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Failure starts with creation of a crack, then the propagation of the crack and eventually the fracture of the material. Further-
more, material selection, geometry, processing and residual stresses are critical factors that may contribute to uncertainty and
prospective failure mechanisms in engineering. These issues may also arise in computational analysis, a problematic model, for
instance, a three-dimensional surface fracture that may necessitate numerous degrees of freedom during analysis. However, con-
sidering the multiple incidents of material failure, detailed analysis and efforts to prevent premature material failure for safety
and engineering integrity can be carried out. Thus, the objective of this study is to model crack growth in a surface-cracked
structure. Aluminium alloy 7075-T6 was the material of interest in this study. The S-version finite element method (SFEM)
was used to study fracture propagation. The numerical approach developed in this research was the probabilistic SFEM. Instead
of mesh rebuilding, a typical finite element approach, the SFEM uses global–local element overlay method to create a fatigue
crack growth model, which was then used for crack research. Empirical computation and previous experimental data were used
to evaluate the stress intensity factor (SIF), surface crack growth and fatigue life. The SIF was determined using a virtual crack
closure method (VCCM). In addition, the probabilistic approach is also a critical method to generate random parameters, such
as Monte Carlo and bootstrap methods. The SIF, fatigue life and surface crack growth were validated and deemed to be within
the acceptable range.
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1. Introduction
In the rapidly evolving innovative and industrial

world, the high-tech production of sophisticated
components is critical to contemporary civilisation.
A primary concern has always been about durabil-
ity: how long and substantial the product will serve
in an application. Components such as aircraft [1],
bridges [2], pressure vessels [3], and oil and gas
components [4] are products that serve in zones of
extreme loading. The engineering field faces sig-
nificant difficulties in preventing these problems.
However, analysing the causes of the failure can
help prevent future material failures.

When a material fails due to surface crack
growth, propagation and fracture, the crack is
linked to material disintegration [5], which begins
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from within and becomes visible. Imperfection [6]
in a material can cause the weakening of links be-
tween molecules, resulting in disintegration and the
formation of cracks inside the material when sub-
jected to intensely repetitive stress from static or
cyclic loading. The surface crack propagates as the
loading continues, contributing to material failure
through the fracture. Several engineering products
do not last the intended duration of ideal service
as predicted by the manufacturer under conditions
of surface cracks. This issue threatens engineering
reliability and puts people’s lives at risk. One pa-
rameter that is crucial for determining reliability is
the stress intensity factor (SIF) [7].

The SIF was calculated using the virtual crack
closure method (VCCM) [8] as VCCM does not re-
quire a special mesh arrangement around the crack
front [9]. The SIF was selected due to its advan-
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tages of computing in three different patterns of
yield stress distribution such as constant, linearly
and quadratically varying [10]. When the SIF was
greater than the critical SIF, catastrophic failure
could occur. The SIF of three-dimensional fatigue
crack propagation must be computed end to end
of the crack front. A three-dimensional surface
crack was evaluated throughout the fatigue crack
growth process. The value of SIF was affected
by random parameters in the material properties—
surface crack size and location [11]. Thus, a robust
technique was needed to analyse a model’s crack
growth, life span and SIF.

To analyse the surface crack growth based on
fracture mechanism, FEM software was used. Ad-
vanced FEM was needed to update the dynamic do-
main during crack propagation. Thus, researchers
enhanced the FEM into X-FEM [12], boundary el-
ement method [13], extended FEM [14] and S-
version FEM [15]. S-version FEM has vast ap-
plications since the method has an advantage of
rebuilding the crack domain. The overall domain
remains the same, but the crack domain was up-
dated separately, thus reducing the simulation time.
Even though S-version FEM was used for pres-
sure vessels [16], internal flaws [17], the welded
material [18] and many more applications, only a
few researchers updated the S-version FEM with
the probabilistic analysis. Akramin et al. [19] sim-
ulated surface cracks using the Monte Carlo sam-
pling method. Husnain et al. [20] used bootstrap
analysis for crack growth prediction. A compari-
son of Monte Carlo sampling with the bootstrap
method for surface crack analysis was not per-
formed in any other study.

Since the S-version FEM is unable to han-
dle uncertainties in parameters, numerical analy-
sis with advanced computational analysis is re-
quired, such as a probabilistic approach. A prob-
abilistic approach embedded with S-version FEM
was used to compute uncertainties during numeri-
cal calculation. Randomness in material character-
istics, crack size, component geometry and applied
load all impact the results. Even though the proba-
bilistic approach involves various techniques, two
approaches, namely, Monte Carlo and bootstrap,
are discussed in this article.

The Monte Carlo technique was selected for the
fundamentals and benchmark purposes as it can
lead to accurate size distribution [21], and the boot-
strap technique estimates results by averaging var-
ious data samples. Unlike Monte Carlo analysis,
bootstrap analysis estimates confidence intervals
more straightforwardly [22]. Since bootstrap anal-
ysis does not simulate the whole sample but repre-
sents the whole sample in an averaging of sample
data, it will reduce the repeating iteration and sim-
ulation time.

The objectives of this study focus on the mod-
elling of surface cracked structures. The calcula-
tion of SIF and crack growth is presented in this
article. Additionally, the cracked structure lifespan
was predicted under fatigue loading using Monte
Carlo and bootstrap approaches.

2. Methods
The methodology used in this study involves

calculating the SIF, surface crack growth and fa-
tigue life using the S-version FEM for non-random
input or deterministic parameters. Meanwhile, the
S-version FEM was embedded with Monte Carlo
and bootstrap analyses for random input parame-
ters.

The S-version FEM was derived from [23] the
hp-FEM technique [24]. Further theoretical back-
ground of the S-version FEM is given in Ref [16].
The finite element formulation for the S-version
FEM can be expressed as follows:[
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L and G in Eq. 2 represent local and global ele-
ments, respectively. ξ

G,ηG,ζ G and ξ
L,ηL,ζ L are

the Gaussian points for global and local elements,
respectively. Figure 1 shows the global and local el-
ements with Gaussian points in the S-version FEM.
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Global and local elements have different coordi-
nate systems. Thus, the Newton–Raphson method
was implemented to calculate the Gaussian point in
the global coordinate system iteratively. Once both
global and local coordinates were calculated, the
strain–displacement matrix could be determined.
Displacement in each element would lead to the
calculation of SIF at the crack front.

Fig. 1. Global and local elements in S-version FEM

The SIF was calculated using the VCCM [25].
Figure 2 shows the VCCM concept. The VCCM
was based on the displacement of the crack front.
SJ

1 and SJ
2 (darker colour in Figure 2) are the finite

faces at the crack front segment. The opening dis-
placement, ui, on the five nodes at the crack front
was measured for the energy release rate calcula-
tion, G. Based on the energy release rate, SIF can
be computed to calculate the crack growth rate.

Crack growth was calculated based on Paris’
law.

da
dN

=C(∆Keq)
n (3)

Eq. 3 illustrates the relationship between the equiv-
alent SIF, ∆Keq, and the crack growth rate da/dN. n
and C are the material constants and are typically
introduced as Paris n and Paris C, respectively. a
is the crack depth or length, and N is the number
of cycles. The equivalent SIF, ∆Keq, is computed
based on the Richard criterion [26]. The Richard
criterion produces 3-dimensional crack growth di-
rection and is proven by series of deterministic
analyses using the S-version FEM [15, 16]. Thus, it
will be appropriate to use the same criterion in this
research study. In the future, other methods might

Fig. 2. Concept of VCCM. VCCM, virtual crack clo-
sure method

be used to perform the analysis. The angle of the
crack propagation, ϕ0, was computed as follows:

ϕ0 =∓

[
140◦

|KII|
KI + |KII| + |KIII|

(4)

−70◦
(

|KII|
KI + |KII| + |KIII|

)2
]

where KI , KII and KIII are SIF for fracture modes
I, II and III, respectively. Once the crack growth
rate and angle were determined, the probabilistic
method was embedded using the S-version FEM.

A probabilistic approach is suitable to deter-
mine the randomness of the input parameters as this
frequently happens in fatigue surface crack anal-
ysis. Two probabilistic approaches are discussed
here, namely, Monte Carlo and bootstrap. Monte
Carlo is frequently used as a benchmark since it
represents the actual occurrences in a distribution.
The major drawback is time consumption. Further-
more, the Monte Carlo consumes much time to
represent the whole distribution as the occurrences
at the tail and head of a distribution rarely hap-
pen. Thus, bootstrap is considered an alternative to
troubleshoot the disadvantage. Nonetheless, Monte
Carlo still has been used as a benchmark.

The Monte Carlo method requires four signifi-
cant steps. It starts with random sampling param-
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eters, then generates data from the selected distri-
bution, generates random parameters to produce an
output and computes the probabilistic information.

The sampling of the random parameter, ui, is
equated with the cumulative distribution function
(CDF), Fx, of the random variable xi. The equation
is presented as follows:

FX(xi) = ui (5)

If X is lognormal distributed, N(µX ,σX), then
s = (xi −µX)/σX is a standard lognormal variate.
The random parameter, ui, can be shown as fol-
lows:

ui = FX(xi) = Φ(si) = Φ(xi −µX)/σX (6)

Thus,

xi = µX +σX si = µX +σX Φ
−1(ui) (7)

where Φ
−1 is the inverse of CDF of the lognormal

distribution.
Once the random parameter is generated, the

output from the S-version FEM can be produced.
If 100 random parameters are generated, 100

outputs are computed. Based on the 100 outputs,
probabilistic information could be extracted. For
example, the distribution of results and probability
of failure could be computed from the 100 outputs.
Since the Monte Carlo method takes a long time to
cover the whole distribution completely, the boot-
strap method can be used for comparison.

Bootstrap is used to generate sample parame-
ters. Unlike Monte Carlo, the sample was generated
based on the whole distribution. Bootstrap selects
a few samples and calculates the mean. Based on
the mean value, the random parameter was gener-
ated. The random parameter was used to compute
the outputs. For instance, if Monte Carlo simulates
a 100 samples, which means 100 times, bootstrap
might reduce the simulation into 10 simulations
only. A 100 samples were classified into 10 groups,
each with 10 samples. The mean from every group
will be calculated and fed into the S-version FEM.
A comparison of the concept is shown in Figure 3.
Bootstrap was used to calculate the mean parame-
ter in a smaller number of samples and let the mean

value represent the random parameter. The random
parameters vary according to the material and ge-
ometry model.

Fig. 3. Comparison between Monte Carlo and Boot-
strap concepts

A four-point bending model was constructed for
the comparison between Monte Carlo, bootstrap
and deterministic (non-probabilistic) approaches.
The four-point bending model was 160 mm ×
60 mm × 20 mm. Figure 4 shows the model with
a surface crack at the centre and the surface crack
plane. Material properties for four-point bending
are presented in Table 1. The material was alu-
minium 7075-T6 with the chemical composition of
Zn (5.6 wt%), Mg (2.5 wt%), Cu (1.6 wt%) and Cr
(0.3 wt%). The specimen was prepared in a log tra-
verse direction. The four-point model parameters
and type of distribution were used, as described in
Ref [27]. All random parameters were computed
based on lognormal distribution as the lognormal
distribution has a small coefficient of variation. The
initial crack length and depth were replicated in the
experimental results.

The four-point bending specimen was tested
on a servo-hydraulic fatigue testing machine, as
shown in Figure 5. The stress ratio was 0.1. The
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Table 1. Input distribution for the four-point bending model aluminium alloy (Al 7075-T6)

Variable Distribution Mean Standard deviation
Initial crack length (ci) Lognormal 8.00 mm 0.1

Initial crack depth (ai) Lognormal 4.50 mm 0.1
Young’s modulus (E) Lognormal 71.7 GPa 0.01
PR Deterministic 0.33 0
Tensile strength (yield) Deterministic 503 MPa 0
Fatigue power parameter (n) Lognormal 2.88 0.1
Paris coefficient (C) Lognormal 2.29 × 10−10 4.01 × 10−10

Critical SIF (KIC) Deterministic 29 MPa.
√

m 0
PR, Poisson ratio; SIF, stress intensity factor

Fig. 4. Surface crack at the centre of the model

maximum load was 40 kN and 22 kN for mean
stress. The experiment was carried out with a fre-
quency of 20 Hertz. The load was cyclically loaded
until 10,000 cycles. Then, the stress ratio was
changed to 0.8 for 100,000 cycles. The stress ratio
was 0.8 for benchmark development on the crack
surface. The stress ratio was between 0.1 and 0.8
until the specimen was fractured. Once the speci-
men was fractured, the crack length and depth were
measured using the Baty Vision System, as shown
in Figure 6. The experimental work was repeated
until the distribution of results was constructed.
Based on the statistical data, bounds of results were
produced to show the range of the results. Lower
and upper bounds were computed.

The data for lower and upper bounds were cal-
culated based on the mean and standard deviation
from the simulation results. The minimum result
denotes the lower bound, and the maximum result
denotes the upper bound. Furthermore, the bounds
of the probabilistic information in the S-version
FEM results were constructed from the random pa-
rameters. Therefore, there were lower and upper
bounds in the results, which represent the ranges

Fig. 5. Experimental process

of the variation of the results. In addition, fatigue
life was predicted to be in between bounds. The
bounds allow for a reliable and efficient solution to
the problems associated with a certain percentage
of confidence level.

The 95% confidence bounds are the most used,
but the percentage can be set at any level between
0% and 100%. The confidence bound denotes the
probability that a result will fall between a range
of values. Confidence bounds measure the degree
of confidence in the probabilistic method. Thus, in
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Fig. 6. Crack length and depth measurement using Baty
Vision System

this research, 95% confidence bounds were used
since it is most likely the actual range of the sam-
ples. It is reasonable to expect 95% confidence
bounds to fall within a specific distribution range.
For the fatigue crack growth rate prediction, 95%
confidence bounds were used, which are used to
justify the prediction with experimental results.
The 95% bound was calculated using the follow-
ing equation:

95% Confidence Bound = µX ∓1.96
σX√

N
(8)

where N is the total number of samples, µX is the
sample mean and σX is the sample standard devia-
tion.

3. Results and discussion
In this study, an algorithm for probabilistic sur-

face crack analysis was developed. Validating the
results with other deterministic numerical solutions
was essential. Therefore, the probabilistic and de-
terministic approaches were compared. Then, the
reliability of the developed model was judged. The
verification was focussed on SIF, surface crack
growth and fatigue life.

A model was selected to calculate the SIF. Ta-
ble 2 shows the details of the tension model. First,
tension model A was chosen to demonstrate the
capability of the developed probabilistic S-version
FEM. Then, to validate the accuracy of SIF pre-
diction, the developed probabilistic S-version FEM
was used to generate SIF values in lognormal dis-
tributions.

The SIF assesses the stress intensity at the
crack front and numerically evaluates the possi-
bility of crack enlargement of an existing crack.
The practical solutions [28] for crack propaga-
tion SIF were also plotted in the various graphs
used for benchmarking to compare the closeness of
the simulation results. Figure 7 depicts the three-
dimensional tension model [29]. The Newman–
Raju solution is widely used to benchmark SIF in
three-dimensional finite crack bodies. As a result,
the Newman–Raju solution was used in this evalua-
tion. In addition, many past studies have used it for
validation purposes. The tension model was created
with a surface crack in the rectangular model’s cen-
tre. For verification purposes, the mode I SIF at the
crack front is presented for comparison purposes.

Fig. 7. Surface crack at the centre of tension model

The tension model A had a crack of 4.5 mm
length and 4.87 mm depth. Therefore, the crack
size aspect ratio, crack shape aspect ratio and width
aspect ratio were 0.8, 1.00 and 0.5, respectively, as
shown in Table 2. The tension model A was simu-
lated to demonstrate the capability of the developed
probabilistic S-version FEM.

Figure 8 shows the normalised SIFs from 0 an-
gles until 1 radian at the crack front. The result
shows zero angle at the crack length axis and one
radian at the crack depth axis. Figure 8 is computed
from Ref [29], Monte Carlo, bootstrap and deter-
ministic techniques. The deterministic is a non-
probabilistic approach where the standard devia-
tion of each parameter is set as zero. For the proba-
bilistic approach, the bounds were computed based
on Eq. (8). Monte Carlo and bootstrap were sim-
ulated for 20 samples of SIFs with the lognormal
distribution.
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Table 2. Classification of the tension model

Tension
model

Crack shape aspect
ratio (a/c)

Crack size aspect
ratio (a/t)

Model width Aspect
ratio (c/b)

Tension load
(KN)

A 1.00 0.8 0.5 45

Fig. 8. Normalised SIFs along the crack front for ten-
sion. SIFs, stress intensity factors

According to Ref [27], the crack shape is
fraught with uncertainty, complicating the predic-
tion of a probabilistic lifetime. The uncertainty is
the cause of the crack shape aspect ratio’s random-
ness. Then, the bounds were calculated using the
minimum and maximum values from the generated
SIF samples. In addition, the SIF was considered
acceptable since the values were greater at 0 than
at 1 angle. Therefore, this demonstrates that nu-
merical calculations produce good results. The be-
haviour of SIFs from the Monte Carlo and boot-
strap approaches, which were embedded in the S-
version FEM, agrees well with the Newman–Raju
solution since the trend is close to each other. Even
though the Newman–Raju deviated from the maxi-
mum bound, the trend of all methods agrees.

Figures 9A–9C show the SIFs by determinis-
tic, Monte Carlo and bootstrap approaches. Every
beach mark (BM) of fatigue crack is presented by
BM 1 until BM 6. All beach marks were compared
with critical SIF (KIC). The SIF value of SIFs was
acceptable since its values were far below the KIC

of 29 MPa·
√

m. If the SIF value was more than KIC,
catastrophic failure will occur. It showed that the
load applied does not produce a high SIF value un-
til it reaches the critical limit.

Meanwhile, surface crack growth was verified

(A)

(B)

(C)

Fig. 9. SIFs by (A) deterministic, (B) Monte Carlo and
(C) bootstrap. SIF, stress intensity factor

using a four-point bending model under the mode I
condition. The crack length measured between the
beach marks by previous researchers was compared
to that developed by the probabilistic S-version
FEM analysis. The crack growth was predicted us-
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ing the bending model, as depicted in Figure 10.
Two supports and a two-point load were computed
using the model. The zero-degree fatigue crack sur-
face was used for crack growth validation. The
analysis demonstrated the adaptability of the devel-
oped approach to various models. The deceleration
effect on crack growth caused by bending was a
unique feature of the bending model. The material
properties were simulated using the specifications
listed in Table 1. Aluminium alloy 7075-T6 was
chosen as the material due to its significance in the
engineering industry.

Fig. 10. Geometry model for four-point bending with
mode I loading

Figure 11 shows the boundary condition of the
four-point bending model. Constraints at the bot-
tom and load were applied at the top. A semi-
elliptical crack shape was introduced in the mid-
dle of the model. The semi-elliptical crack was sur-
rounded by a denser mesh. The domain of the semi-
elliptical crack surrounded by a denser mesh was
introduced as a local mesh. The initial crack length
and depth were referred to in a previous experi-
mental study [30]. The four-point bending model
was set up as the actual experimental setup. This
way, the experiment results were examined by us-
ing the four-point bending model, especially in the
local mesh area. The pre-crack was modelled as
precisely as per the specimen in the experiment.
Since fatigue load was applied in the experimen-
tal setup, the minimum load was 4.5 kN, and the
maximum load was 45 kN. More details of the pre-
crack size can be referred to in Table 2. The stan-
dard deviation for critical SIF, KIC and yield tensile
strength were set to zero because both parameters

were used as a comparison value. For instance, the
critical SIF was used as a comparison value for fa-
tigue crack to reach the unstable crack growth. In
addition, both comparison values were not affected
by the calculation of SIF, surface crack growth and
fatigue life.

Fig. 11. Global mesh with boundary conditions and
overlaid local mesh in a wireframe view of the
four-point bending model

The deterministic results were compared with
the experimental results, showing a deviation.
Troubleshooting was needed to improve the anal-
ysis. A probabilistic approach was embedded in
the S-version FEM to improve the outputs and
demonstrate the capability of the developed soft-
ware. Hence, Monte Carlo and bootstrap provided
a probabilistic view of the outcomes. The proba-
bilistic crack growth model was created using 20
samples in total. As the samples increase, the accu-
racy will improve.

Therefore, Figure 12 illustrates the beach marks
formed at the semi-elliptical surface crack. The
focus was on the crack front since the propaga-
tion started from here. As the load was repeat-
edly applied, the crack front slowly propagates.
The phenomena keep repeating as the fatigue phe-
nomena were replicated. It was described in six
beach marks, as shown in Figure 12. Two beach
marks were used for the validation process to avoid
complex figures and graphs. As a result, the graph
turned out to be unreadable. The deceleration effect
on crack growth caused by bending was a distinct
feature of the bending model. A higher SIF value at
the 0 and 180 crack angles than the 90-degree an-
gle shows the acceleration of crack propagation—
higher crack propagation at the non-90◦.

The initial crack length simulated by Monte
Carlo and bootstrap was 14.00 mm, and the ini-
tial crack depth was 8.00 mm, as shown in Fig-
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Fig. 12. Beach marks at the surface crack growth for the
four-point bending model

ure 13. Using Eq. (3), the fatigue power parameter,
n, was set as deterministic (mean zero) to control
the acceleration of fatigue crack growth. The max-
imum applied load was 45 kN, and the minimum
applied load was 4.5 kN. The fatigue region or reli-
able crack growth was the only area where surface
crack propagation was considered. As a result, the
developed probabilistic in the S-version FEM is a
reliable simulation tool for predicting crack growth
under fatigue loading, as shown in Figure 13.

Fig. 13. Comparison of surface crack growth between
the experimental and probabilistic S-version
FEM approaches including 95% bounds for
third and sixth beach marks

Figure 13 shows the comparison for two beach
marks between the experimental approach by
Kikuchi et al. [30], deterministic, Monte Carlo and
bootstrap approaches, respectively. The lognormal

distribution was used to generate the mean Monte
Carlo and bootstrap because it impossibly produces
negative values in a random number. Thus, it is fit
for computing a real fatigue life and SIF value. The
prediction of the probabilistic S-version FEM of
surface crack growth remains valid, and the trend
was acceptable compared to the experimental re-
sults. Figure 13 illustrates that the 95% confidence
bound for the third beach mark and sixth beach
mark was compared with the experimental results.
For the third beach mark, results for deterministic,
bootstrap and Monte Carlo approaches were very
close to the experimental result. The results also
lie inside the range of the bound for 95% confi-
dence bounds. The 95% confidence bounds were
calculated using Eq. (8). Meanwhile, for the sixth
beach mark, a little deviation in Figure 13 was due
to the randomness of occurrences computed dur-
ing the simulation. Nonetheless, Monte Carlo and
bootstrap show approximate solutions with the ex-
perimental results.

Figure 14 shows the comparison for six beach
marks, and the red rectangle was focused on the
sixth beach mark. The result for the first beach
mark until fifth beach marks was closer to the ex-
perimental result. Meanwhile, for the sixth beach
mark, the mean for Monte Carlo slightly devi-
ated from the experimental result. Unlikely, for the
mean bootstrap, it remained close to the experi-
mental result, as shown in the red rectangle in Fig-
ure 14. This was because the Monte Carlo was ca-
pable of simulating the rare occurrences in a pa-
rameter distribution. Thus, the deviation might hap-
pen when a high number of samples were con-
ducted.

Meanwhile, since only 20 samples were gener-
ated for bootstrap, it cannot replicate the experi-
mental results closely. Therefore, more samples are
suggested for the bootstrap method. The number
of samples for the bootstrap method is also a good
topic for a new investigation.

The developed probabilistic S-version FEM
was then validated by predicting fatigue life. As
a result, the experiment in Ref [31], determinis-
tic, Monte Carlo and bootstrap approaches were
compared to predict the fatigue life in Figure 15.
A four-point bending model based on the crack
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Fig. 14. Comparison of fatigue crack growth between
the experimental, deterministic and developed
probabilistic S-version FEM approaches

growth prediction was used for verification. The
same material was used, which was aluminium al-
loy (7075-T6). The maximum load applied was
45 kN, and the minimum load applied was 4.5 kN.
The prediction of fatigue life was simulated using
Monte Carlo and bootstrap with 20 samples. Then,
the average of 20 samples was used to calculate
the mean fatigue life. Monte Carlo was close to
the experimental results when the comparison was
made. However, deterministic and bootstrap meth-
ods showed deviation from the experimental re-
sults. The divergence in the results showed that the
randomness and uncertainty in the analysis were
modelled thoroughly. However, the Monte Carlo
was the best method to predict fatigue life. Twenty
samples for bootstrap are insufficient for generat-
ing a thorough fatigue life distribution.

Fig. 15. Comparison between the experimental and
probabilistic S-version FEM by deterministic,
Monte Carlo and bootstrap approaches

4. Conclusion
Based on the research objective for this study,

the probabilistic S-version FEM successfully pre-
dicted the fatigue crack growth and fatigue life. The
SIF was determined and validated with the primary
reference for analytical SIF calculation produced
by Newman and Raju. A 10% deviation between
the analytical solution and developed probabilistic
S-version FEM is acceptable.

Fatigue crack growth determined using the
bootstrap technique has a small advantage. The fa-
tigue crack growth produced by bootstrap was 20%
closer to the experimental results than the Monte
Carlo method. However, the randomness of random
parameters during the generating process by Monte
Carlo led to the deviation.

Meanwhile, for fatigue life prediction, the
Monte Carlo technique is the best method to predict
fatigue life. The randomness of generated param-
eters was scattered in the whole distribution, and
Monte Carlo can still produce a viable fatigue life
prediction. Monte Carlo prediction was the closest
to the experimental result.

Thus, the Monte Carlo and bootstrap were supe-
rior to another based on the specific aim and targets
of the simulation.
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