ables throughout the tuning process towards enabling
stabilized convergence. Further reinforced by the
algorithm’s adoption of fixed interval step size, which
operatively differs from the sum of iterations, its poten-
tial practicality for the optimization purpose of order
reduction is confirmed.

3.3. Proposed NSCA-SED optimization algorithm

An equal number of iterations has been especially
appropriated to exploration and exploitation for the
conventional SCA algorithm through linear reduction
of r1 Equation (7) from 2 to 0. Such phenomena have,
nonetheless, prove detrimental to the algorithmic per-
formance of SCA because of its overly restrained nature
for operators’ regulatory attempts to specify the desired
exploration and exploitation proportions. An increas-
ingly universal equation is, therefore, preferred to
enclose vaster industrial applicability. Such revelation
propels subsequent employment of decreasing nonlin-
ear curve within Equation (7) which corresponds to
the exponential function. The revised equation for r1

following the undertaken adjustment is then written as

r̂1 = a
(
1 −

(
k

Kmax

)α)β

(10)

with contemporarily introduced nonlinear conver-
sion indexes as purposed to modify exploration and
exploitation proportions throughout the optimization
process being denoted by respective notations of β and
α. As such, notation r̂1 has been adopted in Equation
(10) for the updated NSCA method as a direct substi-
tution to the initial equation from Equation (7). The
criteria for β and α would be determined at respective
numerical arrays of, e.g. β = 1.0, α > 1.0 or β < 1.0,
α = 1.0 to achieve greater exploration, with the con-
traries (e.g. β = 1.0, α < 1.0 or β > 1.0, α = 1.0)
inversely generate greater exploitation.

Nevertheless, SCA is faced with the setback of per-
formance deterioration due to local optima stagnation.
Probable local optima entrapment has been particu-
larly emanated from operational fundamentals of the
algorithm for entirely overlooking fitness values that
supersede the best global values while abandoning its
potential set of solutions. Such deficiency is currently
tackled by the incorporation of SED’s random pertur-
bation endeavour alongside the recommended NSCA
framework. The decision is made in response to the
abilities of design parameters for the current best agent
and destination position through random perturba-
tion in guiding the withdrawal of entrapped search
agents from their local optima for consecutive ven-
ture of alternative search tracks. Random perturbation
within SED’s mechanism as outlined in Equation (8)
has been graphically illustrated via a 2D representation
in Figure 2 to enable extended simplicity and clarifica-
tion, where separate design parameters (i.e. elements)
as positioned within an established contour plot are
represented by the x- and y-axes. Under the circum-
stance, where the agent Xj as denoted by a red-colored
rectangle entered the local optima region, its with-
drawal from said region is futile by the implementation
of conventional SCAdue to the algorithm’smechanism,
which based its revised position on the agent’s current
position (refer to Equation (6)). With this in mind, the
inclusion of random perturbation would prevail as a
viable solution upon altering portions of the elements in
adherence to the design parameters of destination posi-
tion P. Such occurrence is observable through random
alteration in the second element of the agent Xj for the
second design parameter of P at the x-axis in perturb-
ing the former to a contemporary position as denoted
by the green-colored rectangle, while it dismisses the
challenge of local stagnation.

Moving forward, the general procedural layout of
model order reduction with implementation of the
introduced NSCA-SEDmethod and its identified pseu-
docode have been separately illustrated in Figures 3 and
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Figure 2. Illustration of SED’s random perturbation mechanism.

Figure 3. Diagram of NSCA-SED implementation for model order reduction problem.

4, respectively. Presumption ensuing the given pseu-
docode proclaims direct substitution of SCA’s revised
element in Equation (5) by design parameter of des-
tination position Pi under the condition where the
random number r4 falls below probability � and vice
versa. Substitution attempts between elements of SCA
and destination position would, therefore, be executed
conforming value of probability �. Integrated traits of
NSCA-SED as proposed within the current study are
further anticipated to prevent a setback of hasty con-
vergence while ensuring improved optimization preci-
sion for the estimation of the reduced-order transfer
function.

The systematic procedure for the implementation of
NSCA-SED towards order-reduction of the examined
system has been detailed as follows:

Step 1:Values of a, α and β from Equation (10), and
� the SED algorithm are initially identified.

Step 2: NSCA-SED as outlined in Algorithm 1 is
executed on the criteria of F := fj and θ := Xj for indi-
vidual agent j.

Step 3: Operationalization of the algorithm halts
upon reaching the maximum iterations Kmax at an
acquired solution of θ∗ := P, and a corresponding
order-reduced system Gr(s).

4. Experimental results and discussion

Effectiveness appraisal concerning order reduction of
the examined system by the employment of the intro-
duced NSCA-SED approach has been thoroughly out-
lined in this section. Generated performance from
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Figure 4. Pseudocode of the proposed NSCA-SED optimization algorithm.

the proposed algorithm was fundamentally compared
against other order reduction techniques as widely
studied within the preceding literature, including Padé
approximation [3], GWO [10], ALO [11], SCA [13],
GOA [12], AMVO-SCA [21], and iSCA [22]. Cir-
cumstantial considerations were further allocated to
three key scenarios, enclosing one sixth-order system
numerical example, followed by the Double-Pendulum
Overhead Crane and Flexible Manipulator as two alter-
native experimental-based systems. Except for the Padé
approximation, experimented simulations were con-
ducted across a span of 30 independent trials towards
uncovering the optimal design parameters of the exam-
ined system.Whereas, the R2014a version of theMatlab
software was adopted for simulated implementation of
all compared methods, while adhering to the criteria as
follows:

1. Precision analysis for objective functionF followed
the expression as given in Equation (3).

2. Arithmetic outcomes of each algorithm were
assessed in accordance with obtained data for the
box plot graphical and the nonparametric statistics
of Wilcoxon’s signed rank.

3. The robustness of each algorithm was assessed for
the generated findings for ITSE, IAE, and ITAE.

Herewith, performance indices for these compo-
nents are arithmetically expressed by

ITSE =
∫ tf

0
t([yh(t) − yr(t)]2)dt, (11)

IAE =
∫ tf

0
|yh(t) − yr(t)|dt, (12)

ITAE =
∫ tf

0
t|yh(t) − yr(t)|dt. (13)

4. Improvement ratios by percentage between the
average objective function from the proposed
algorithm and its compared MOR counterparts
were recorded with the employment of the follow-
ing computation approach:

%F̄ =
(
F̄NSCA-SED − F̄others

F̄others

)
× 100. (14)

where average objective functions for NSCA-
SED and its compared algorithmic approaches
as recorded from 30 simulated trials are inde-
pendently denoted by respective notations of
F̄NSCA-SED and F̄others.
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4.1. Example 1

Aspired by the scholastic structure as formerly studied
inRef. [30], a sixth-order systemhas been accounted for
as the first example of the reduced transfer function to
a high-order system, with said transfer function being
expressed by

Gh(s) = 8s5 + 3s4 + 16s3 + 20s2 + 8s + 1
2s6 + 33.6s5 + 155.94s4 + 209.46s3

+102.42s2 + 18.3s + 1

.

Under such circumstance, unit step was especially
adopted as the input signal, with respective coefficients
of NSCA-SED being pre-determined at a = 2, β = 0.4,
α = 0.03, and� = 0.6. Coefficients of other examined
optimization approaches were simultaneously coordi-
nated to the corresponding values from their found-
ing publications. A standardized setting of 100 agents
and 20 maximum iterations were, nonetheless, estab-
lished for the simulations of all investigated algorithms
to ensure unbiased comparability. With the upper and
lower bounds being pre-determined at the values of
ub = 210 and lb = 1, ROS for the current numeri-
cal example was then fixed as the given second- order
system of

Gr(s) = v1s + v0
w2s2 + w1s + w0

.

On this note, the aforementioned best-fitted second-
order reduced models, as yielded by the implementa-
tion of each investigated algorithm under the sampling
interval of 0.001 s and simulation interval tf of 80 s are
cumulatively tabulated in Table 2. Step responses for
the best design parameters across 30 independent trials
as per registered from each investigated optimization
approach are further demonstrated in Figure 5.Observ-
able through the magnified section within the figure,
the highest proximity between yielded responses from
NSCA-SED as represented by the red-coloured line and
the conventional full-order systemas represented by the
dashed black-coloured line has manifested consider-
ably superior performance of the contemporarily intro-
duced algorithm over its preceding ROS techniques. All
themore so when such results are benchmarked against
SCA [13] and GOA [12] where the precision of their
generated responses was incomparable to the full-order
response signals.

Further verification has been subsequently revealed
by the execution of box plot analyses to the respec-
tive objective function F as generated by each inves-
tigated algorithm in Figure 6. Observably, unsatisfac-
tory responses have prevailed for ALO [11], GOA [12],
AMVO-SCA [21], and iSCA [22] from the aspect of
operational consistency. With a value of 0.016, a higher
median was, therefore, yielded by AMVO-SCA over
ALO, GOA and iSCA at their respective values of 0.014,
0.01 and 0.006. An overly extensive interquartile range

Table 2. Reduced-order model obtained using different meta-
heuristics optimization methods for Example 1.

Algorithms Reduced model

Padé [3]
31750s + 50

327026s2 + 32265s + 50

GWO [10]
13.0407s + 18.2578

114.3312s2 + 202.9874s + 18.2309

GOA [12]
23.1210s + 14.5917

106.5665s2 + 188.0288s + 14.3217

ALO [11]
1.0131s + 1.0005

9.4932s2 + 11.3498s + 1

SCA [13]
s + 20.8385

1.3089s2 + 210s + 20.8371

AMVO-SCA [21]
24.1642s + 17.8441

106.3492s2 + 210s + 17.7771

iSCA [22]
5.4781s + 18.1979

81.5373s2 + 210s + 17.9063

NSCA-SED
2.7883s + 19.9813

6.7473s2 + 210s + 19.9433

further acknowledged ALO [11] as the most under-
performed optimization algorithm. While GWO [10]
and SCA [13] have outperformed the previously men-
tioned algorithms, prolonged dotted lines at the upper
domain of their box plots subsequently challenged the
excellence of both meta-heuristics methods on a con-
siderable number of outliers within their distributed
data. Nevertheless, responses from the contemporar-
ily introducedNSCA-SED approach have outshined the
performances of its compared algorithms for having
the minimal interquartile range of ≈0.000035 in the
absence of apparent outliers.With possessing an excep-
tionally small median of ≈0.000018, the results of the
proposed algorithm have demonstrated a remarkable
level of consistency against other investigated methods.

Numerical representations of the acquired responses
for each optimization algorithm are comprehensively
outlined in Table 3. Notably, NSCA-SED has steadily
outperformed its preceding counterparts for generating
the smallest values of F in terms of average, maxi-
mum, and standard deviation statistics. Yielded aver-
ages of these statistical components for all investigated
algorithms further revealed respective improvement
ratios of 83.14%, 99.72%, 99.74%, 97.17%, 99.72% and
99.50% by NSCA-SED against the GWO [10], GOA
[12], ALO [11], SCA [13], AMVO-SCA [21] and iSCA
[22] methods. Wilcoxon’s signed rank at an established
significant threshold of σw = 0.05 was further exe-
cuted within this study for ratifying existing differen-
tial significance between a pair of ROS methods, with
the computed p-values being systematically outlined
in Table 4. The sum of ranks by, which the proposed
approach outperformed and underperformed against
the capacities of its compared algorithms are hereby
denoted by notations S+ and S−, respectively. As such,
p-values, as recorded below 0.05 by the implementation
of the NSCA-SED method have suggested its superior
robustness among the currently examined techniques.
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Figure 5. The response of the proposed NSCA-SED technique with other existing optimization-based model order reduction
techniques for Example 1.

Figure 6. Box plot of the objective function F produced by different meta-heuristics optimization methods for Example 1.

Table 3. Statistical results of the objective function F for
Example 1.

Algorithms Average value Min. value Max. value Std.

Padé [3] – 9.26E−06 – –
GWO [10] 2.13E−04 6.88E−06 5.05E−03 9.15E−04
GOA [12] 1.31E−02 2.86E−04 3.51E−02 1.11E−02
ALO [11] 1.41E−02 6.28E−06 3.47E−02 1.27E−02
SCA [13] 1.27E−03 3.53E−05 7.44E−03 1.93E−03
AMVO-SCA [21] 1.31E−02 1.09E−04 2.50E−02 8.20E−03
iSCA [22] 7.27E−03 2.51E−04 2.48E−02 6.67E−03
NSCA-SED 3.59E−05 6.46E−06 1.86E−04 4.17E−05

Such as on the accounts of a non-stochastic nature as
exhibited by Padé approximation [19], which merely
manifested minimal value in Table 3 without subse-
quent box-plot and Wilcoxon’s signed-rank results.

Table 4. Wilcoxon’s signed rank test for the pairwise compar-
ison between NSCA-SED with other meta-heuristics optimiza-
tion methods in comparison in solving Example 1.

NSCA-SED vs S+ S− p-value

GWO [10] 344 121 2.93E−02
GOA [12] 465 0 1.86E−09
ALO [11] 355 100 2.05E−07
SCA [13] 406 59 9.31E−09
AMVO-SCA [21] 465 0 1.86E−09
iSCA [22] 465 0 1.86E−09

Furthermore, recorded values for the common per-
formance indices of ITSE, IAE and ITAE as generated
by NSCA-SED and its meta-heuristics predecessors
have been contrasted through their respective tabula-
tions in Table 5. Such analysis has similarly considered
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Table 5. Performance of ITSE, IAE and ITAE in comparisons for
different meta-heuristics optimization methods for Example 1.

Algorithms ITSE IAE ITAE

Padé [3] 4.55E−05 1.40E−03 2.01E−02
GWO [10] 1.63E−03 8.10E−03 2.15E−01
GOA [12] 1.58E−02 2.20E−02 5.53E−01
ALO [11] 1.66E−03 8.08E−03 2.04E−01
SCA [13] 1.87E−02 2.40E−02 6.16E−01
AMVO-SCA [21] 7.37E−02 4.89E−02 1.54E+00
iSCA [22] 1.17E−01 1.01E+00 5.98E−02
NSCA-SED 9.49E−04 5.76E−03 1.64E−01

minimal value as yielded by the conventional Padé
approximation [19] on the evaluated indices. Acquired
statistics have, yet again, showcased overwhelming
achievements of the proposed algorithm for produc-
ing the smallest ITSE, IAE and ITAE values. Seemingly
outperformed by the results from Padé approxima-
tion, sole reliance of such figures on a single indicator
has, nonetheless, impaired the approach’s convergence
precision. Paired alongside previously discovered find-
ings, NSCA-SED is fundamentally evidenced as the
preferred optimization algorithm with admirable con-
sistency over other investigated MOR techniques.

4.2. Example 2

Further inspired by the high-order system transfer
function as studied in Ref. [31], the second sce-
nario then considered an experimental-based sixth-
order system for a Double-Pendulum Overhead Crane
(DPOC). In this case, DPOC typically identifies an
under-actuated nonlinear structure that comprises trol-
ley force as a control input, and the trolley’s displace-
ment, hook and oscillated angles of the payload as three
separate handling components. The transfer function of

a DPOC system is, therefore, theoretically specified by

Gh(s) = 0.1631s4 + 9.114s2 + 96.04
1.06s6 + 67.08s4 + 874s2

.

Graphically illustrated through Figure 7, a [−0.6, 0.6]
amplitude bang-bang force signal has been deter-
mined as designated input to the examined full-order
DPOC system by the implementation of the NSCA-
SED approach at its established coefficients of a = 2,
β = 0.5,α = 0.8 and� = 0.8. Numerical settings of [0
0 0 0 0 10 0 0], [0.2 0.2 2 1 0.2 20 0.2 0.2], and 10 s were
further established as the specifications for respective
notations of ub, lb and tf , with the sum of agents and
maximum iterations being independently determined
by n = 20 and Kmax = 100 for each investigated MOR
technique. With other accounted components being
essentially maintained as per the previous scenario (i.e.
Example 1), undertaken preliminary simulation sub-
sequently expressed the currently considered ROS as
follows:

Gr(s) = v2s2 + v1s + v0
w4s4 + w3s3 + w2s2 + w1s + w0

.

On a similar note, registered findings in terms of
best design parameters and models of best-estimated
reduced-order across 30 independent trials for indi-
vidual optimization algorithms as explored within this
study have been detailed in Figure 8 and Table 6.
Mirroring the results of the first scenario, the estimated
model as generated by NSCA-SED has shown com-
mendable proximity to the model of a real-time full-
order system, while having GOA [12] demonstrated an
inadequate response outcome.

Arithmetic findings for objective function F by
box plot representations and numerical descriptions

Figure 7. Bang-bang input signal u(t).
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Figure 8. The response of the proposed NSCA-SED technique with other existing optimization-based model order reduction
techniques for Example 2.

Table 6. Reduced-order model obtained by different meta-heuristics optimization
methods for Example 2.

Algorithms Reduced model

Padé [3]
4.451E08s2 + 6.531E09

2.972E09s4 + 5.943E10s2

GWO [10]
0.1364s2 + 0.0221s + 1.7085

0.8593s4 + 0.2s3 + 15.4371s2 + 0.0244s + 3.8494E − 04

GOA [12]
0.1545s2 + 0.1206s + 1.7653

0.4466s4 + 0.1954s3 + 15.8258s2 + 0.0131s + 0.0121

ALO [11]
0.0094s2 + 0.0013s + 1.1537

2.1993E − 07s4 + 0.0017s3 + 10.5034s2 + 90.0820E − 09s + 1.8744E − 09

SCA [13]
0.0227s2 + 1.1121

10.1187s2

AMVO-SCA [21]
0.1272s2 + 0.0258s + 1.7481

0.8530s4 + 0.1066s3 + 15.7453s2 + 0.0193s + 0.0082

iSCA [22]
0.0959s2 + 1.6554

0.7679s4 + 14.9957s2 + 0.0063s

NSCA-SED
0.1562s2 + 2

s4 + 0.0083s3 + 18.21s2

of average, minimum, maximum and standard devia-
tion for each investigated algorithmare further outlined
in Figure 9 and Table 7, respectively. Likewise, per-
formance from Padé approximation [3] is solely indi-
cated via minimal value as reported in Table 7 due
to its non-stochastic nature. With possessing medi-
ans that approach the benchmarked figure of 0.000005,
illustrated box pots have demonstrated immense com-
petencies by most of the investigated meta-heuristics
algorithms, such as GWO [10], GOA [12], SCA [13],
AMVO-SCA [21], and iSCA [22] in consistency main-
tenance for the operationalization of model estimation.
However, such proficiencies as demonstrated by GOA
[12] and ALO [11] have been especially jeopardized by
the existence of potential outliers on their distributed

data. This phenomenon is all the more apparent for
GOA [12] in exhibiting the longest box plot span
as cumulatively formed by an extensive upper/lower
range, interquartile range and median. Nevertheless,
performances of preceding algorithms have been out-
shined by the contemporarily introduced NSCA-SED
approach for statistically achieving the smallest average,
minimum and maximum values. Table 7 consequently
demonstrates improvement ratios by the implementa-
tion of the proposed algorithm against its compared
MOR techniques by respective percentages of 22.04%,
98.15%, 52.19%, 13.17%, 50.22% and 9.75% on results
obtained from the GWO [10], GOA [12], ALO [11],
SCA [13], AMVO-SCA [21] and iSCA [22] methods.
Whereas, the precision of minimal objective function
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Figure 9. Box plot of the objective function F produced by different meta heuristics optimization methods for Example 2.

Table 7. Statistical results of the objective function F for
Example 2.

Algorithms Average value Min. value Max. value Std.

Padé [3] – 4.52E−06 – –
GWO [10] 5.58E−06 9.16E−07 9.87E−06 1.65E−06
GOA [12] 2.36E−04 2.79E−05 9.10E−04 2.18E−04
ALO [11] 9.10E−06 4.45E−06 4.47E−05 1.00E−05
SCA [13] 5.01E−06 4.46E−06 8.81E−06 7.61E−07
AMVO-SCA [21] 8.74E−06 3.81E−06 1.79E−05 3.35E−06
iSCA [22] 4.82E−06 2.77E−06 6.64E−06 5.50E−07
NSCA-SED 4.35E−06 4.94E−07 4.93E−06 1.06E−06

as yielded by Padé approximation [3] is also over-
shadowed by the majority of other investigated meta-
heuristics techniques because of its mere dependence
on a single indicator.

Upon following up with the Wilcoxon’s signed-
rank test towards comparing the significance of NSCA-
SED against other investigated optimization algorithms
which demonstrated adequate consistency with the
absence of potential outliers, obtained results as per
outlined in Table 8 have supported the aforemen-
tioned discussion regarding the prevalence of the
proposed algorithm forwarding compelling enhance-
ment over respective outcomes of 2.72E−04, 1.86E−09,
3.32E−04, 1.47E−04, 1.82E−06 by GWO [10], GOA
[12], ALO [11], SCA [13], and AMVO-SCA [21] at p-
values below the pre-defined significance threshold of
σw = 0.05. Such discrepancy is similarly observed for
the statistical responses of ITSE, IAE and ITAE as tab-
ulated in Table 9, with NSCA-SED being confirmed as
the superior approach over its MOR predecessors. As
opposed to haphazard predictions, combined findings
in the second example have, therefore, validated the
proposed NSCE-SED approach as a robust technique

Table 8. Wilcoxon’s signed rank test for the pairwise compar-
ison between NSCA-SED with other meta-heuristics optimiza-
tion methods in solving Example 2.

NSCA-SED vs S+ S− p-value

GWO [10] 467 38 2.72E−04
GOA [12] 505 0 1.86E−09
ALO [11] 284 221 3.32E−04
SCA [13] 365 140 1.47E−04
AMVO-SCA [21] 505 0 1.82E−06
iSCA [22] 186 319 9.59E−02

Table 9. Performance of ITSE, IAE and ITAE in comparisons for
different meta-heuristics optimization methods for Example 2.

Algorithms ITSE IAE ITAE

Padé [3] 3.49E−05 1.60E−03 1.09E−02
GWO [10] 3.16E−05 1.98E−03 1.09E−02
GOA [12] 6.95E−03 2.20E−02 1.52E−01
ALO [11] 3.74E−05 2.46E−03 1.19E−02
SCA [13] 2.92E−05 1.91E−03 1.08E−02
AMVO-SCA [21] 3.35E−05 1.90E−03 1.10E−02
iSCA[22] 2.75E−05 1.89E−03 1.04E−02
NSCA-SED 2.79E−05 1.89E−03 1.05E−02

for model estimation of the currently specified DPOC
system.

4.3. Example 3

Aspired by the attempted endeavour in Ref. [32], the
robustness of the NSCA-SED algorithm for model
order reduction was ultimately assessed through the
examination of an experimental-based high-order sys-
tem transfer function for a Flexible Manipulator (FM)
system within the current scenario. High-order system
transfer function for the 10th-order FM system as pub-
lished within the inspired paper is especially described
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by

Gh(s) =

3.141E − 04s8 + 1.287E − 06s7 + 5.708E − 09s6
+1.528E − 11s5 + 2.873E − 14s4 + 4.419E − 15s3
+3.254E − 18s2 + 5.364E − 18s + 2.915E − 19

s10 + 2.37E − 05s9 + 2.37E − 05s8 + 1.21E − 07s7
+1.727E − 10s6 + 5.915E − 11s5 + 3.861E − 14s4

+6.764E − 15s3 + 2.63E − 18s2 + 4.33E − 18s

As illustrated in Figure 10, a [−0.1, 0.1] amplitude-
shaped bang-bang torque has been employed as the
input signal within this example, with main coefficients
ofNSCA-SEDbeing pre-established at respective values
of a = 2, β = 0.5, α = 0.88 and � = 0.8. While the
upper and lower bounds of the current scenario were
purposefully established as respective figures of ub = 5
and lb = −4400, the total number of agents, maximum
iterations and simulation interval for all investigated
MOR algorithms have been further decided at the val-
ues of n = 40, Kmax = 1000 and tf = 10 s. The sam-
pling interval for this scenario was then determined
at 0.001 s to resemble prior settings within Example 1
and Example 2. In light of the mechanism of a real-
time FM system, third order system has, therefore, been
fundamentally employed as the current ROS which
defines:

Gr(s) = v2s2 + v1s + v0
w3s3 + w2s2 + w1s + w0

.

Herewith, estimated models for the best reduced-order
as registered through the implementation of the inves-
tigated MOR techniques are thoroughly tabulated in
Table 10, while having their responses centering the
best parameters throughout 30 simulated trials being
further illustrated in Figure 11. As observed through
the magnified section of the recorded model responses,

Table 10. Reduced-order model obtained by different meta-
heuristics optimization methods for Example 3.

Algorithms Reduced model

Padé [3]
9.382E86s2 + 6.673E84s − 1.024E83

9.315E87s3 + 1.262E86s2 − 1.522E84s

GWO [10]
−472.3083s2 − 775.5699s − 4384.6472

−0.6548s3 − 374.0298s2 − 658.6744s + 3.0091

GOA [12]
−994.7226s2 − 2027.4272s − 4390.4791

−1.3637s3 − 833.6422s2 − 1258.8069s − 10.0422

ALO [11]
−1909.1506s2 − 2237.7168s − 4395.2544

−0.0001504s3 − 1651.1546s2 − 694.5873s − 41.1992

SCA [13]
−490.9549s2 − 809.0557s − 4400

−1.0056s3 − 397.8967s2 − 592.3753s − 1.2345

AMVO-SCA [21]
−472.3083s2 − 775.5699s − 4384.6472

−0.6548s3 − 374.0298s2 − 658.6744s + 3.0091

iSCA [22]
−460.2543s2 − 757.3375s − 4277

−0.6548s3 − 374.0298s2 − 643.7179s + 3.6480

NSCA-SED
−467.4444s2 − 753.2327s − 4400

−0.6799s3 − 369.8236s2 − 638.4794s − 0.0044

disparate proximities between the reduced-order mod-
els as predicted by each optimization method and
the standard full-order model have once again ele-
vated NSCA-SED as the superior estimation technique
against its compared counterparts. Such excellence is
broadened upon extensive discrepancies between the
response of the proposed algorithm, and ominously
unreliable outcomes as recorded from conventional
Padé approximation [3], GOA [12] andALO [11]which
yielded the farthest responses to the benchmarked full-
order model.

Further outlined in Figure 12, statistical attributes as
exhibited from the numerical findings of the individual
meta-heuristics approach are contrasted through con-
ducted reviews on each fabricated box plot. except for
AMVO-SCA [21], presented diagrams consecutively

Figure 10. Shaped bang-bang input signal u(t).
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Figure 11. The response of the proposed NSCA-SED technique with other existing optimization-based model order reduction
techniques for Example 3.

Figure 12. Box plot of the objective function F produced by different meta-heuristics optimization methods for Example 3.

suggested most of the investigated algorithms to pos-
sess heightened variation in terms of their estimated
optimal solutions. Higher upper values, interquartile
ranges and medians as recorded from GWO [10] and
GOA [12] have notably positioned these algorithms
as techniques with the greatest inconsistency. Consis-
tent performance fromAMVO-SCA [21] has, nonethe-
less, been adversely offset by the existence of potential
outliers. On the contrary, a lower interquartile range
of, i.e. ≈0.000022 as generated by the contemporar-
ily introduced NSCA-SED approach with the absence
of apparent outliers has demonstrated enhanced data
distribution for its optimized resolution. Such superi-
ority is subsequently backed by a considerable smaller

median value of 0.0000051 by the proposed algorithms
against ALO, GOA, SCA and iSCA at respective values
of 0.000045, 0.000084, 0.000028 and 0.000015.

Undertaken comparison centering statistical find-
ings of all investigated algorithms through components
of average, minimum, maximum and standard devi-
ation for objective function F are then systematically
outlined in Table 11. With AMVO-SCA [21] achiev-
ing the smallest values for aspects of average, maxi-
mum and standard deviation, the proposedNSCA-SED
approach has, thus, outperformed other MOR algo-
rithms including GWO [10], GOA [12], ALO [11],
SCA [13] and iSCA [22] to secure the runner-up
position. In particular, the average value as yielded
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Table 11. Statistical results of the objective function F for
Example 3.

Algorithms Average value Min. value Max. value Std.

Padé [3] – 7.44E−04 – –
GWO [10] 2.06E−05 4.56E−06 3.82E−05 1.44E−05
GOA [12] 8.19E−05 2.82E−05 1.55E−04 2.80E−05
ALO [11] 4.81E−05 3.22E−05 7.28E−05 9.77E−06
SCA [13] 2.17E−05 6.28E−06 3.92E−05 1.19E−05
AMVO-SCA[21] 6.38E−06 4.85E−06 2.72E−05 5.65E−06
iSCA [22] 1.86E−05 5.56E−06 3.84E−05 1.11E−05
NSCA-SED 1.54E−05 4.92E−06 3.05E−05 1.12E−05

by NSCA-SED has demonstrated substantial improve-
ments against the results of respective GWO [10], GOA
[12], ALO [11], SCA [13] and iSCA [22] by the ratios of
25.24%, 81.19%, 67.98%, 29.03% and 17.20%. Follow-
ing the non-stochastic nature of Padé approximation
[3], which addressed the technique’s statistical output
by minimum value as a single indicator in Table 11, its
performance is inevitably outclassed by similar reading
from GWO [10].

Conducted experimentations have essentially con-
firmed overshadowing competencies ofmeta-heuristics
techniques towards improved execution precision
against the traditional Padé approximation [3] tech-
nique. Gathered findings within the current scenario
alongside results from previous examples (i.e. Exam-
ple 1 and 2), therefore, cumulatively substantiated the
operational excellence of NSCA-SED against its algo-
rithmic predecessors within the context of the model
order reduction.

By the exclusion of the non-stochastic Padé approx-
imation [3], additional pieces of evidence are acquired
by paired comparisons between the introduced NSCA-
SEDapproach and its precedingMORalgorithms above
the statistical basis ofWilcoxon’s signed-rank test. Reg-
istered responses in Table 12 that displayed p-values of
the proposed algorithm beneath the established signifi-
cance threshold of σw = 0.05 have, yet again, explained
apparent improvements against all compared algorith-
mic approaches. Recorded findings for the aspects of
ITSE, IAE and ITAE by the implementation of indi-
vidual meta-heuristics techniques in Table 13 further
demonstrated good proficiency of GWO [10] for ITSE
and IAE components in the handling of an FM system.
However, the robustness of the said algorithm is out-
performed by NSCA-SED for ITAE at a recorded value
of 5.00E−04. Except for traditional Padé approxima-
tion [3] that merely accounts for the minimal values
as acquired for each evaluated component, substan-
tial improvement at individual differences of 0.008,
0.00006, 0.00036 and 0.007 against respective MOR
techniques of GOA [12], GWO [10], AMVO-SCA [21]
and iSCA [22] have prevailed through the employment
of the contemporarily proposed algorithm. Mirroring
trends on the formerly discussed statistical figures,
results as comprehensively registered from the major-
ity of the investigated meta-heuristics approaches have

Table 12. Wilcoxon’s signed rank test for the pairwise compar-
ison between NSCA-SED with other meta-heuristics optimiza-
tion methods in solving Example 3.

NSCA-SED vs S+ S− p-value

GWO [10] 400 65 2.74E−02
GOA [12] 465 0 1.86E−09
ALO [11] 465 0 1.86E−09
SCA [13] 386 79 1.01E−02
AMVO-SCA [21] 27 478 5.08E−05
iSCA [22] 383 82 4.27E−02

Table 13. Performance of ITSE, IAE and ITAE in comparisonwith
different meta-heuristics optimization methods for Example 3.

Algorithms ITSE IAE ITAE

Padé [3] 3.98E−04 1.04E−02 8.20E−03
GWO [10] 2.67E−06 6.60E−04 5.57E−04
GOA [12] 6.13E−05 5.04E−03 8.48E−03
ALO [11] 3.82E−05 3.59E−03 5.20E−03
SCA [13] 6.40E−06 1.39E−03 1.59E−03
AMVO-SCA [21] 2.77E−06 7.47E−04 8.60E−04
iSCA [22] 3.69E−05 3.66E−03 7.47E−03
NSCA-SED 2.72E−06 6.75E−04 5.00E−04

outshined rendered efficacy of Padé approximation [3].
Simulated findings from Example 3 have, thus, collec-
tivelymanifestedNSCA-SED as the utmost competitive
technique for model reduction of FM structures.

5. Conclusion

NSCA-SED algorithm has been introduced within this
paper as a contemporarily hybridized optimization
approach for addressing the shortcoming in model
order reduction of a high-order SISO system. The
system’s robustness was hereby elevated using the
proposedmeta-heuristic technique by exploiting aggre-
gated proficiencies of randomperturbations of SED and
efficacy of the NSCA algorithm. The system’s perfor-
mance in terms of model order reduction as generated
from the implementation of the NSCA-SED approach
was further measured against outcomes yielded from
the Padé approximation and other prevalent optimiza-
tion approaches including GWO, GOA, ALO, SCA,
AMVO-SCA, and iSCA-based methods. Recorded
statistics were then appraised for the common indica-
tors of ISE, ITSE, IAE and ITAE, besides the quantified
significance of each algorithm through the assessment
ofWilcoxon’s signed rank andbox-plot analyses. Secur-
ing over 13% improvement towards the operational
performance of the conventional SCA, average objec-
tive function as obtained from 30 independent sim-
ulated trials ultimately demonstrated excellent coher-
ence and precision of the NSCA-SED approach in
resolving the issue as encountered amidst model reduc-
tion against its compared algorithmic predecessors.
Motivated by the technological insurgence of Indus-
trial Revolution 4.0, the upcoming scholastic direc-
tion within this area of study should subsequently
emphasize the tunable parameters of NSCA-SED to
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seek extensive generalizability on alternative real-time
challenges, such as smart home energy dispatch and
charging of electric vehicles at a larger scale.
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