Study thermal resistance of γ-Al₂O₃ at various reaction temperatures via TGA analysis

Aiman A. Bin Mokaizh*, Abdurahman Hamid Nour, Oluwaseun Ruth Alara, M. Abdulqawi Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, 26300, Malaysia

ABSTRACT

The discarded empty aluminium beverage cans can pose a serious environmental contamination issue. Recently, studies are now focusing on reducing and utilising solid wastes which have grown to be a significant environmental concern. Thus, this study focuses on producing γ -Al₂O₃ from readily available aluminium garbage cans using a Sol-gel technique and analysing its thermal properties using TGA analysis. The effect of the reaction temperatures was further investigated to comprehend the synthesis of alumina at (room temperature, 50 °C, and 70 °C) at a fixed aging duration of 12 h. Experimental findings demonstrated the potential of producing γ -Al₂O₃ from used aluminium cans, which may then be used as sustainable catalysts and catalytic supports for a variety of applications. The results showed that all the synthesised alumina had a good result with a maximum weight loss less than 5%; this reflected its strong stability. The alumina that was created at 70 °C reaction temperature recorded the lowest weight loss and the highest residue at 2.78% and 97.22%, respectively.

KEYWORDS

Aluminium Waste Cans; Reaction Temperature; Thermogravimetric Analysis (TGA); γ-Al₂O₃

ACKNOWLEDGEMENT

The authors are grateful to Universiti Malaysia Pahang (UMP) for financial assistance for this study using Industrial grant number, UIC190806.