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Abstract: The boundary layer flows exhibit symmetrical characteristics. In such cases, the flow
patterns and variables are symmetrical with respect to a particular axis or plane. This symmetry
simplifies the analysis and enables the use of symmetry-based boundary conditions or simplifications
in mathematical models. Therefore, by using these concepts, the governing equations of the radiative
flow of a hybrid nanofluid past a stretched and shrunken surface with the effect of a magnetic
dipole are examined in this paper. Here, we consider copper (Cu) and alumina (Al2O3) as hybrid
nanoparticles and use water as a base fluid. The heat transfer rate is enhanced in the presence of
hybrid nanoparticles. It is observed that the heat transfer rate is increased by 10.92% for the nanofluid,
while it has a 15.13% increment for the hybrid nanofluid compared to the base fluid. Also, the results
reveal that the non-uniqueness of the solutions exists for a certain suction and shrinking strength.
Additionally, the ferrohydrodynamic interaction has the tendency to reduce the skin friction and the
heat transfer coefficients for both solution branches. For the upper branch solutions, the heat transfer
rate increased over a stretching sheet but decreased for the shrinking sheet in the presence of the
radiation. It is confirmed by the temporal stability analysis that one of the solutions is stable and
acceptable as time evolves.

Keywords: dual solution; hybrid nanofluid; magnetic dipole; radiation; shrinking sheet;
stability analysis

1. Introduction

Over the past few years, researchers and scientists have shown significant interest in
the development of advanced heat transfer fluids. While regular fluids such as ethylene
glycol, oil, and water are commonly used in industrial and engineering applications,
their heat transfer rates are limited due to weak thermal conductivity. To address this
limitation, a solution called ‘nanofluid’ was introduced in 1995 by Choi and Eastman [1],
which involves applying a single form of nanosized particles to the above-mentioned
fluids. Several advantages of using nanofluids in a rectangular enclosure were studied by
Khanafer et al. [2] and Oztop and Abu-Nada [3], and further references on this topic can be
found in various books [4–7] and review papers [8–15].

However, to further enhance the thermal properties of nanofluids, a new type of fluid
called ‘hybrid nanofluid’ was developed. Early researchers who considered the use of
hybrid nano-composite particles in their experimental studies include Turcu et al. [16]
and Jana et al. [17]. Unlike regular nanofluids, hybrid nanofluids consist of more than
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one type of nanoparticle, which work synergistically to increase the heat transfer rate [18].
By combining or hybridizing suitable nanoparticles, the desired level of heat transfer can
be achieved [19]. Several review papers on hybrid nanofluids were published and are
available in the literature, as listed in references [20–26].

Extensive research was conducted in recent years on the boundary layer flow past a
stretched or shrunken surface in a hybrid nanofluid. This research has gained significant
attention due to its potential applications in various industrial processes such as paper
production, polymer extraction, artificial fiber, and glass blowing. Devi and Devi [27,28]
conducted studies on the 2D and 3D flows of hybrid nanofluid over a stretched surface,
where they observed that larger nanoparticle volume fractions result in an increased heat
transfer rate. These studies also introduced a new thermophysical model for hybrid
nanofluids, which was validated by comparing the results with the experimental data
from the study by Suresh et al. [29]. Hayat and Nadeem [30] conducted a study on the
three-dimensional rotating flow of a hybrid nanofluid composed of Ag-CuO/water. Waini
et al. [31] reported on the dual nature of flow past a stretched and shrunken surface in a
hybrid nanofluid, with a temporal stability analysis. They found that one solution is not
practical, while the other is stable and acceptable. The issue of dual solutions of hybrid
nanofluid flow has since been explored in various aspects, as discussed in Refs. [32–35].
Moreover, several authors considered the problem of hybrid nanofluid flow with the effect
of different physical parameters [36–44].

Furthermore, the magnetic dipole effects on the ferrofluid flow have gained much
consideration during the last few years. Ferrofluid is a magnetic colloid consisting of ferro-
magnetic particles dispersed in a base fluid that shows superparamagnetic characteristics.
In the industry and in advanced technology, ferromagnetism is apparently important. It is
the basis for certain chemical and electromechanical devices, for example, electromagnets,
generators, electrical engines, and transformers. From this point of view, Neuringer [45]
started to examine the effect of magnetic dipole toward the stagnation point flow and
the parallel flow along a flat plate of a ferrofluid. Inspired by this work, Andersson and
Valnes [46] started to examine the problem of flow past a horizontal stretched surface. They
observed a reduction in the heat transfer rate, but the skin friction coefficients increased in
the presence of the magnetic field. Furthermore, Majeed et al. [47] extended the problem
to the nanofluid flow by considering different types of magnetic nanoparticles. It was dis-
covered that the case of the diamagnetic (copper nanoparticle) gained the greatest thermal
conductivity compared to the other nanoparticles. Additionally, a similar problem was con-
sidered by Muhammad et al. [48,49], but with ferrite nanoparticles. Additionally, several
authors [50–59] explored the magnetic dipole effects in their studies with various aspects.

Motivated by the above-mentioned studies, the objective of this endeavor is to investi-
gate the effects of magnetic dipoles on the radiative flow over a stretched and shrunken
surface in a hybrid nanofluid. The hybrid nanoparticles considered in this study are copper
(Cu) and alumina (Al2O3), while the base fluid is water. The obtained results are presented
in graphical and tabular forms for several physical parameters. Additionally, a comparison
of the results for limiting cases is performed with previously published data. In addition,
this study investigates the dual solutions and examines the temporal stability of the current
issue. Moreover, it presents the critical physical parameter values. These critical values
are renowned for marking the transition from laminar to turbulent boundary layer flow.
When reaching this crucial point, it becomes possible to strategically plan product processes
based on desired outcomes, leading to enhanced productivity. The investigation of the
radiative flow characteristics of a hybrid nanofluid passing over a shrinking sheet under
the influence of magnetic dipole effects has not been explored. Hence, this study holds im-
mense importance as a future point of reference for practitioners, scientists, engineers, and
fluid mechanists. It serves as a preliminary exploration for real-world applications. Many
significant engineering applications in the fields of metallurgy and chemical engineering
processes are related to the flow through a sheet (shrinking or stretching). For instance, the
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continuous strips or filaments are cooled by being drawn through a fluid. The presence of
other substances (nanoparticles) will optimize the yield of certain processes.

2. Mathematical Formulation

Figure 1 displays the physical model of the flow of a hybrid nanomaterial past a
stretched and shrunken surface. Here, v0 is the constant mass flux and uw(x) = ax is the
surface velocity, where a is a constant. The ambient temperature is considered to be at
the temperature T∞ = Tc (Tc is the Curie temperature), while the surface temperature Tw
is kept constant such that Tw < Tc. The nanoparticles have a uniform spherical shape,
and their size remains consistent. Additionally, the composite nature of the stable hybrid
nanofluids ensures that any agglomeration effects are disregarded.
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Figure 1. Physical model for (a) stretching and (b) shrinking surfaces.

Therefore, the governing equations are (see [27,46,59])

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 +

µ0

ρhn f
M

∂H
∂x

(2)

u
∂T
∂x

+ v
∂T
∂y

+
µ0

(ρCp)hn f
T

∂M
∂T

(
u

∂H
∂x

+ v
∂H
∂y

)
=

khn f

(ρCp)hn f

∂2T
∂y2 −

1
(ρCp)hn f

∂qr

∂y
(3)

subject to the following:

v = v0, u = λuw, T = Tw at y = 0
u→ 0, T → Tc as y→ ∞

(4)

where the velocity components along the x- and y-axes are represented by u and v, while
T, M, µ0, H, and qr indicate the hybrid nanofluid temperature, magnetization, magnetic



Symmetry 2023, 15, 1318 4 of 22

permeability, magnetic field, and radiative heat flux, respectively. Further, λ represents the
stretching/shrinking parameter, with λ > 0 and λ < 0 for stretched and shrunken surfaces,
respectively, while the static sheet is denoted by λ = 0.

By means of Rosseland’s [60] approximation, the expression of the radiative heat flux
is given as (see [61,62])

qr = −
4σ∗

3k∗
∂T4

∂y
(5)

where k∗ and σ∗ denote the mean absorption coefficient and the Stefan–Boltzmann constant,
respectively. By using the Taylor series, T4 is expanded about Tc, and by ignoring the terms
of the higher order, we obtain

T4 ∼= 4T3
c T − 3T4

c (6)

Using (5) and (6), Equation (3) can be written as follows:

u
∂T
∂x

+ v
∂T
∂y

+
µ0

(ρCp)hn f
T

∂M
∂T

(
u

∂H
∂x

+ v
∂H
∂y

)
=

1
(ρCp)hn f

(
khn f +

16σ∗T3
∞

3k∗

)
∂2T
∂y2 (7)

Further, (ρCp)hn f , khn f , µhn f , and ρhn f characterize the heat capacity, thermal conduc-
tivity, dynamic viscosity, and density of the hybrid nanofluid, respectively, where their
thermophysical properties are defined in Table 1 (see [3,27,31]). Meanwhile, the physical
properties of Cu, Al2O3, and water are given in Table 2 (see [3,31]). Here, k, ρ, µ, (ρCp),
and Cp represent the thermal conductivity, density, dynamic viscosity, heat capacity, and
specific heat at constant pressure, respectively.

Table 1. Thermophysical properties of nanofluid and hybrid nanofluid.

Thermophysical
Properties Nanofluid Hybrid Nanofluid

Dynamic
viscosity µn f =

µ f

(1−ϕ1)
2.5 µhn f =

µ f

(1−ϕ1)
2.5(1−ϕ2)

2.5

Heat capacity (ρCp)n f = (1− ϕ1)(ρCp) f
+ϕ1(ρCp)n1

(ρCp)hn f = (1− ϕ2)[(1− ϕ1)(ρCp) f + ϕ1(ρCp)n1]

+ϕ2(ρCp)n2
Density ρn f = (1− ϕ1)ρ f + ϕ1ρn1 ρhn f = (1− ϕ2)[(1− ϕ1)ρ f + ϕ1ρn1] + ϕ2ρn2

Thermal
conductivity kn f =

kn1+2k f−2ϕ1(k f−kn1)

kn1+2k f +ϕ1(k f−kn1)
× (k f )

khn f =
kn2+2kn f−2ϕ2(kn f−kn2)

kn2+2kn f +ϕ2(kn f−kn2)
× (kn f )

where
kn f =

kn1+2k f−2ϕ1(k f−kn1)

kn1+2k f +ϕ1(k f−kn1)
× (k f )

Table 2. Thermophysical properties of nanoparticles and water.

Thermophysical
Properties Cu (ϕ1) Al2O3 (ϕ2) Water

k (W/mK) 400 40 0.613
Cp (J/kgK) 385 765 4179
ρ (kg/m 3

)
8933 3970 997.1

Prandtl number, Pr 6.2

As stated in the studies by Neuringer [45] and Andersson and Valnes [46], the scalar
magnetic potential is defined as follows:

Φ =
δ

2π

x

x2 + (y + d)2 (8)
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where δ denotes the magnetic field strength and d indicates the distance of the center of the
magnetic dipole from the origin. The component’s form of the scalar magnetic potential
can be written as

Hx = −∂Φ
∂x

=
δ

2π

x2 − (y + d)2[
x2 + (y + d)2

]2 (9)

Hy = −∂Φ
∂x

=
δ

2π

2x(y + d)[
x2 + (y + d)2

]2 (10)

The magnitude of the magnetic field H is

H =

[(
∂Φ
∂x

)2
+

(
∂Φ
∂y

)2
]1/2

(11)

From (9) and (10), we can write

∂H
∂x

= − δ

2π

2x

(y + d)4 (12)

∂H
∂y

= − δ

2π

[
2

(y + d)3 −
4x2

(y + d)5

]
(13)

The relation between the temperature T and the magnetization M with the constant
pyromagnetic coefficient K is given by

M = K(Tc − T) (14)

An appropriate transformation is introduced as follows (see [53,55,59]):

ψ(ξ, η) = ν f ξ f (η), θ(η) =
Tc − T

Tc − Tw
, η = y

√
a

ν f
, ξ = x

√
a

ν f
(15)

where ξ and η are the dimensionless coordinates, and ν f is the fluid’s kinematic viscosity.
Here, ψ denotes the stream function with u = ∂ψ/∂y and v = −∂ψ/∂x so that Equation (1)
is identically fulfilled. Employing these definitions, we obtain

u = ax f ′(η), v = −√av f f (η) (16)

so that
v0 = −√av f S (17)

Using (15), Equations (2) and (7) are transformed to the following:

µhn f /µ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 − 1

ρhn f /ρ f

2

(η + α)4 βθ = 0 (18)

1
Pr

1
(ρCp)hn f /(ρCp) f

[( khn f
k f

+ 4
3 R
)

θ′′ + 2
(η+α)3 βλ1(θ − ε) f

]
+ f θ′

+ξ2
[

1
Pr

1
(ρCp)hn f /(ρCp) f

βλ1

(
− 2

(η+α)4 f ′ − 2
(η+α)5 f

)
(θ − ε)

]
= 0

(19)

However, by considering the similarity equations, the coefficient for ξ2 in Equation (19)
is negligible. It is to reduce the complexity of equations where the model will be deduced
to the similarity equations where there is only an independent variable that exists in the
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final equations. This approach is also pondered by Hayat et al. [53], Nadeem et al. [55], and
Yasmeen et al. [59]. Therefore, we have

1
Pr

1
(ρCp)hn f /(ρCp) f

[(
khn f

k f
+

4
3

R

)
θ′′ +

2

(η + α)3 βλ1(θ − ε) f

]
+ f θ′ = 0 (20)

which is subject to
f (0) = S, f ′(0) = λ, θ(0) = 1
f ′(η)→ 0, θ(η)→ 0 as η → ∞

(21)

Here, S = f (0) is the mass flux parameter, where suction and injection (blowing) are
denoted by S > 0 and S < 0, respectively, while the primes indicate the differentiation with
respect to η. Further, Pr, R, β, λ1, α, and ε represent the Prandtl number, the radiation, the
ferrohydrodynamic interaction, the viscous dissipation, the dimensionless distance, and
the dimensionless temperature parameters, respectively, which are expressed as

Pr =
(µCp) f

k f
, R = 4σ∗Tc

3

k∗k f
, β =

δρ f µ0K(Tc−Tw)

2πµ f
2 ,

λ1 =
aµ f

2

ρ f k f (Tc−Tw)
, α = d

√
a

ν f
, ε = Tc

Tc−Tw

(22)

The local Nusselt number Nux and the skin friction coefficient C f are given as

Nux = − xqw

k f (Tc − Tw)
, C f =

τw

ρ f uw2 (23)

where the surface heat flux qw and the surface shear stress τw are defined by

qw = −khn f

(
∂T
∂y

)
y=0

+ (qr)y=0, τw = µhn f

(
∂u
∂y

)
y=0

(24)

Employing (15), (23), and (24), we have

Re−1/2
x Nux = −

(
khn f

k f
+

4
3

R

)
θ′(0), Re1/2

x C f =
µhn f

µ f
f ′′ (0) (25)

where Rex = uwx/ν f denotes the local Reynolds number.

3. Stability Analysis

The existence of the non-uniqueness solutions from Equations (18), (20), and (21) are
observed for a certain value of the physical parameters. A temporal stability analysis
is therefore needed to ensure which solutions are stable (see Merkin [63] and Weidman
et al. [64]). Therefore, the new variables based on Equation (15) are given as follows:

ψ(ξ, η, τ) = ν f ξ f (η, τ), θ(η, τ) =
Tc − T

Tc − Tw
, η = y

√
a

ν f
, ξ = x

√
a

ν f
, τ = at (26)

The unsteady form of Equations (1)–(3) are considered to analyze the stability of their
solutions. By using (26), we obtain the following:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
− 1

ρhn f /ρ f

2

(η + α)4 βθ − ∂2 f
∂η∂τ

= 0 (27)

1
Pr

1
(ρCp)hn f /(ρCp) f

[(
khn f

k f
+

4
3

R

)
∂2θ

∂η2 +
2

(η + α)3 βλ1(θ − ε) f

]
+ f

∂θ

∂η
− ∂θ

∂τ
= 0 (28)
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which is subject to

f (0, τ) = S, ∂ f
∂η (0, τ) = λ, θ(0, τ) = 1

∂ f
∂η (η, τ)→ 0, θ(η, τ)→ 0 as η → ∞

(29)

To examine the stability behavior, the disturbance is imposed to the steady solution
f = f0(η) and θ = θ0(η) of Equations (18), (20), and (21) by using the following relations
(see [64]):

f (η, τ) = f0(η) + e−γτ F(η), θ(η, τ) = θ0(η) + e−γτG(η) (30)

where γ indicates the unknown eigenvalue, which determines the stability of the solutions,
whereas F(η) and G(η) are comparatively small to f0(η) and θ0(η). The disturbance is
taken exponentially as it demonstrates the rapid decline or development of the disturbance.
By inserting Equation (30) into Equations (27)–(29), we obtain the following:

µhn f /µ f

ρhn f /ρ f
F′′′ + f0F′′ + f ′′ 0 F− 2 f ′0F′ − 1

ρhn f /ρ f

2

(η + α)4 βG + γF′ = 0 (31)

1
Pr

1
(ρCp)hn f /(ρCp) f

[(
khn f

k f
+

4
3

R

)
G′′ +

2

(η + α)3 βλ1( f0G + θ0F− εF)

]
+ f0G′ + θ′0F + γG = 0 (32)

subject to
F(0) = 0, F′(0) = 0, G(0) = 0
F′(η)→ 0, G(η)→ 0 as η → ∞

(33)

Without the loss of generality, the values of γ from Equations (31)–(33) are obtained
for the case of F′′ (0) = 1, as discussed by Harris et al. [65].

4. Results and Discussion

This section is divided into two parts, the computational approach and the results analysis.

4.1. Computational Approach

The bvp4c solver in Matlab software is utilized for evaluating Equations (18), (20), and (21)
numerically. Following the methodology outlined in Shampine et al. [66], the aforemen-
tioned solver utilizes a finite difference approach based on the three-stage Lobatto IIIa
formula. In the present study, we consider the volume fractions of Cu, which varies from
0 to 0.06 (0 ≤ ϕ2 ≤ 0.06), while the volume fraction of Al2O3 is maintained at ϕ1 = 0.1, and
water is used as a base fluid. We note from Equations (18) and (20) that the parameters λ1,
α, and ε depend on β. In the absence of ferrohydrodynamic interaction (β = 0), these three
parameters do not affect the equations. Thus, for general cases, when β 6= 0, we fix the
values of these parameters as λ1 = 0.01, α = 1, and ε = 2, as suggested by Neuringer [45]
and Andersson and Valnes [46]. Since we want to highlight the availability of dual solutions
for the shrinking flow case, we only focus on certain values of the controlling parameters.
Additionally, the critical values of the parameters are examined. However, there is no
restriction if other researchers want to use other values, but the availability of the second
solution may be affected, as well as the existence of the similarity solutions.

The numerical procedures can be described as follows. Firstly, Equations (18) and (20)
are transformed into a system of first-order ordinary differential equations.

Thus, Equation (18) can be written as follows:

f = y(1) ,

f ′ = y′(1) = y(2) , (34a)
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f ′′ = y′(2) = y(3) , (34b)

f ′′′ = y′(3) = −
ρhn f /ρ f

µhn f /µ f

(
y(1)y(3)− y(2)2 − 1

ρhn f /ρ f

2

(η + α)4 βθ

)
, (34c)

while Equation (20) reduces to
θ = y(4) ,

θ′ = y′(4) = y(5) , (35a)

θ′′ = y′(5) = −
[

khn f

k f
+

4
3

R

]−1[
2

(η + α)3 βλ1(θ − ε)y(1) + Pr

(
ρCp

)
hn f(

ρCp
)

f
y(1)y(5)

]
, (35b)

and the boundary condition (21) becomes

ya(1) = S, ya(2) = λ, ya(4) = 1,

yb(2) −→ 1, yb(4) −→ 0 . (36)

The subscript ‘a’ represents the condition at the surface, while the subscript ‘b’ repre-
sents the condition at the free stream. Subsequently, Equations (34)–(36) are implemented
in the Matlab software and solved using the bvp4c solver. The solver will be executed,
generating numerical solutions and graphical outputs.

To guarantee the precision of the computation, the present results are validated using
the existing data from the previous studies. Table 3 provides the comparison values of
−θ′(0) with different values of Pr when ϕ1 = ϕ2 = 0 (regular fluid), β = S = R = 0, and
λ = 1 (stretching sheet). The present results are comparable with those obtained by Devi
and Devi [27], Waini et al. [31], Khan and Pop [67], and Hamad [68], for each value of
Pr considered.

Table 3. Values of−θ′(0) with different values of Pr when ϕ1 = ϕ2 = 0 (regular fluid), β = S = R = 0,
and λ = 1 (stretching sheet).

Pr Devi and
Devi [27]

Waini et al.
[31]

Khan and
Pop [67] Hamad [68] Present

Results

2 0.91135 0.911353 0.9113 0.91136 0.91136
6.2 - - - - 1.77095
7 1.89540 1.895400 1.8954 1.89540 1.89540
20 3.35390 3.353902 3.3539 3.35390 3.35390

Other than that, Table 4 presents the comparison values of − f ′′ (0) and −θ′(0) for Cu-
water nanofluid (ϕ1 = 0) under different values of ϕ2 with Waini et al. [69] and Hamad [68].
The comparison is performed by taking β = S = R = 0 and λ = 1 (stretching sheet), and it
shows an excellent agreement between those results.
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Table 4. Values of − f ′′ (0) and −θ′(0) with different values of ϕ2 when β = S = R = 0 and λ = 1
(stretching sheet) for Cu-water nanofluid (ϕ1 = 0 ).

ϕ2

−f
′′
(0) −θ

′
(0)

Waini et al.
[69] Hamad [68] Present

Results Hamad [68] Present
Results

0.05 1.10892 1.10892 1.10892 1.59899 1.59899
0.1 1.17475 1.17475 1.17475 1.45207 1.45207

0.15 1.20886 1.20886 1.20886 1.32465 1.32465
0.2 1.21804 1.21804 1.21804 1.21290 1.21290

4.2. Results Analysis

The values of the skin friction coefficient Re1/2
x C f and the local Nusselt number

Re−1/2
x Nux for the nanofluid (Cu/water) and hybrid nanofluid (Cu-Al2O3/water) when

S = 0, λ = 1 (stretching sheet), and Pr = 6.2 under different physical parameters are
presented in Table 5. The values of Re−1/2

x Nux accelerate with the rising values of ϕ2 and
R for both the nanofluid and hybrid nanofluid, whereas it decelerates with the increase in
β. However, the rise in ϕ2, β, and R tend to decrease the values of Re1/2

x C f . The values
of Re−1/2

x Nux are enhanced with the rise in ϕ2, but it is intensified for hybrid nanofluid,
which proves that the heat transfer rate is increased by the hybrid nanoparticles. It is
observed that the heat transfer rate is increased by 10.92% for the nanofluid, with a 15.13%
increment for the hybrid nanofluid compared to the base fluid.

Table 5. Values of Re1/2
x C f and Re−1/2

x Nux for Cu/water nanofluid (ϕ1 = 0) and Cu-Al2O3/water
hybrid nanofluid (ϕ1 = 0.1) when S = 0, λ = 1 (stretching sheet), and Pr = 6.2 under different
physical parameters.

ϕ2 β R
Cu/Water (ϕ1 = 0)

(Nanofluid)
Cu-Al2O3/Water (ϕ1 = 0.1)

(Hybrid Nanofluid)

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

0 0 0 −1.00000 1.77095 −1.29975 1.96441
0.02 0 0 −1.10419 1.80221 −1.40946 2.00140
0.04 0 0 −1.20831 1.83408 −1.52069 2.03888
0.06 0 0 −1.31329 1.86658 −1.63408 2.07693
0.02 0.5 0 −1.24681 1.78936 −1.56126 1.98814
0.02 1 0 −1.39058 1.77601 −1.71411 1.97443
0.02 2 0 −1.68191 1.74768 −2.02320 1.94549
0.02 3 0 −1.97900 1.71678 −2.33737 1.91423
0.02 1 0.5 −1.41962 2.16737 −1.73651 2.30785
0.02 1 1 −1.43792 2.45694 −1.75163 2.56590
0.02 1 2 −1.46084 2.87521 −1.77150 2.95160
0.02 1 3 −1.47519 3.17146 −1.78439 3.23279

The variations of Re1/2
x C f and Re−1/2

x Nux against λ and S for several physical param-
eters are presented in Figures 2–9.
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The non-uniqueness of the solutions for Equations (9)–(11) are observed when S > Sc
and λ > λc. Meanwhile, for S < Sc and λ < λc, there are no similar solutions obtained as a
consequence of the boundary layer separation. The variations of Re1/2

x C f and Re−1/2
x Nux

for the shrinking sheet (λ = −1) when ϕ1 = 0.1, R = 3, β = 1 and Pr = 6.2 with the
effect of S and ϕ2 are displayed in Figures 2 and 3. For ϕ2 = 0, the dual solutions exist
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when Sc1 ≥ 2.0772, while for ϕ2 = 0.02, Sc2 ≥ 2.0149 and for ϕ2 = 0.06, Sc3 ≥ 1.9276. So,
to obtain the solutions for a shrinking sheet, a satisfactory suction strength is required.
Moreover, the values of Re1/2

x C f and Re−1/2
x Nux show the increasing behavior of the upper

branch with an increase in ϕ2, but a decreasing behavior for the lower branch. This behavior
is expected to occur because the addition of nanoparticles contributes to the enhancement of
the thermal properties of fluids, which is due to the synergetic effects of the nanoparticles.

The plots of Re1/2
x C f and Re−1/2

x Nux against λ for different values of ϕ2 when
ϕ1 = 0.1, R = 3, β = 1, S = 2.1, and Pr = 6.2 are illustrated in Figures 4 and 5. Note
that the lower branch solutions of Re1/2

x C f and Re−1/2
x Nux decrease with the rise in ϕ2.

However, dual behaviors are observed for the upper branch where these values increase in
the range where λ is near to λc. Here, λc = −1.0245, −1.0951, and −1.2054 are the critical
values for ϕ2 = 0, 0.02 and 0.06, respectively.

Additionally, Figures 6 and 7 illustrate the role of β against λ on Re1/2
x C f and Re−1/2

x Nux
when ϕ1 = 0.1, ϕ2 = 0.02, R = 3, S = 2.1, and Pr = 6.2. The rise in β leads to the
reduction in Re1/2

x C f and Re−1/2
x Nux for both branches. The domain of λ is shortened

where the critical value of λ for β = 0, 1 and 2 are λc = −1.1690, −1.0951, and −1.0224,
respectively. The variations of Re1/2

x C f and Re−1/2
x Nux against λ for different R when

ϕ1 = 0.1, ϕ2 = 0.02, β = 1, S = 2.1, and Pr = 6.2 are plotted in Figures 8 and 9. The rise in
R has a tendency to decrease the values of Re1/2

x C f for both branches, as shown in Figure 8.
Meanwhile, the upper branch solutions of the heat transfer rate Re−1/2

x Nux increase when
λ > 0 (stretching sheet), but it occurs almost at the same rate when λ = 0 (static sheet), and
decreases when λ < 0 (shrinking sheet), as displayed in Figure 9. The critical value of λ for
R = 0, 1 and 3 are λc = −1.1573, −1.1361, and −1.0951, respectively. The dominance of
thermal radiation over conduction is shown by higher values of R. Consequently, a larger
value of parameter R indicates an increased influx of radiative heat energy into the flow
field, resulting in elevated temperatures. As a consequence, this leads to a decrease in the
rate of heat transfer.

As seen in Figures 10–15, the profiles of the velocity f ′(η) and temperature θ(η) for
both solutions are asymptotically satisfied with the free stream conditions (21). Therefore,
the precision of the present results is reached. Figures 10 and 11 show that the rise in ϕ2
leads to an increase in f ′(η), but θ(η) decreases for the first solution, whereas the reverse
behavior is seen for the lower branch when λ = −1 (shrinking sheet), ϕ1 = 0.1, R = 3,
β = 1, S = 2.1, and Pr = 6.2. The physical phenomena underlying these behaviors can be
attributed to the introduction of nanoparticles, which increase the fluid’s viscosity, resulting
in a deceleration of the flow and subsequently reduces the fluid velocity. Additionally,
the presence of nanoparticles causes energy dissipation in the form of heat, leading to an
elevation in the temperature. However, contrary to these expectations, this study observes
opposite behaviors when the parameter ϕ2 is increased. This discrepancy is believed to be
influenced by the shrinking of the sheet.

Moreover, Figures 12 and 13 describe the behavior of f ′(η) and θ(η) for different
values of β when λ = −1 (shrinking sheet), ϕ1 = 0.1, ϕ2 = 0.02, R = 3, S = 2.1, and
Pr = 6.2. We notice that the upper branch solutions of f ′(η) show a decreasing behavior
with an increase in β, but it increases for the lower branch, as shown in Figure 12. However,
the effect of β is reversed on θ(η). From a physical perspective, the increase in parameter β
generates resistance forces within the flow, resulting in a deviation in the Lorentz force. This
elevated resistance contributes to an increase in the fluid viscosity, consequently reducing
the velocity. Moreover, the viscosity increment enhances the friction between the fluid
layers, which subsequently leads to a rise in the temperature field, as depicted in Figure 13.

The effect of the radiation parameter R on f ′(η) has similar trends with β, as shown in
Figure 14. Meanwhile, θ(η) increases for both branches when λ = −1 (shrinking sheet),
ϕ1 = 0.1, ϕ2 = 0.02, β = 1, S = 2.1, and Pr = 6.2, as displayed in Figure 15. Physically, as
the parameter R increases, a greater amount of radiative heat energy is transferred into the
flow field, resulting in an elevation in the fluid temperature.
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The plot of the smallest eigenvalues γ against λ when ϕ1 = 0.1, ϕ2 = 0.02, R = 3,
β = 1, S = 2.1, and Pr = 6.2 is portrayed in Figure 16. Referring to Equation (30), a
stable flow is characterized by the initial decay of disturbances over time, indicated by
γ > 0. Conversely, an unstable flow is observed for γ < 0, as it exhibits the initial growth
of disturbances with the passage of time. From Figure 16, we note that the values of γ
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approach zero for both branches when λ closer to its critical value λc. Thus, we conclude
that the bifurcation of the solutions occurs at this point.
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5. Conclusions

In this study, the investigation of the radiative flow over a shrinking sheet in a hybrid
nanofluid, considering the influence of magnetic dipole effects, was conducted. The
validation of the obtained results was performed by comparing them with existing results
for limiting cases, demonstrating a satisfactory agreement. The results revealed that the
added nanoparticles enhanced the heat transfer rate by 10.92% for the nanofluid, while a
15.13% increment was observed for the hybrid nanofluid compared to the base fluid. It was
found that dual solutions are possible for S > Sc and λ > λc, but there are no solutions for
S < Sc and λ < λc. Additionally, the effect of β is that it reduces the values of Re1/2

x C f and
Re−1/2

x Nux for both branches. Also, the velocity f ′(η) decreased, whereas the temperature
θ(η) increased for the upper branch with the rise in β. In addition, the values of Re1/2

x C f
increased for both branches for larger values of R. Meanwhile, the upper branch solutions
of Re−1/2

x Nux increased when λ > 0 (stretching sheet), but occurred almost at the same
rate when λ = 0 (static sheet) and decreased when λ < 0 (shrinking sheet). Furthermore,
the presence of the radiation led to the increment in the hybrid nanofluid temperature
θ(η). It is confirmed by a temporal stability analysis that one of the solutions is stable and
acceptable, while the other is unstable as time passes.
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Nomenclature

a constant
C f skin friction coefficient
Cp specific heat at constant pressure (Jkg−1K−1)

(ρCp) heat capacitance of the fluid (JK−1m−3)

d distance between origin and center of magnetic dipole
f (η) dimensionless stream function
H magnetic field
K pyromagnetic coefficient
k thermal conductivity of the fluid (Wm−1K−1)

k∗ Rosseland mean absorption coefficient (m−1)

Nux local Nusselt number
M magnetization
Pr Prandtl number
qr radiative heat flux in y direction (Wm−2)

qw surface heat flux (Wm−2)

R radiation parameter
Rex local Reynolds number
S mass flux parameter
t time (s)
T fluid temperature (K)

Tw surface temperature (K)

Tc Curie temperature (K)

u, v velocity component in the x- and y-directions (ms−1)

uw surface velocity (ms−1)

v0 mass flux velocity (ms−1)

x, y Cartesian coordinates (m)

Greek symbols
α dimensionless distance
β ferrohydrodynamic interaction
γ eigenvalue
δ magnetic field strength
ε dimensionless temperature
η, ξ dimensionless coordinates
θ dimensionless temperature
λ stretching/shrinking parameter
λ1 viscous dissipation
µ0 magnetic permeability
µ dynamic viscosity of the fluid (kgm−1s−1)

ν kinematic viscosity of the fluid (m2s−1)

ρ density of the fluid (kgm−3)

σ electrical conductivity of the fluid (Sm−1)

σ∗ Stefan–Boltzmann constant (Wm−2K−4)

τ dimensionless time variable
τw wall shear stress (kgm−1s−2)

Φ scalar magnetic potential
ϕ1 nanoparticle volume fractions for Al2O3 (alumina)
ϕ2 nanoparticle volume fractions for Cu (copper)
ψ stream function
Subscripts
f base fluid
n f nanofluid
hn f hybrid nanofluid
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n1 solid component for Al2O3 (alumina)
n2 solid component for Cu (copper)
Superscript
′ differentiation with respect to η
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