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Abstract: Decision science has a wide range of applications in daily life. Decision information is 

usually incomplete and partially reliable. In the fuzzy set theory, Z-numbers are introduced to handle 

this situation because they contain the restriction and reliability components, which complement the 

impaired information. The ranking of Z-numbers is a challenging task since they are composed of 

pairs of fuzzy numbers. In this research, the vectorial distance and spread of Z-numbers were 

proposed synergically, in which the vectorial distance measures how much the fuzzy numbers are 

apart from the origin, which was set as a relative point, and their spreads over a horizontal axis. 

Furthermore, a ranking method based on the convex compound was proposed to combine the 

restriction and reliability components of Z-numbers. The proposed ranking method was validated 

using several empirical examples and a comparative analysis was conducted. The application of the 

proposed ranking method in decision-making was illustrated via the development of the Analytic 

Hierarchy Process-Weighted Aggregated Sum Product Assessment (AHP-WASPAS) model to solve 

the prioritization of public services for the implementation of Industry 4.0 tools. Sensitivity analysis 

was also conducted to evaluate the performance of the proposed model and the results showed that 

the proposed model has improved its consistency from 66.67% of the existing model to 83.33%. This 

research leads to a future direction of the application of ranking based on the vectorial distance and 

spread in multi-criteria decision-making methods, which use Z-numbers as linguistic values. 
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1. Introduction 

Decision-making is a crucial task in almost all daily activities since it is highly related to 

cognitive thinking. Decisions are made based on available knowledge and understandable 

information. Most of the time, the information is indefinite and imperfect to some decision makers, 

leading to imprecise conclusions. The decisions are also highly influenced by the decision makers’ 

intuitions and personal biases. According to [1], as normal human beings, decision makers are 

always restricted to the level of competency, psychological biases, and insufficient information. 

Zadeh [2] proposed the concept of Z-numbers as a means of overcoming this issue. Generally, 

Z-numbers are composed of two components, namely the restriction and reliability parts. The 

restriction part restricts the value that a variable can take, while the reliability part describes the 

degree of certainty of the restriction. Z-numbers are also described as a pair of two fuzzy numbers, 

which are expressed in a natural language. According to [3], Z-numbers have a higher level of 

generality than fuzzy numbers, intervals, and crisp values. Besides, Z-numbers have a high-level 

computational complexity since the arithmetic operations must deal with two fuzzy numbers in pairs [3]. 

The decision-making information is usually expressed in the natural language and is always 

imperfect. Hence, the application of Z-numbers in decision-making is essential as they better depict 

imperfect information, which is as close as possible to the natural language [4]. 

Correspondingly, many decision-making methods have been developed based on Z-numbers 

such as the Analytic Hierarchy Process (AHP) [5], Technique for Order of Preferences by Similarity 

to Ideal Solution (TOPSIS) [6,7], Decision-Making Trial and Evaluation Laboratory (DEMATEL) [8], 

Weighted Aggregated Sum Product Assessment (WASPAS) [9], including the full consistency 

method and multi-attributive border approximation area comparison [10], Viekriterijumsko 

Kompromisno Rangiranje (VIKOR) [11], Approximate calculation method (ACM) [12], Elimination 

and Choice Translating Reality (ELECTRE) [13], Stepwise Weight Assessment Ratio Analysis 

(SWARA) [14], and Combinative Distance-based Assessment (CODAS) [15]. 

Kang et al. [16], for instance, converted Z-numbers into regular fuzzy numbers using the fuzzy 

expectation of fuzzy numbers. In their method, the reliability part was converted into a weight, which 

was then added to the restriction part. However, it should be noted that converting Z-numbers into 

regular fuzzy numbers does not preserve the initial decision information in form of pairs of fuzzy 

numbers, which finally leads to a significant loss of information [3]. 

Furthermore, Aliev et al. [17,18] proposed the arithmetic operations of Z-numbers, which allow 

for direct calculation without the need to convert them into regular fuzzy numbers. Essentially, the 

advantage of this approach is that it preserves the Z-numbers and avoids the loss of initial 

information. However, working directly with Z-numbers, which extensively include linear 

programming, leads to high computational complexity [3]. Hence, the bandwidth method was 

suggested in [19] to perform the operations between Z-numbers, especially on a larger scale. 

Many methods were also developed to rank fuzzy numbers. The ranking based on the centroid 

and spread of fuzzy numbers was used in [20], in which Z-numbers were first converted into regular 

fuzzy numbers. According to Abdullahi et al. [3], this conversion has caused information loss. 

Alternatively, Jiang et al. [21] defined a score function that considers the centroid point, the 

Minkowski degree of fuzziness and spread. The score function was calculated for both the restriction 
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and reliability components and combined altogether to obtain the final ranking of Z-numbers. 

Meanwhile, using the conversion of Z-numbers into regular fuzzy numbers, Mohamad et al. [22] 

calculated the score value of the standardized defuzzified fuzzy number; however, the weakness of 

this method lies in its impurity of Z-numbers, which has undergone the transformation process. 

Recently, Farzam et al. [23] defined the magnitude of Z-numbers to determine their ranking. In their 

method, the magnitudes of restriction and reliability components were combined using the convex 

compound to avoid the conversion of Z-numbers into regular fuzzy numbers. 

Nevertheless, in the existing ranking methods of Z-numbers, it was proposed that the 

Z-numbers were either converted into regular fuzzy numbers before the final ranking was calculated 

or the ranking functions of the restriction and reliability components of Z-numbers were first 

calculated before being combined to obtain the final ranking. Since transforming Z-numbers into 

regular fuzzy numbers has caused a great loss of information [3], ranking methods that use this 

transformation process are, therefore, not really reliable. 

Fuzzy numbers are usually used to represent the linguistic terms in the decision-making 

information. In this regard, when ranking such fuzzy numbers, there is a reference point to which the 

fuzzy numbers are compared. Furthermore, the distance between the fuzzy numbers and the 

reference point measures which fuzzy numbers should also be ranked higher. Therefore, a new 

ranking method that works directly on both the components of Z-numbers is proposed in this 

research, in which the spread and distances of fuzzy numbers from a reference point, namely origin, 

are considered. The following entails some novelties of this research: 

(a) The proposed ranking method is based on the vectorial distances of fuzzy numbers from the 

origin. The defined distances measure how much the fuzzy numbers are distant from the 

origin, which will then determine their ranking. This concept is highly suitable when 

comparing fuzzy numbers that represent the linguistic terms with ordinal scales, which 

determine the decision maker’s level of importance of criteria and alternatives. Moreover, the 

spread of the fuzzy numbers is also considered in the ranking process to make a difference in 

the size of the fuzzy numbers, which is closely related to the level of fuzziness such that it 

works synergically with the defined vectorial distance. 

(b) The employment of the convex compound in defining the final ranking of Z-numbers could 

avoid the loss of information when processing the decision information. Using the proposed 

method, the Z-numbers are not converted into regular fuzzy numbers but are processed 

separately on their restriction and reliability components, which are further combined using 

the convex compound. A parameter is defined in the convex compound to ensure that the 

weightage of the restriction component is at least equal to that of the reliability component. 

(c) The proposed ranking method is further integrated into the development of a novel 

Z-number-based AHP-WASPAS. The Z-AHP is used to quantify the criteria weights 

considering the decision maker’s reliability, while the alternatives are ranked using the 

Z-WASPAS. As a validation, a numerical example from a real case study was employed to 

illustrate the proposed Z-AHP-WASPAS model. 

In this paper, a novel method of ranking Z-numbers is proposed based on the vectorial distances 

and spread of fuzzy numbers. The ranking of both the restriction and reliability components was 

combined using a convex compound, which prioritizes the restriction part for ranking the Z-numbers. 

The proposed method was validated using some empirical examples and a comparative analysis was 

then performed to observe the comparison of the proposed ranking method with the existing methods. 

A novel AHP-WASPAS model was also developed based on the proposed ranking method of 

Z-numbers and the real case example was adopted from [9] to illustrate the proposed model. 



11060 

AIMS Mathematics  Volume 8, Issue 5, 11057–11083. 

2. A review on the ranking of Z-numbers 

In this section, the existing methods of ranking Z-numbers are reviewed to give an overview of the 

strengths and weaknesses of the methods. Hence, the novelty of the newly proposed ranking method can 

be highlighted in the next section. Assume that ( ),Z A R= = ( ) ( )1 2 3 4 1 2 3 4, , , ; , , , , ;A Ra a a a h r r r r h . 

2.1. Centroid and spread 

In [20], Bakar and Gegov ranked Z-numbers based on the horizontal and vertical centroid, 

including spread. Three steps were developed to construct the final ranking index, as follows: 

Step 1: The centroid index for A is calculated using (1) and (2) for the horizontal and vertical 

axes, respectively, 

*
( )

( )
A

xf x dx
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where ia   is the length of -cuts of A. 

Step 2: The spread of A is calculated using (3). 

*

4 1A As a a y= −  .         (3) 

Step 3: The final ranking function then combines the horizontal and vertical centroid with the 

spread, as shown in (4). 

( )* * 1A A A As x y s=   − .        (4) 

2.2. Fuzzy score of standardized defuzzified fuzzy numbers 

Mohamad et al. [22] proposed the ordering of Z-numbers via conversion into regular fuzzy 

numbers. The fuzzy numbers are standardized and defuzzified before calculating the fuzzy score, 

considering the spread. Suppose the Z-numbers are represented by ( ),Z A R=

( ) ( )1 2 3 1 2 3, , , , ,a a a r r r= , the conversion into crisp numbers is shown in (5). 

R

R

x dx
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



=



.           (5) 

The weight from (5) is then added to A to obtain the weighted Z-number as shown in (6). 

 , ( ) | ( ), [0,1]
A A A

A x x x x  

   = =  .      (6) 
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Hence, a generalized fuzzy number is obtained as ( )1 2 3, , ; AA a a a h =  where 
Ah = . This 

generalized fuzzy number is then standardized as shown in (7), 

( )31 2
1 2 3, , ; , , ;A A

aa a
A h a a a h

k k k

 
= = 
 

% % % %       (7) 

where ( )max ,1ij
ij

k a= . Subsequently, the standardized generalized fuzzy number is defuzzified, as 

shown in (8), and its spread is calculated as shown in (9). 
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Hence, the final ranking score can be calculated as 

( )
*

Rank
1

A A

A

x h
A

s


=

+
.         (10) 

2.3. Value and ambiguity 

In [24], Chutia proposed a new method of ranking Z-numbers based on the value and ambiguity 

at decision-making levels. Firstly, the values ( ) ( ),i iV A V R   and ambiguities ( ) ( ),i iA A A R   are 

calculated. Next, their distances from the reference point (0,0) are also calculated as shown in (11). 

( ) ( ) ( )
2 2

V i id V A V R 
= + , ( ) ( ) ( )

2 2

A i id A A A R 
= + .   (11) 

Subsequently, the value index and ambiguity index are constructed at the decision level  as 

shown in (12) and (13), respectively. 

(𝐼𝑉)𝛼 =
𝑉𝛼(𝐴𝑖)+2(𝑑𝑉)𝛼

3
          (12) 

(𝐼𝐴)𝛼 =
𝐴𝛼(𝐴𝑖)+2(𝑑𝐴)𝛼

3
.         (13) 

Finally, the following ranking rules are used to rank Z-numbers based on their value and 

ambiguity indices such that 

(i) ( ) ( ) ( ) ( )1 2 1 2V VI Z I Z Z Z
 

  f ; 

(ii) ( ) ( ) ( ) ( )1 2 1 2V VI Z I Z Z Z
 

  p ; and 

(iii) if ( ) ( ) ( ) ( )1 2 ,V VI Z I Z
 

=  then 

• (𝐼𝐴)𝛼(𝑍1) > (𝐼𝐴)𝛼(𝑍2) ⇒ 𝑍1 ≺ 𝑍2 

• (𝐼𝐴)𝛼(𝑍1) < (𝐼𝐴)𝛼(𝑍2) ⇒ 𝑍1 ≻ 𝑍2 

• (𝐼𝐴)𝛼(𝑍1) = (𝐼𝐴)𝛼(𝑍2) ⇒ 𝑍1 ∼ 𝑍2. 
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2.4. Magnitude of Z-numbers 

Farzam et al. [23] used the magnitude of fuzzy numbers to rank Z-numbers. The convex 

compound is used to combine the restriction and reliability components, in which a parameter  is 

used to control the weightage of each component. However, the parameter  was set such that the 

restriction component majorly determines the ranking of Z-numbers. The magnitude of A is given by 

( )( ) ( )( )
2

2 3 1 4
3 2 3 2

Mag( )
12 12

A A

A A

h a a h a a
A

h h

+ + − +
= +      (14) 

while the magnitude of R is given by 

( )( ) ( )( )
2

2 3 1 4
3 2 3 2

Mag( )
12 12

R R

R R

h r r h r r
R

h h

+ + − +
= + .     (15) 

Hence, the final ranking of Z-numbers is determined by a ranking function that combines 

Mag(A) and Mag(R), as shown in (16). 

( ) ( ) ( ) ( )Rank Mag 1 Magi i iZ A R = + − .       (16) 

3. Synergic ranking based on vectorial distance and spread 

In this section, a novel synergic ranking method of fuzzy Z-numbers based on the vectorial 

distance and spread of fuzzy numbers representing the restriction and reliability components of 

Z-numbers is proposed. Some numerical examples are also explicated, followed by the comparative 

analysis with the previous ranking methods of Z-numbers. 

3.1. Vectorial distance and spread of fuzzy numbers 

A fuzzy number can be regarded as a shape on the vectorial plane in which the distance of all 

vertices of such a shape can be calculated as vectorial distances with respect to the origin. Suppose a 

point is located on a vectorial xy-plane as shown in Figure 1, then the vectorial distance of the point 

can be calculated as 

2 2distance b h= + .          (17) 

If point b lies on the x-axis in which 0b  , then its vectorial distance is simply given by 

2 2 2distance 0b b b b= + = = = .       (18) 
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Figure 1. A vectorial distance on the xy-plane. 

Hence, if the fuzzy number entails a triangular fuzzy number as shown in Figure 2, then its 

average of vectorial distances is given by the mean of vectorial distances of three vertices a, b, and c 

from the origin, as shown in (19). Generally, positive fuzzy numbers are often used in the application 

for solving decision-making problems. The farther the values deviate from the origin, the larger their 

values, which subsequently determine the larger fuzzy numbers. Hence, the distance of the fuzzy 

numbers from the origin is a strong reason for defining the ranking of fuzzy numbers. Likewise, the 

same concept is applied to the heights of the fuzzy numbers, in which the origin is set as a reference 

point to determine the ranking of fuzzy numbers since fuzzy numbers with longer heights are ranked 

higher, which are mainly characterized by their maximum membership values. 

( )2 21
distance

3
a b h c= + + + .        (19) 

 

Figure 2. Vectorial distance and spread of a triangular fuzzy number. 

The spread of such triangular fuzzy numbers can be assumed as the difference between points c 

and a. Hence, combining the vectorial distances and spread of the triangular fuzzy number 

( ), , ;A a b c h=  synergically, its ranking can be defined as follows: 

2 21
Rank( )

3 1

a b h c
A

c a

 + + +
=  

 + − 

.        (20) 
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In most cases, trapezoidal fuzzy numbers are used in decision-making instead of triangular 

fuzzy numbers due to their ability to process ill-defined quantities [25]. Hence, the triangular fuzzy 

number A can be generalized into a trapezoidal fuzzy number ( ), , , ;A a b c d h=  as shown in Figure 3, 

in which its rank is defined by 

( )
2 2 2 21 2 2

Rank( ) 1
6 1

a b h c h d
A c b

d a

 + + + + +
=  + − 

 + − 

.    (21) 

 

Figure 3. Vectorial distance and spread of a trapezoidal fuzzy number. 

Remark: The ranking of the trapezoidal fuzzy number denotes a generalization of the triangular 

fuzzy numbers. 

Proof. The trapezoidal fuzzy number is reduced to the triangular fuzzy number when b c= . 

Substituting this equality in (5) yields 

( )
2 2 2 2

2 2

2 2

1 2 2
Rank( ) 1

6 1

1 2 2 2
1

6 1

1

3 1

a b h b h d
A b b

d a

a b h d

d a

a b h d

d a

 + + + + +
=  + − 

 + − 

 + + +
=  

 + − 

 + + +
=  

 + − 

 

in which the final result is equivalent to (20). Hence, the rank of the trapezoidal fuzzy number is 

reduced to the rank of the triangular fuzzy number. 

3.2. Novel ranking of Z-numbers 

A Z-number is a pair of fuzzy numbers, ( , )Z A R= , in which A represents the restriction part 

while R describes how reliable the first part is. Both components of Z-numbers can be assumed as 

triangular fuzzy numbers, as shown in Figure 4. 
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Figure 4. A Z-number: (a) restriction part; (b) reliability part. 

In this paper, a novel method of ranking Z-numbers, ( ) ( ) ( )1 2 3 1 2 3, , , ; , , , ;A RZ A R a a a h r r r h= =  

was proposed by combining the restriction and reliability parts using a convex compound as shown 

in (22), 

Rank( ) Rank( ) (1 )Rank( )Z A R = + −        (22) 

where  takes any value in the interval [0.5,1]. This condition governs the compound such that the 

restriction part, A, majorly represents the Z-number rather than the reliability part, R [23]. Rank(A) 

and Rank(R) in (22) constitute the ranking of triangular fuzzy numbers A and R based on the 

vectorial distance and spread as shown in (23) and (24), respectively. 

2 2

1 2 3

3 1

1
Rank( )

3 1

Aa a h a
A

a a

 + + +
 =
 + −
 

       (23) 

2 2

1 2 3

3 1

1
Rank( )

3 1

Rr r h r
R

r r

 + + +
 =
 + −
 

.        (24) 

If both components of Z-numbers are represented by trapezoidal fuzzy numbers, then the 

ranking function in (21) will replace both (23) and (24). Next, the following rules are used to rank 

Z-numbers based on (22): 

(i) If ( ) ( )1 2Rank RankZ Z , then 
1 2Z Zf  (Z1 is ranked higher than Z2) 

(ii) If ( ) ( )1 2Rank RankZ Z , then 
1 2Z Zp  (Z1 is ranked lower than Z2) 

(iii) If ( ) ( )1 2Rank RankZ Z= , then 
1 2Z Z:  (Z1 is ranked the same as Z2). 

4. Empirical validation and comparative analysis 

The proposed ranking of Z-numbers was subsequently validated using some numerical 

examples, which entail sets of Z-numbers taken from [24,26]. Table 1 displays the sets of Z-numbers 

used for the validation of the proposed ranking method. 
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Table 1. Sets of examples of Z-numbers [24,26]. 

Set Restriction Part Reliability Part 

1.1 A1=(0.1,0.3,0.5;1.0) R1=(0.1,0.3,0.5;1.0), R2=(0.2,0.3,0.4;1.0) 

1.2 A1=(0.1,0.3,0.5;1.0) R3=(0.1,0.2,0.4,0.5;1.0), R4=(0.1,0.3,0.5;1.0) 

1.3 A1=(0.1,0.3,0.5;1.0) R5=(0.1,0.3,0.5;0.8), R6=(0.1,0.3,0.5;1.0) 

1.4 A1=(0.1,0.3,0.5;1.0) R7=(0.1,0.2,0.4,0.5;1.0), R8=(0.1,0.3,0.5;0.8) 

1.5 A1=(0.1,0.3,0.5;1.0) R9=(0.1,0.2,0.4,0.5;1.0), R10=(0.3,0.3,0.3;1.0) 

1.6 A1=(0.1,0.3,0.5;1.0) R11=(0.1,0.3,0.5;1.0), R12=(0.3,0.3,0.3;1.0) 

2.1 A2=(0.1,0.4,0.6;1.0) R13=(0.1,0.4,0.5;1.0), R14=(0.2,0.3,0.6;1.0) 

2.2 A2=(0.1,0.4,0.6;1.0) R15=(0.1,0.4,0.7;1.0), R16=(0.2,0.3,0.5,0.6;1.0) 

2.3 A2=(0.1,0.4,0.6;1.0) R17=(0.2,0.3,0.4,0.5;1.0), R18=(0.2,0.3,0.5,0.6;1.0) 

3.1 A3=(0.1,0.4,0.6;1.0) R19=(0.1,0.3,0.5;1.0), R20=(0.3,0.5,0.7;1.0) 

3.2 A3=(0.1,0.4,0.6;1.0) R21=(0.1,0.2,0.4,0.5;1.0), R22=(1.0,1.0,1.0;1.0) 

3.3 A3=(0.1,0.4,0.6;1.0) R23=(0.4,0.5,1.0;1.0), R24=(0.4,0.7,1.0;1.0), 

R25=(0.4,0.9,1.0;1.0) 

The weightages for  used for the empirical validation are 0.5, 0.7, and 0.9 to show that the 

proposed ranking method is reasonable for several situations:  = 0.5 means that the rank of 

Z-numbers is balanced by both components;  = 0.7, 0.9 means that the rank of the first component 

is higher than the second one;  = 1.0 is not considered in this case because it reduces the Z-numbers 

to regular fuzzy numbers since the reliability part has completely vanished. Table 2 displays the 

ranking results obtained using the proposed method and their comparisons with existing methods. 

Table 2. Sets of examples of Z-numbers [24,26]. 

Set Proposed [20] [21] [22] [27] [28] [24] [29] [23] 

1.1 Z1≺Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≺Z2 Z1≺Z2 Z1~Z2 

1.2 Z1≻Z2 Z1~Z2 Z1≻Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 

1.3 Z1≺Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1≺Z2 

1.4 Z1≻Z2 Z1~Z2 Z1≻Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≻Z2 Z1~Z2 Z1≻Z2 

1.5 Z1≺Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 

1.6 Z1≺Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≺Z2 Z1≺Z2 Z1~Z2 

2.1 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≻Z2 

2.2 Z1≺Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≻Z2 Z1≺Z2 Z1~Z2 

2.3 Z1≻Z2 Z1~Z2 Z1≺Z2 Z1~Z2 Z1~Z2 Z1~Z2 Z1≻Z2 Z1≺Z2 Z1≺Z2 

3.1 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 

3.2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≺Z2 Z1≻Z2 Z1≺Z2 

3.3 
Z1≺Z2 

≺Z3 

Z1≺Z2 

≺Z3 

Z1≺Z2 

≺Z3 

Z1≺Z2 

≺Z3 

Z1≺Z2 

≺Z3 

Z1≺Z2 

≺Z3 

Z1≺Z2 

≺Z3 

Z1~Z2 

~Z3 

Z1≺Z2 

≺Z3 

For Example 1.1, both R1 and R2 are triangular fuzzy numbers having the same central value 

with different spreads, as shown in Figure 5(a). According to [30], fuzzy sets with higher means and 

smaller spreads are preferred. Hence, theoretically through Z2≻Z1 and by using the proposed method, 

the same result was obtained. The ranking methods from [21,24,29] also ranked Z2 higher than Z1, 
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whereas Z1 is of the same rank as Z2 using the methods from [20,22,23,27,28].  

Example 1.2 compares the triangular and trapezoidal fuzzy numbers with the same spread. The 

proposed method ranked Z1≻Z2, similar to [21], which indicates that the trapezoidal fuzzy number is 

ranked higher than the triangular fuzzy number since the triangular fuzzy number only contains a 

single point with the highest membership value. This is also supported by the fact that the trapezoidal 

fuzzy number has a better ability to process ill-defined quantities [25]. 

In Example 1.3, two triangular fuzzy numbers with different heights are compared. In reference 

to Figure 5(c), Z2≻Z1 since Z2 clearly has a higher maximum membership value than Z1 and the same 

result was obtained using the proposed ranking method. On the other hand, using the ranking of 

Z-numbers proposed in [20,22,27–29], the ranking result Z1~ Z2 was obtained. 

Example 1.4 ranked Z1 greater than Z2, in which Z1 is a trapezoidal fuzzy number with higher 

maximum membership values. Using the magnitude of Z-numbers [23], value and ambiguity [24], 

and centroid, fuzziness degree, and spreads of fuzzy numbers [21], Z1≻Z2 was also obtained. In 

Example 1.5, the trapezoidal fuzzy number (Z1) was compared to a singleton (Z2) and the proposed 

ranking based on vectorial distance and spread ranked Z2 higher than Z1. The same result was also 

obtained in [21,24] due to the fact that the singleton is a crisp value, which does not have a degree of 

fuzziness. Moreover, the same result was also obtained when the singleton was compared to the 

triangular fuzzy numbers, as illustrated in Example 1.6. 

 

Figure 5. Example 1: (a) set 1.1; (b) set 1.2; (c) set 1.3; (d) set 1.4; (e) set 1.5; (f) set 1.6. 

Example 2.1 compares two triangular fuzzy numbers with different spreads; one is farther from 

the origin, while the other is nearer to the origin. Since they share the same length of spread, 

vectorial distances of vertices were used to determine the rank of fuzzy numbers. Hence, Z2≻Z1 was 

obtained using the proposed method. The same result was also obtained using the existing ranking 
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methods of Z-numbers, except for the magnitude proposed in [23], in which Z1 was ranked higher. 

In Example 2.2 as illustrated in Figure 6(b), the trapezoidal fuzzy number (Z2) was ranked 

higher than the triangular fuzzy number (Z1). This is supported by the fact that the trapezoidal fuzzy 

number has a smaller spread and many points with maximum membership values. The same ranking 

result was also obtained using the methods from [21,29]. Example 2.3 illustrates two trapezoidal 

fuzzy numbers with different spreads, in which Z1 was ranked higher since it has a smaller spread 

than Z2. This is supported by the fact that fuzzy numbers with smaller spreads are preferred [30]. 

 

Figure 6. Example 2: (a) set 2.1; (b) set 2.2; (c) set 2.3. 

In reference to Figure 7, Example 3.1 ranked Z2≻Z1 since the position of Z2 is farther from the origin 

compared to Z1 although they have the same spread length. In this case, the vectorial distances determine 

the ranking of the triangular fuzzy numbers. The same result was obtained in [20–24,27–29]. Meanwhile, 

in Example 3.2, the singleton was compared to the trapezoidal fuzzy number, in which the singleton 

is extensively farther from the origin compared to the trapezoidal fuzzy number. Hence, the proposed 

method ranked the singleton (Z2) higher than the trapezoidal fuzzy number (Z1). A similar result was 

also obtained from the existing methods of ranking Z-numbers, except for the method from [29]. 

In Example 3.3, three triangular fuzzy numbers that share the same spread were compared. 

Since Z1 is the nearest to the origin, it is ranked the lowest, followed by Z2 and Z3. In this situation, 

the vectorial distance of the peak of the triangular fuzzy numbers majorly determines the ranking 

order. The same ranking result was also obtained using existing methods of ranking Z-numbers, 

except [29]. According to [29], the three triangular fuzzy numbers have the same ranking. 

 

Figure 7. Example 3: (a) set 3.1; (b) set 3.2; (c) set 3.3. 
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5. Application in decision-making 

5.1. Proposed Z-AHP-WASPAS 

AHP-WASPAS is extended to Z-number’s application in obtaining criteria weights and ranking 

desired alternatives. This proposed model will utilize the ranking approach based on the vectorial 

distances and spread of Z-numbers to defuzzify the decision information into crisp values. The AHP 

model was used to obtain the criteria weights, while the WASPAS model was developed to rank the 

alternatives. The following entails the detailed steps of the proposed AHP-WASPAS model: 

Step 1: Construct the hierarchical structure consisting of three layers: the top layer is the aim of the 

decision-making problem, the middle layer consists of the criteria or attributes, and the 

bottom layer lists all the alternatives. 

Step 2: Obtain the decision information from the decision maker using pairwise comparison 

matrices as shown in (25). Note that ( ),ij ija r  is a Z-number in which 
ija  and 

ijr  represent 

the restriction and reliability, respectively, on the degree of importance that the i-th criterion 

is preferred to the j-th criterion. From this point onwards, 
ija  and 

ijr  are both treated as 

triangular fuzzy numbers, denoted by ( )1 2 3, ,ij ij ija a a  and ( )1 2 3, ,ij ij ijr r r , respectively. Hence, 

all arithmetic operations involving these elements are based on the arithmetic operations of 

triangular fuzzy numbers. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

, , ,

, , ,

, , ,

n n

n n

n n n n nn nn

a r a r a r

a r a r a r

a r a r a r

 
 
 
 
  
 

L

L

M M O M

L

.       (25) 

Step 3: The fuzzy numbers representing restriction and reliability are separately aggregated using 

the defined operator in (26), 

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 2 2 1 1, , , ,..., , ... , ... ,i i i i in in i in i in i ia r a r a r a a r r a r = + + + + = % %    (26) 

 where   is the arithmetic aggregation operators and 
1 1,..., , ,...,i in i ina a r r  are all triangular 

fuzzy numbers. Meanwhile, ( ),i ia r% %  is the aggregated triangular fuzzy number.  

Step 4: The fuzzy weights are then evaluated using the formula below, 

( )
1 1

1 1

, ,
n n

i i i i i i

i i

A R a a r r

− −

= =

    
=           

 % % % %        (27) 

 where 

1

1

n

i

i

a

−

=

 
 
 
%  and 

1

1

n

i

i

r

−

=

 
 
 
%  are the inverses of the triangular fuzzy numbers. 

Step 5: The fuzzy weights ( ),i iA R  are then defuzzified into ( )Rank iZ  using (22) for all 

1,2,...,i n= . Hence, the final weights, ( )iW Z , are obtained by normalizing ( )Rank iZ  

using the formula 
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( )
( )

( )
1

Rank

Rank

i

i n

i

i

Z
W Z

Z
=

=


,         (28) 

 such that ( ) ( ) ( )1 2 ... 1nW Z W Z W Z+ + + = . 

Step 6: Next, the decision maker’s evaluation of each alternative with respect to all criteria is 

obtained as shown in (29), 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

, , ,

, , ,

, , ,

n n

n n

m m m m mn mn

b r b r b r

b r b r b r

b r b r b r

 
 
 
 
  
 

L

L

M M O M

L

,       (29) 

 where ( ),ij ijb r  is a Z-number in which 
ijb  and 

ijr  represent restriction and reliability, 

respectively, on the level of importance of the j-th criterion for the i-th alternative. Note that 

ijb  and 
ijr  are both triangular fuzzy numbers, denoted by ( )1 2 3, ,ij ij ijb b b  and ( )1 2 3, ,ij ij ijr r r , 

respectively. 

Step 7: The decision matrix (29) is normalized using 

( )
3 3

, ,
max max

ij ij

ij ij

ij ij

b r
b r

b r

 
=  
 
 

% % .        (30) 

 The j-th criterion is a benefit criterion and 
3max ijb  is the maximum value of the rightmost 

element in the triangular fuzzy numbers bij from each column and row. 
3max ijr  is defined 

analogously, but for the reliability component. Otherwise, the following formula is used: 

( ) 3 3min min
, ,

ij ij

ij ij

ij ij

b r
b r

b r

 
=  
 
 

% %         (31) 

 
3min ijb  is the minimum value of the rightmost element in the triangular fuzzy numbers bij 

from each column and row. 
3min ijr  is defined similarly for the triangular fuzzy numbers 

representing the reliability components. 

Step 8: The weighted sum matrix is then constructed by evaluating the weighted sum of the 

normalized decision matrix using the following formula: 

( ) ( )( ) ( ) ( )( ), ,ij ij ij j ij jWS b WS r b W Z r W Z=  % %% %      (32) 

 ( )jW Z  is the weight of the j-th criterion and ijb% and 
ijr% are the normalized triangular 

fuzzy numbers representing the restriction and reliability components, respectively, for 

the j-th criterion and i-th alternative. The weighted product matrix is also constructed by 

evaluating the weighted product of the normalized decision matrix using the following 

formula: 
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( ) ( )( ) ( ) ( )( ), ,j jW Z W Z

ij ij ij ijWP b WP r b r=% %% % .      (33) 

Step 9: The utility function combining the weighted sum and weighted product for the i-th 

alternative is calculated using the following formula: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 11 1

, 1 , 1
m mm m

i i ij ij ij ij

j jj j

B R WS b WP b WS r WP r   
= == =

 
= + − + − 
 
  % % % %   (34) 

 ( )
1

m

ij

j

WS b
=

 %  and ( )
1

m

ij

j

WS r
=

 %  are the summation of the weighted sum of fuzzy numbers for 

all criteria, while ( )
1

m

ij

j

WP b
=

 %  and ( )
1

m

ij

j

WP r
=

 %  are the product of the weighted product of 

fuzzy numbers for all criteria, and  0,1  . 

Step 10: Finally, the Z-numbers ( ),i iB R  representing the utility functions are defuzzified into 

( )Rank iZ  using (22). The alternatives are then ranked based on the calculated defuzzified 

values. The greater the defuzzified value, the higher the alternative is ranked and vice versa. 

The developed steps for the Z-AHP-WASPAS above are summarized and illustrated in Figure 8. 

 

Figure 8. The proposed Z-AHP-WASPAS. 
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5.2. Real case example 

The proposed Z-AHP-WASPAS model was subsequently implemented in the prioritization of 

public services for the implementation of Industry 4.0 tools adopted from [9]. 

Step 1: The hierarchical structure is first constructed as shown in Figure 9. 

 

Figure 9. AHP hierarchical structure. 

Step 2: The decision information on the pairwise comparison matrix is obtained as displayed in Table 3. 

Table 3. Pairwise comparison matrix of AHP. 

Criterion C1 C2 C3 C4 C5 C6 

C1 (1, 9) (1/2, 4) (1/3, 5) (1/3, 5) (4, 7) (2, 7) 

C2 (2, 7) (1, 9) (1/2, 4) (1/2, 4) (4, 7) (3, 5) 

C3 (3, 5) (2, 7) (1, 9) (2, 7) (5, 8) (3, 5) 

C4 (3, 5) (2, 7) (1/2, 4) (1, 9) (4, 7) (3, 5) 

C5 (1/4, 4) (1/4, 4) (1/5, 2) (1/4, 4) (1, 9) (1/2, 4) 

C6 (1/2, 4) (1/3, 5) (1/3, 5) (1/3, 5) (2, 7) (1, 9) 

 The decision information in Table 3 is subsequently converted into Z-numbers, in which the 

restriction and reliability components will be represented by triangular fuzzy numbers that 

correspond to the crisp values, as shown in Table 4. 

Table 4. Z-Numbers representation for the restriction and reliability components. 

Crisp Fuzzy Numbers (Restriction) Crisp Fuzzy Numbers (Reliability) 

1 (1, 1, 1) 1 (0.0, 0.1, 0.2) 

2 (1, 3, 5) 2 (0.1, 0.2, 0.3) 

3 (3, 5, 7) 3 (0.2, 0.3, 0.4) 

4 (5, 7, 9) 4 (0.3, 0.4, 0.5) 

5 (7, 9, 9) 5 (0.4, 0.5, 0.6) 

1/2 (1/5, 1/3, 1) 6 (0.5, 0.6, 0.7) 

1/3 (1/7, 1/5, 1/3) 7 (0.6, 0.7, 0.8) 

1/4 (1/9, 1/7, 1/5) 8 (0.7, 0.8, 0.9) 

1/5 (1/9, 1/9, 1/7) 9 (1.0, 1.0, 1.0) 
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Step 3: The Z-numbers for all criteria are aggregated horizontally using the operator in (26). For 

example, when the Z-numbers representing C1 are aggregated, the following calculation is 

performed: 

( ) ( ) ( ) ( ) ( ) ( )

( )

1,1,1 1 / 5,1 / 3,1 1 / 7,1 / 5,1 / 3 1 / 7,1 / 5,1 / 3 5,7,9 1,3,5

1 1 1 1 1 1 1 1
1 5 1,1 7 3,1 1 9 5

5 7 7 3 5 5 3 3

7.486,11.733,16.667

+ + + + +

 
= + + + + + + + + + + + + + + + 
 

=
 

( ) ( ) ( ) ( ) ( ) ( )

( )

1.0,1.0,1.0 0.3,0.4,0.5 0.4,0.5,0.6 0.4,0.5,0.6 0.6,0.7,0.8 0.6,0.7,0.8

(1.0 0.3 0.4 0.4 0.6 0.6,1.0 0.4 0.5 0.5 0.7 0.7,

1.0 0.5 0.6 0.6 0.8 0.8)

3.300,3.800,4.300

+ + + + +

= + + + + + + + + + +

+ + + + +

=
 

 Hence, the aggregated Z-number for C1 is obtained as ((7.486,11.733,16.667), (3.3,3.8,4.3)). 

Additionally, the Z-numbers for the rest of the criteria are aggregated analogously and the 

results are presented in Table 5. 

Table 5. Aggregated Z-numbers. 

Criterion Aggregated Z-Numbers 

C1 ((7.486, 11.733, 16.667), (3.300, 3.800, 4.300)) 

C2 ((10.400, 16.667, 24.000), (3.200, 3.700, 4.200)) 

C3 ((16.000, 26.000, 34.000), (3.700, 4.200, 4.700)) 

C4 ((13.200, 21.333, 30.000), (3.300, 3.800, 4.300)) 

C5 ((1.644, 1.873, 2.743), (2.300, 2.800, 3.300)) 

C6 ((2.629, 4.933, 8.000), (3.100, 3.600, 4.100)) 

Step 4: The fuzzy weight for each criterion is then calculated using (27) and the results are 

presented in Table 6. For example, the calculation for obtaining the fuzzy weight for C1 will 

be shown. The sum of the aggregated Z-numbers is first obtained by summing up all the 

aggregated Z-numbers from Table 5 and the total is ((51.359, 82.540, 115.410),(18.9, 21.9, 

24.9)). Subsequently, the inverse of such numbers is calculated as follows: 

( ) ( )

( ) ( )

1

1

1 1 1
, , 0.0087,  0.0121,  0.0195

1 1 1
, , 0.0402,  0.0457,  0.0529

51.359,  82.540,  115.410
115.410 82.540 51.359

18.9,  21.9,  24.9
24.9 21.9 18.9

−

−

 
= = 
 

 
= = 
   

 Next, the fuzzy weight for C1 can be obtained by multiplying the aggregated Z-number for 

C1 with the obtained inverse triangular fuzzy number, as shown below. 
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( ) ( )

( )

( )

7.486,  11.733,  16.667

7.486 0.0087,  11.733 0.0121,  16.667 0.0195

0.065,  0.142,  0.325

0.0087,  0.0121,  0.0195

=

=





 

 

( ) ( )

( )

( )

3.30,  3.80,  4.30

3.30 0.0402,  3.80 0.0457,  4.30 0.0529

0.133,  0.174,  0.228

0.0402,  0.0457,  0.0529

=

=





 

 

Step 5: The restriction and reliability components of the obtained fuzzy weights from the previous 

step are then defuzzified. As an illustration, the calculation for defuzzifying the restriction 

and reliability components representing the fuzzy weight of C1 is shown below. 

( )

( )

2 2

2 2

1 0.065 0.142 1 0.325
Rank 0.370

3 1 0.325 0.065

1 0.133 0.174 1 0.228
Rank 0.419

3 1 0.228 0.133

A

R

 + + +
= = 

 + − 

 + + +
= = 

 + −
   

 The fuzzy weights of the rest of the criteria are then defuzzified similarly as shown in Table 6. 

Table 6. Fuzzy weights. 

Criterion Fuzzy Weights Rank(A) Rank(R) 

C1 ((0.065, 0.142, 0.325), (0.133, 0.174, 0.228)) 0.370 0.419 

C2 ((0.090, 0.202, 0.467), (0.129, 0.169, 0.222)) 0.382 0.416 

C3 ((0.139, 0.315, 0.662), (0.149, 0.192, 0.249)) 0.405 0.429 

C4 ((0.114, 0.258, 0.584), (0.133, 0.174, 0.228)) 0.393 0.419 

C5 ((0.014, 0.023, 0.053), (0.092, 0.128, 0.175)) 0.343 0.393 

C6 ((0.023, 0.060, 0.156), (0.124, 0.164, 0.217)) 0.347 0.413 

 The defuzzified weights for the restriction and reliability components are subsequently 

combined using (22) by choosing  = 0.75 to highlight that the role of the restriction 

component is more important than its reliability [23]. The obtained weights are then 

normalized using (28) and the results are presented in Table 7. 

Table 7. Normalized weights. 

Criterion Final Weight Normalized Weight Priority Rank 

C1 0.382 0.166 4 

C2 0.390 0.170 3 

C3 0.411 0.178 1 

C4 0.399 0.173 2 

C5 0.355 0.154 6 

C6 0.364 0.158 5 
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Step 6: The decision maker’s evaluation for all alternatives with respect to each criterion is obtained 

as shown in Table 8. 

Table 8. Decision information matrix of WASPAS. 

Alternative C1 C2 C3 C4 C5 C6 

A1 (5, 8) (4, 7) (5, 8) (5, 8) (4, 7) (4, 7) 

A2 (2, 5) (4, 7) (3, 6) (4, 7) (2, 5) (3, 6) 

A3 (3, 6) (3, 6) (4, 7) (4, 7) (3, 6) (4, 7) 

A4 (3, 6) (4, 7) (5, 8) (3, 6) (3, 6) (3, 6) 

A5 (4, 7) (5, 8) (4, 7) (4, 7) (3, 6) (5, 8) 

A6 (5, 8) (4, 7) (5, 8) (3, 6) (2, 5) (4, 7) 

 The above decision matrix is further transformed into Z-numbers using the Z-numbers 

representation, as shown in Table 4.  

Step 7: Since all the criteria constitute benefit criteria, the decision matrix in the form of Z-numbers 

is, therefore, normalized using (30). Note that 
3max 9ijb = , all elements bij in the decision 

matrix is consequently divided by 9. For example, b11 = (7,9,9) is normalized as follows: 

( ) ( )
1

7,9,9 0.778,  1.000,  1.000
9

= . 

Step 8: The weighted sum and weighted product matrices are constructed using (32) and (33), 

respectively. Considering the normalized ( )11 11, ((0.778,  1.000,  1.000),b r =% %

(0.778,  0.889,  1.000))  and the criteria weight for C1, which is 0.166, the weighted sum and 

weighted product for ( )11 11,b r% %  is, hence, calculated as follows: 

( ) ( )( ) (

)

( )

11 11, (0.778 0.166,1.000 0.166,1.000 0.166),

(0.778 0.166,0.889 0.166,1.000 0.166)

(0.129,  0.166,  0.166),  (0.129,  0.148,  0.166)

WS b WS r =   

  

=

% %

 

( ) ( )( ) ( )

( )

0.166 0.166 0.166 0.166 0.166 0.166

11 11, (0.778 ,1.000 ,1.000 ),(0.778 ,0.889 ,1.000 )

(0.959,  1.000,  1.000),  (0.959,  0.981,  1.000)

WP b WP r =

=

% %
. 

Step 9: The utility function for each alternative is calculated using (34) by taking  = 0.5, which 

represents the equal weightage for the weighted sum and weighted product. For example, 

the utility function for A1 will be illustrated. The total sum of the weighted sum, ( )
1

m

ij

j

WS b
=

 %  

and the total product of the weighted product, ( )
1

m

ij

j

WP b
=

 %  for the restriction component 

are first calculated and obtained as (0.665, 0.886, 0.997) and (0.658, 0.882, 1.000), 

respectively. As for the reliability component, the total sum of the weighted sum, 



11076 

AIMS Mathematics  Volume 8, Issue 5, 11057–11083. 

( )
1

m

ij

j

WS r
=

 %  and the total product of the weighted product, ( )
1

m

ij

j

WP r
=

 %  are obtained as 

(0.720, 0.831, 0.941) and (0.721, 0.832, 0.943), respectively. Hence, the Z-numbered utility 

function for A1 is calculated as follows: 

( ) ( ) ( )(

( ) ( ))

( )

1 1, 0.5 0.665,0.886,0.997 0.5 0.658,0.882,1.000 ,

0.5 0.720,0.831,0.941 0.5 0.721,0.832,0.943

(0.661,  0.884,  0.998),  (0.720,  0.831,  0.942)

B R =  + 

 + 

=

 

 Meanwhile, the defuzzification of the restriction and reliability components will be 

performed separately as follows: 

( )

( )

2 2

1

2 2

1

1 0.661 0.884 1 0.998
Rank 0.747

3 1 0.998 0.884

1 0.720 0.831 1 0.942
Rank 0.808

3 1 0.942 0.720

B

R

 + + +
= = 

 + − 

 + + +
= = 

 + −
 

 

 The utility functions of the rest of the alternatives are evaluated analogously as presented in 

Table 9 with their corresponding defuzzified values. 

Table 9. Utility function values in terms of Z-numbers. 

Alternative Utility Function in Terms of Z-Numbers Rank(B) Rank(R) 

A1 ((0.661, 0.884, 0.998), (0.720, 0.831, 0.942)) 0.747 0.808 

A2 ((0.304, 0.542, 0.772), (0.554, 0.667, 0.780)) 0.502 0.689 

A3 ((0.441, 0.676, 0.913), (0.621, 0.738, 0.856)) 0.580 0.734 

A4 ((0.433, 0.665, 0.863), (0.615, 0.730, 0.845)) 0.582 0.731 

A5 ((0.572, 0.784, 0.927), (0.667, 0.772, 0.875)) 0.681 0.774 

A6 ((0.474, 0.705, 0.859), (0.633, 0.740, 0.847)) 0.615 0.748 

Step 10: Finally, the defuzzified restriction and reliability components of the utility functions are 

combined using (22), taking  = 0.75, similar to the AHP model. Table 10 shows the final 

priority weights for all alternatives and their ranking. 

Table 10. Final priority weights and ranking of alternatives. 

Alternative Final Priority Weight Priority Rank 

A1 0.762 1 

A2 0.549 6 

A3 0.618 5 

A4 0.619 4 

A5 0.704 2 

A6 0.648 3 
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5.3. Sensitivity analysis and discussion 

The priority ranking of alternatives obtained using the proposed Z-AHP-WASPAS model 

sensitivity follows similar order as [9], which is A1 > A5 > A6 > A4 > A3 > A2. The sensitivity analysis 

was further conducted to highlight the advantage of the proposed model compared to the previous 

one. Each of the criteria weights were increased by 50% and the effects on the ranking order of 

alternatives were observed. Table 11 shows the results for the final priority weights obtained using 

the proposed Z-AHP-WASPAS model when the weight of each criterion is increased by 50%. 

Table 11. Sensitivity analysis for the proposed Z-AHP-WASPAS model. 

Alternative 
Criterion with Increased Weights 

C1 C2 C3 C4 C5 C6 

A1 0.804 0.754 0.754 0.754 0.755 0.755 

A2 0.551 0.558 0.551 0.551 0.550 0.550 

A3 0.618 0.618 0.634 0.618 0.618 0.618 

A4 0.619 0.619 0.619 0.636 0.619 0.619 

A5 0.701 0.701 0.700 0.701 0.730 0.701 

A6 0.647 0.647 0.647 0.647 0.647 0.668 

Next, the sensitivity analysis was performed on the Z-AHP-WASPAS model proposed in [9] to 

be compared with the results obtained using the proposed model in this paper. The results in Table 12 

show that the ranking of alternatives changes when the weights of C3 and C4 are increased by 50%. 

Table 12. Sensitivity analysis for Z-AHP-WASPAS [9]. 

Alternative 
Criterion with Increased Weights 

C1 C2 C3 C4 C5 C6 

A1 0.891 0.871 0.907 0.898 0.887 0.884 

A2 0.532 0.567 0.527 0.580 0.547 0.548 

A3 0.642 0.633 0.676 0.665 0.650 0.654 

A4 0.679 0.694 0.769 0.650 0.689 0.684 

A5 0.766 0.785 0.754 0.760 0.765 0.772 

A6 0.752 0.741 0.806 0.691 0.736 0.742 

The ranking orders A1 > A6 > A4 > A5 > A3 > A2 and A1 > A5 > A6 > A3 > A4 > A2 were observed 

when the weights of C3 and C4 were changed, respectively. The ranking order remained unchanged 

when the other criteria weights were changed, resulting in a 66.67% consistency. Comparing this 

result to the proposed Z-AHP-WASPAS model, the ranking order maintained its stability when all 

criteria weights were changed, except for C3, resulting in an 83.33% consistency. In fact, only the 

interchange of ranking between A3 and A4 was observed when the weight of C3 was increased by 

50%. The comparison of the sensitivity analysis is illustrated in Figure 10. 
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Figure 10. The radar diagram for the sensitivity analysis: (a) Proposed Z-AHP-WASPAS; 

(b) Z-AHP-WASPAS [9]. 

The consistency of the proposed Z-AHP-WASPAS model is influenced by many factors. First, 

this includes the preservation of decision information in the form of Z-numbers until the final steps 

of the AHP and WASPAS. The proposed model does not transform the Z-numbers into regular fuzzy 

numbers since this process is believed to lead to a great loss of information [3]. Second, the 

defuzzification of Z-numbers into crisp values for the valuation of the criteria weights and priority 

weights of alternatives makes use of the proposed ranking approach of Z-numbers based on the 

vectorial distances and spread. In addition, the comparative analysis has also shown that the 

proposed method could rank Z-numbers better than the existing approaches. In fact, when applying 

the proposed method for ranking Z-numbers in the decision-making model, the sensitivity analysis 

has shown an improvement in consistency. Third, the use of the convex compound in combining the 

restriction and reliability components of Z-numbers allows the level of importance of each 

component to depict the Z-numbers. In this example, the variable  was set as 0.75 to highlight that 

the role of the restriction component is more important than its reliability [23]. 

Furthermore, the proposed Z-AHP-WASPAS model was compared with the classical AHP 

method in obtaining the criteria weights. For this purpose, the classical AHP based on crisp scales [31] 

was used. In the classical AHP, the decision maker’s evaluation is kept as crisp values and the degree 

of reliability of the decision maker’s preferences is completely ignored, as shown in Table 13. 

Table 13. Criteria weights obtained using classical AHP. 

Criterion C1 C2 C3 C4 C5 C6 Weight 

C1 1 1/2 1/3 1/3 4 2 0.123 

C2 2 1 1/2 1/2 4 3 0.183 

C3 3 2 1 2 5 3 0.321 

C4 3 2 1/2 1 4 3 0.246 

C5 1/4 1/4 1/5 1/4 1 1/2 0.047 

C6 1/2 1/3 1/3 1/3 2 1 0.080 

Using the obtained criteria weights, the weighted sum and weighted product of the fuzzy WASPAS 

model were evaluated. The ranking of alternatives was obtained as A1 > A5 > A6 > A3 > A4 > A2. The 
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sensitivity analysis was further performed to see the effects of increasing the weight of each criterion 

by 50%. Table 14 presents the results of the sensitivity analysis when the weights obtained using the 

classical AHP are integrated into the WASPAS model. 

Table 14. Sensitivity analysis for the WASPAS model with criteria weights obtained 

using classical AHP [31]. 

Alternative 
Criterion with Increased Weights 

C1 C2 C3 C4 C5 C6 

A1 0.754 0.726 0.721 0.724 0.729 0.728 

A2 0.502 0.508 0.509 0.506 0.501 0.502 

A3 0.594 0.591 0.653 0.587 0.598 0.596 

A4 0.585 0.584 0.582 0.622 0.587 0.586 

A5 0.685 0.686 0.688 0.687 0.679 0.685 

A6 0.633 0.634 0.640 0.637 0.631 0.618 

Similar to the Z-AHP-WASPAS model from [9], the ranking order changed when the weights of 

C3 and C4 were increased by 50%. The increase in weights for C3 and C4 resulted in the ranking 

orders A1 > A5 > A3 > A6 > A4 > A2 and A1 > A5 > A6 > A4 > A3 > A2, respectively. Hence, the 

consistency performance was only 66.67% when the criteria weights were quantified using the 

classical AHP and further applied in the fuzzy WASPAS. 

In general, the results are affected by the ignorance of the reliability parts, which represent the 

degree of sureness when the decision maker is making the evaluation. This shows that the application 

of Z-numbers in decision-making is essential as it can depict imperfect information. Besides, the use 

of crisp numbers in the pairwise comparison matrix of the classical AHP could not present the 

decision information in the best way. This is due to imprecision and uncertainties when the decision 

maker is hesitant on giving discrete values on the relative importance of the criteria. Hence, the use 

of fuzzy numbers can better describe the criteria preferences [32]. 

However, it is still important to note that this research is limited to the application of the 

proposed ranking method in the Z-AHP-WASPAS model. Since the proposed ranking of Z-numbers 

is based on the vectorial distance and spread of fuzzy numbers, other decision-making models are 

based on distance such as fuzzy TOPSIS, CODAS, and evaluation based on distance from average 

solution (EDAS). Therefore, in future works, the proposed method should be extended to other 

methods, which are regressively discussed in the current decision-making methods such as 

preference relation [33–35] and the consensus model for group decision-making [36,37]. 

6. Conclusions 

Ranking Z-numbers is a complex task since they are fashioned by a pair of fuzzy numbers, 

namely the restriction and reliability components. When ranking Z-numbers, it is essential to keep 

the information so that it can be processed by making use of the meaning of the Z-numbers. In 

addition, the issue of information loss when converting Z-numbers into regular fuzzy numbers 

should be overcome. Hence, a novel ranking method of Z-numbers was proposed in this paper based 

on the vectorial distances and spread. The advantages of the study can be summarized as follows: 

(a) The vectorial distances in the proposed ranking method measure the distances of all vertices, 
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which form the shape of fuzzy numbers from a reference point, namely the origin. The spread 

is also considered in ranking the Z-numbers to cater to various situations in which Z-numbers 

have different spreads. Besides, this ranking approach is very suitable to be adopted in any 

decision-making model that uses linguistic terms to describe the level of importance of 

criteria and alternatives. The Z-numbers, which represent the linguistic terms, are 

appropriately ranked based on their distances and spread from the origin. 

(b) The proposed ranking of Z-numbers does not convert them into regular fuzzy numbers but 

instead keeps the restriction and reliability components of the Z-numbers until a final ranking 

is obtained. The ranking method makes use of the convex compound to combine the 

restriction and reliability components in which a variable is introduced to allow for at least 

equal weightage for both components; however, in most situations, it is assumed that the 

restriction component is given more priority compared to its reliability. Hence, a comparative 

analysis was conducted to validate the proposed ranking method and comparison some 

examples of Z-numbers with the existing ranking methods. Overall, it was observed that the 

proposed method has a better capability of ranking Z-numbers, which could be further used in 

solving decision-making problems. 

(c) The ranking method of Z-numbers proposed in this study was further extended to develop a 

novel AHP-WASPAS model based on the Z-numbers, in which the decision information was 

preserved as Z-numbers and the proposed ranking method was used to defuzzify the 

processed Z-numbers information into crisp values to obtain the criteria weights and priority 

weights of alternatives. Additionally, a numerical example was also adopted to illustrate the 

proposed Z-AHP-WASPAS model and the sensitivity analysis was further conducted to 

evaluate the consistency of the model. In essence, the study observed that the proposed model 

has improved its consistency compared to the existing model. 

The improvement of the Z-AHP-WASPAS model using the proposed ranking approach could be 

influenced by several factors such as the preservation of Z-numbers information, the use of the 

improved ranking method of Z-numbers, and the choice of variable value in controlling the 

weightages of the restriction and reliability components. However, it is important to note that this 

research is limited to the application of the Z-number-based ranking approach in the AHP-WASPAS 

model. The ranking approach could be applied when developing other fuzzy decision-making models 

that require linguistic evaluation from decision makers. Besides, the proposed model does not 

consider group decision-making that involves many decision makers and consequently requires 

further exploration in aggregating all the decision makers’ preferences, such as the consensus model. 

In future works, the proposed ranking approach of Z-numbers could also be applied when developing 

other decision-making models such as TOPSIS, DEMATEL, and Best Worst Method (BWM). 
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