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Abstract: Mechanical vibrations adversely affect mechanical components, and in the worst case,
lead to serious accidents by breaking themselves. To suppress vibrations, various studies have
been conducted on vibration isolation, suppression, and resistance. In addition, technologies to
actively suppress vibration have been rapidly developed in recent years, and it has been reported that
vibrations can be suppressed with higher performance. However, these studies have been conducted
mostly for low-order systems, and few studies have employed control models that consider the
complex vibration characteristics of multi-degree-of-freedom (DOF) systems. This study is a basic
study that establishes a control model for complex control systems, and the vibration characteristics
of a 2-DOF system are calculated using the vibration analysis of a multi-DOF system. Furthermore,
the vibration suppression performance of the 2-DOF system is investigated by performing vibration
experiments.

Keywords: vibration analysis; 2-DOF system; viscoelastic body; forced vibration; resonance curve

1. Introduction

Mechanical vibration adversely affects the mechanical components, and in the worst
cases, it causes serious accidents by breaking itself. Various studies have been conducted. Vi-
bration analysis by material properties used for vibration isolation has been performed [1–6].
Furthermore, various dynamic vibration absorbers, such as damper-based dynamic ab-
sorbers and active dynamic absorbers, have been studied [7–9]. These considerations
improve not only safety but also durability and marketable quality. Therefore, vibration
suppression is an important factor when designing products. The causes of vibration dur-
ing machine operation are the vibration characteristics of the machine itself or the transfer
of vibrations from other sources with resonance. The most effective solution is to block
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the vibration from the source to reduce vibration transfer to the object. However, if the
vibration source cannot be blocked, resonance can be prevented by changing the vibration
characteristics of the objective part of the machine. To use this method, it is necessary to
determine the vibration characteristics of the entire machine.

In addition, in recent years, there have been rapid advances in the development of
technologies that actively suppress vibrations, and it has been reported that vibrations
can be suppressed with higher performance [10,11]. However, these studies have been
conducted mostly for low-order systems, and few studies have been conducted using
control models that consider the complex vibration characteristics of multi-degree-of-
freedom (DOF) systems. Therefore, we aim to establish a control model for a complex
system that is expressed as a multi-DOF system considering the vibration characteristics of
the system.

Recently, many methods have been used to obtain the vibration characteristics of
structures, such as obtaining the eigenmodes of structures or resonance points using direct
numerical integration [12–21]. However, it is very difficult to obtain the mode in the
case of the forced vibration response when the object undergoes real vibrations such as
vibrations during the operation of the machine or control output. In addition, because
the resonance point of a machine is often in a frequency band that should not be used for
steady-state operations, the machine is typically operated while avoiding this resonance
point. Therefore, if the purpose of the mechanical design is not to increase the vibration, it
is sufficient to obtain the resonance point of the structure under forced vibration. However,
from the perspective of durability and quality improvement, it is desirable to operate the
machine under conditions where the vibration amplitude is smaller than the excitation
amplitude.

A structure composed of many elements, such as a machine, can be regarded as a
multi-DOF system. The system always has multiple resonance points, and there is an
anti-resonance point showing a local minimum between them. Because the amplitude in
the range around this anti-resonance point is smaller than the amplitude of the excitation, it
can be said that it is a suitable condition for operating the machine in this range. However,
although there are many studies that discuss resonance points and eigenmodes, few have
discussed anti-resonance points. In addition, the position of the anti-resonance point differs
according to the results of the frequency analysis of the free vibration obtained from the
eigenmode and the results of the frequency response analysis of the forced vibration [11].

Therefore, a method to obtain the frequency response analysis of forced vibrations
using a mathematical formula is required. Previously, a 2-DOF system was actively studied
for the design of a dynamic vibration absorber. Nishihara et al. obtained an exact solution
to optimize a dynamic vibration absorber in a 2-DOF system model that does not have
a damping factor in the main system [22–24]. However, in the most general case, many
machines are mounted using viscoelastic materials, such as rubber vibration insulators, and
there is no realistic situation in which the main system does not have damping. Furthermore,
the dynamic characteristics of the viscoelastic body are different from those of a damping
element, such as a damper, and few studies have considered the characteristics of the
viscoelastic body. Furthermore, by clarifying the vibration characteristics of viscoelastic
materials without damping elements in multiple degrees of freedom, it is possible to
suppress vibration at a low cost.

In this study, as a basic study for establishing a control model for complex control
systems, we focused on the vibration characteristics of a 2-DOF system consisting of
viscoelastic bodies using the vibration analysis of a multi-DOF system. Furthermore,
vibration experiments were performed to examine the vibration suppression performance
of a 2-DOF system with viscoelastic elements.
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2. Vibration Analysis of 2-DOF System
2.1. Analysis Model of the System Using Viscoelastic Body

Figure 1 shows the analysis model of the 2-DOF system, which consists of the main
mass, M [kg]; sub-mass, m [kg]; and viscoelastic bodies. The ground was displaced, and
the system vibrated. The displacement of the ground, mass M, and m are defined as x0 [m],
x1 [m], and x2 [m], respectively. The displacements at time, t [s], are expressed as follows:

x0 = X0ejωt, (1)

x1 = X1ejωt, (2)

x2 = X2ejωt, (3)

where X0, X1, and X2 are the amplitudes of displacement [m], and j is the imaginary unit.
The spring constant, k* (In this paper, * indicates a complex number that includes both the
real and imaginary parts.), of the viscoelastic body was modeled as follows:

k∗ = k′ + jk′′ = k′(1 + jε), (4)

where k′ is the dynamic spring constant [N/m], and k′′ is the complex spring constant
[N/m]. The loss factor, ε, is defined as ε = k”/k′. This study assumed that the spring
constants k1* and k2* did not change according to frequency, amplitude, and temperature.
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2.2. Analysis Model in Which a Viscoelastic Body and Spring Are Installed in Parallel
in the Main Mass

Figure 2 shows the analysis model of the 2-DOF system in which the viscoelastic body
and spring with spring constant k0 [N/m] are installed in parallel in the main mass. The
combined spring constant, K∗, of the viscoelastic body and spring is expressed as follows:

K∗ = k0 + k′(1 + jε) = K′(1 + j β ε), (5)

The combined dynamic spring constant, K′ [N/m], and combined loss factor, β, are
defined as follows:

K′ = k0 + k′ , β =
k′

k0 + k′

Equations of motion in mass M and m are expressed as follows:

M
..
x1 = −K∗1(x1 − x0)− k∗2(x1 − x2), (6)
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m
..
x2 = −k∗2(x2 − x1), (7)
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where the mass ratio, µ; spring constant ratios, α and β; and natural frequency of the main
mass, ωn, are defined as follows:

µ =
m
M

, α =
k′2
K

, β =
k′1
K

, ωn =

√
K
M

3. Analysis by Changing Each Parameter in a 2-DOF Vibration System Model
3.1. Resonance Vibration Analysis by Changing Mass Ratio µ

The characteristics of the forced vibration response in the 2-DOF system obtained in
the previous section (Equation (8)) can be changed by varying the mass ratio, µ. When
the mass ratio, µ, was changed from 0 to 0.2 under the conditions α = 0.05, ε1 = 0.07, and
ε2 = 0.17, the transmissibility TM changes, as shown in Figure 3. When µ = 0, the number
of resonance points in the transmissibility TM was 1. When the mass ratio µ increased, the
peak of the resonance point shifted to a lower area, where the natural frequency ratio ω/ωn
was 1, and another resonance point appeared in a higher area with a natural frequency
ratio of more than 1. With an increase in the mass ratio, the peak of the lower resonance
point decreased and that of the higher resonance point increased.
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3.2. Resonance Vibration Analysis of 2-DOF System without the Loss Factor in the Main System

To verify the proposed equation, a resonance vibration analysis of the 2-DOF system
without the loss factor in the main system was performed. In the case of the loss factor in
the main system of ε1 = 0, the terms Ru, Iu, Rd, and Id in the formula for transmissibility,
TM, given in Equation (8) can be expressed as follows:

TM =
∣∣∣X1

X0

∣∣∣ = √ R2
u+I2

u
R2

d+I2
d

Ru = 1− µ
α

(
ω
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µ = m
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The resonance curve, which is the relationship between the transmissibility TM and
natural frequency ratio or frequency, is shown in Figure 4 for the spring ratio of α = 0.07,
the mass ratio of µ = 0.1, and the subsystem loss factor of ε2 = 0, 0.1 and 0.2. It can be
confirmed that the increase in the loss factor ε2 results in a decreased transmissibility at
the resonance points, and there are two points at which the resonance curves in each case
of ε2 meet. These points are called fixed points P and Q. By applying the PQ fixed-point
theory [24], it is possible to derive the optimum tuning condition and optimum loss factor.
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µ = 0.1).

It was confirmed that the intersection point of the vibration transmissibility is inde-
pendent of the value of ε2 when there is no loss in the main system. Therefore, the fixed
points P and Q are obtained from the two vibration transmissibility values of ε2 = 0.0 and
ε2 = ∞. Then, by setting the partial differentiation with (ω/ωn)2 to 0, a fourth-order algebraic
equation is derived; by solving these equations, the optimal tuning condition, αopt; optimal
loss coefficient, ε2opt; and maximum vibration transmissibility, Tmax, can be obtained. An
exact solution in which both maxima are perfectly matched has already been derived by
Nishihara et al. [25]. The calculations have been omitted, and only the results are shown in
the following equation:

αopt =
µ

(1 + µ)2 (10)

ε2opt =

√
µ(3 + µ)

2
(11)

Tmax =

√
2(1 + µ)

µ
(12)

Figure 5 shows the resonance curve of the optimally designed 2-DOF system obtained
using these equations. The transmissibility at the resonance points was confirmed to be the
same.

3.3. Resonance Vibration Analysis of 2-DOF System with the Loss Factor in the Main System

In an actual system, because every element has a damping factor, a resonance vibration
analysis of the 2-DOF system with the loss factor in the main system was performed. The
analysis was carried out with the spring ratio of α = 0.07, mass ratio of µ = 0.1, loss factor in
the main system of ε1 = 0.1, and subsystem loss factor of ε2 = 0, 0.1, and 0.2. The resonance
curves obtained are shown in Figure 6a. It was also confirmed that the increase in the loss
factor, ε2, decreases the transmissibility at resonance points, similar to that of the 2-DOF
system, without the loss factor in the main system from Section 3.2. However, focusing on
points P and Q, the resonance curves for each condition of ε2 did not meet at a point, as
shown in Figure 6b,c.
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Furthermore, the resonance curve for the loss factor in the main system as ε1 = 0.1 is
shown in Figure 7 using the optimum parameters αopt = 0.45 and ε2opt = 0.276, obtained by
Equations (10) and (11), respectively. This figure shows that the transmissibility values at
the peaks of the resonance curve are not the same.
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0.1, and 𝜀  = 0.1). (a) Resonance curves of the three loss coefficients obtained from the pro-
posed model; (b) Resonance curve obtained in the vicinity of point P; (c) Resonance curve ob-
tained at point Q; It can be confirmed that the three obtained resonance curves do not overlap at 
points P and Q. 
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(b) Resonance curve obtained in the vicinity of point P; (c) Resonance curve obtained at point Q; It
can be confirmed that the three obtained resonance curves do not overlap at points P and Q.
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3.4. Optimization Method in 2-DOF System with a Damping Factor by Varying the Mass Ratio

To optimize the parameters in the 2-DOF system with a damping factor, we propose a
method for changing the mass ratio. In this method, the mass ratio is changed slightly to
ensure the same transmissibility at the resonance points. The resonance curve is expected
to be minimized.

We applied this method for µ = 0.05, ε1 = 0.1, αopt = 0.05, and ε2opt = 0.276, as shown in
Figure 7, and a comparison of the resonance curves with and without the method is shown
in Figure 8. The solid blue line represents the resonance curve without the method, and the
red dashed line represents the curve with the method. It was confirmed that applying the
method, which slightly changes the mass ratio, can achieve the same transmissibility at the
resonance points.
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Furthermore, we investigated the optimal mass ratio when the subsystem loss factor,
ε2, was varied. Figure 9 shows the relationship between ε2 and the optimized mass ratio
when ε1 = 0.1 and α = 0.05. It can be confirmed that the larger the subsystem loss factor, the
larger the optimum mass ratio.
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4. Forced Vibration Experiments for 2-DOF System with Damping Factor
4.1. Conditions of Forced Vibration Experiments

Forced vibration experiments were performed to verify the analysis results. The
experimental apparatus is shown in Figure 10. One steel plate was fixed with a vibration
generator, and the other steel plate was used as the main mass. The steel plates were
connected by four springs and four viscoelastic bodies. A subsystem was installed on the
steel plate of the main mass. The mass of the main system and subsystem can be changed by
adding weights. The viscoelastic body was αGEL (MN-3 and MN-7), manufactured by the
Taica Corporation (Tokyo, Japan), as shown in Figure 11. MN-3 was used for the subsystem
and M-7 was used for the main system. From the basic experiments, the dynamic spring
ratios and loss factors were obtained, as listed in Table 1.
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acceleration built into the vibration generator to the acceleration attached to the experi-
mental apparatus was used to determine the transfer coefficient. This experiment was 
conducted at 20 °C to exclude temperature effects. 

 
Figure 12. Photograph of the vibration generator. 

  

Figure 11. Photograph of the viscoelastic body, which was αGEL, made by Taica Corporation (MN-7).

Table 1. Parameters of viscoelastic bodies.

Viscoelastic Body MN-3 MN-7

Dynamic spring constant k′ [N/m] 12.7 114.1
Loss factor ε 0.203 0.103

The experimental apparatus was vibrated using a vibration generator, as shown in
Figure 12, under the sweep vibration conditions listed in Table 2. During the experiments,
the vibration frequency was gradually changed from 5 Hz to 60 Hz, and the accelerations
of the ground and main mass were measured using acceleration sensors. The ratio of the ac-
celeration built into the vibration generator to the acceleration attached to the experimental
apparatus was used to determine the transfer coefficient. This experiment was conducted
at 20 ◦C to exclude temperature effects.
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Table 2. Vibration conditions.

Parameters Values

Vibration time [s] 120
Frequency [Hz] 5–60

Input acceleration [m/s2] 1.96

4.2. Experimenatal Results of Forced Vibration Using 2-DOF System with Damping Factor

The 2-DOF system, which consisted of the main mass M (3.56 kg) and a sub-mass
(0.456 kg), was oscillated by the vibration generator. First, forced vibration experiments
on the main system without the subsystem were performed. The obtained resonance
curves are shown in Figure 13. The green line is the theoretical resonance curve, and the
purple plots are the experimentally measured transmissibility values at each frequency.
From the comparison of the theoretical and experimental results, it can be confirmed that
the obtained transmissibility equation is in good agreement with the actual experimental
results. Furthermore, forced vibration experiments were performed for a 2-DOF system.
The resonance curve obtained using Equation (8) is also shown as a blue line in Figure 13,
and the measured transmissibility is shown as the orange plots. These experimental results
are in agreement with the theoretical resonance curve. This experiment was conducted
10 times and the results are representative.
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5. Conclusions

In this study, a basic research study to establish a control model for a complex vibration
control system, the vibration transmissibility of the 2-DOF system was obtained. Because
the fixed-point theory cannot be applied when there is a loss factor in the main system, good
agreement can be obtained by comparing the experimental and calculated values using an
analytical model with complex springs using the mass ratio change method. Under the
experimental conditions of this paper, the results verified that the vibration suppression
performance differs greatly in the obtained results depending on the spring constant and
mass. Viscoelastic properties in other frequency bands will also be studied. Furthermore,
we proved that it is an important parameter in the development of dynamic vibration
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absorbers and in the construction of control systems. The result of these parameter settings
is expected to be applied to other multi-DOF systems, for example, a tuned mass damper.
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