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Preface

In congruence with all progress made by human society, the thrust on natural

resources has escalated incessantly, which has had a detrimental impact on the

health of ecosystems and the well-being of people. Hence, striking a balance

between progressive industrialization led economic development and consumption

of natural resources is the only way forward for the sustainability of the evolution

of society. Sustainable development is defined by the United Nations as the devel-

opment of present society keeping in view the generations to come. As natural

resources are limited, they should be used judiciously and optimally to ensure that

there is enough left for future generations as well, without affecting the present

quality of life. A sustainable society must thrive to be socially responsible, techno-

logically accessible, and economically feasible keeping in view environmental pro-

tection and dynamic equilibrium between human and natural ecosystems. The main

pillars of sustainable development are energy, water, and health care. The United

Nations has declared them as the goals in the United Nations Sustainable

Development Goals SDG7 and SDG6 to ensure access to affordable, clean, reliable,

sustainable, and modern energy and to ensure availability and sustainability of clean

water and sanitation to all without affecting the environment. Scientific community

should focus their research toward attaining these goals. Nanotechnology, a recently

developed innovative technology dealing with the science and technology in a nano

dimension, is established as a promising tool for achieving these goals.

Nanotechnology has the potential to fulfill the overwhelming demand for energy

and basic commodities and advancing technology without affecting our environ-

ment, climate, and natural resources. The global sustainability challenges our world

faces today can be solved by nanotechnology as an environmentally

acceptable technique. The main components of nanotechnology in the battle are the

nanomaterials and quantum dots. Quantum dots, few nanometers in size, are parti-

cles where quantum mechanics are predominant, with the associated quantum

mechanical waves confined in nano-dimensions and generating size-dependent dis-

crete energy levels. Generally, in a quantum dot, the energy gap between the con-

duction band and the valence band or the gap between the HOMO and LUMO is

dependent on the particle size. The electronic waves associated with the free elec-

trons on the particles are confined within the boundary of the particle (dimension of

the particle) and the energy associated with them is quantized according to the size

of the particle. So, the optical and electronic properties of the quantum dots differ

largely from their bulk counterparts. The quantum dots have the properties lying

somewhere between the bulk and the atom/molecules, and they vary with size and

shape. Now the carbon quantum dots (CQDs) have emerged as a game changer



among different quantum dots and other allotropes of nanocarbon because of simple

and sustainable fabrication methods involved. There are different types of allotropes

of nanocarbon such as carbon nanotube, buckminsterfullerene, graphene and nano-

diamond used in nano-engineering facilitating sustainable development. Carbon, the

group 14 member of the periodic table, has a very interesting electronic structure

and multiple valance and coordination numbers. Because of different oxidation

numbers and catenation properties of carbon, there exist a large variety of allotropes

with orbital hybridization along with the structure, governing their properties.

Among the nanocarbon allotropes, CQDs are attracting a good deal of research

interest because of their ease of synthesis and versatile applications. The CQDs can

be synthesized from carbon-containing materials, mainly biomaterials, by a simple

chemical reduction process. The simple technique for surface passivation and func-

tionalization adds to the host of characteristics of CQDs for applications in different

fields for sustainable development.

This book solely focuses on the different aspects of CQDs facilitating sustainable

development of our society. First, this book discusses the structure�property relation-

ship of CQDs in optical domains in detail. As the photophysical properties of CQDs are

the most interesting and studied ones, we focused on understanding the photophysical

properties and their origin. This book also discusses the theoretical modeling of the

CQDs from a basic to an advanced level. The synthesis of CQDs is more beneficial

compared to other nanomaterials, especially carbon nanomaterials like CNT and gra-

phene, as it does not require sophisticated instrumentation and technology. A facile and

cost-effective synthesis method for CQDs makes them very popular among researchers.

The third chapter of the book delivers the details of the synthesis method of CQDs.

Following the synthesis, the physical properties and different characterization techni-

ques of CQDs are covered. As the properties of the CQDs are predominantly controlled

by the surface states of the CQDs, this book pays special attention to the surface func-

tionalization of CQDs in the next chapter. Most of the fabrication methods of CQDs are

sustainable ones, but if we want to highlight the role of CQDs in sustainable develop-

ment, it is mainly derived from the different application aspects of the CQDs. We focus

on the application of CQDs in energy harvesting, energy storage, and wastewater treat-

ment to biosensing in other chapters. Biomedical applications of CQDs ranging from

bioimaging to theranostics are covered in subsequent chapters. The magnetic applica-

tions of CQDs and composites of CQDs are also discussed. Finally, the CQD-based

optical and electronic nanodevices are discussed with a special focus on terahertz appli-

cations and single electron transistor applications. Another form of carbon nanoparticle,

nano-diamond, is explored for photonic and biomedical applications. The book con-

cludes with a summary of recent advancements and future prospects of CQDs for sus-

tainable applications.

Sudip Kumar Batabyal

Basudev Pradhan

Kallol Mohanta

Rama Ranjan Bhattacharjee

Amit Banerjee
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13Photocatalytic applications of

carbon quantum dots for

wastewater treatment
Umi Rabiatul Ramzilah P. Remli1, Azrina Abd Aziz1, Lan Ching Sim2,

Minhaj Uddin Monir3 and Kah Hon Leong4

1Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang,

Malaysia, 2Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering

and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia, 3Department

of Petroleum and Mining Engineering, Jashore University of Science and Technology,

Jashore, Bangladesh, 4Department of Environmental Engineering, Faculty of Engineering

and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Kampar, Perak,

Malaysia

13.1 Overview on advanced oxidation process and
photocatalysis

The excessive discharge of industrial effluent, worldwide production, and utilization

of chemical products, as well as expanding world population contributes signifi-

cantly to the increasing accumulation of bio recalcitrant organic pollutants in the

environment [1]. In developing countries, this unpleasant trend is widespread due to

the improper enforcement of environmental regulations and monitoring frame-

works. A proportion of these organic pollutants remains unregulated and causes

serious deterioration of the freshwater ecosystem. Presently, a large amount of vari-

ous chemical pollutants containing wastewater are produced from domestic and

industrial activities, which eventually pollute the environment [2,3]. Fresh, uncon-

taminated, and enough sanitary measures remain critical tohuman health and socio-

economic sustainability as these two are becoming endangered commodity at

present [1,4,5]. In accordance with solving the present water crisis globally and

acquiring more economic gain, an alternative for new water treatment technology

that can completely remove organic pollutants is henceforth significant and neces-

sary [6]. Owing to the expanding worldwide concern for environmental protection,

advanced oxidation technology (AOT) pointed out the prominent role of a special

class of oxidation technology defined as advanced oxidation process (AOPs) was

developed. To date, studies have shown that AOPs still upheld as one of the favor-

able and reasonable methods for treating the water and wastewater to remove the

contaminants [7�9]. AOPs stand out as one of the most environmentally friendly

techniques used to remove bio recalcitrant organic pollutants that are not easily
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treatable by existing conventional treatment technologies due to their chemical sta-

bility [10]. The advantages and disadvantages of the existing water treatment

method and photocatalytic system are summarized in Table 13.1.

AOPs allude to a set of chemical treatment procedures for removing organic pollutants

in water and wastewater by oxidation. AOPs were first proposed for portable water treat-

ment in the 1980s [9,11,12], which were then defined as oxidation processes involving

the generation of hydroxyl radicals (OH-) in adequate amounts for water purification.

The main mechanism of the AOPs function is the generation of highly reactive free radi-

cals. AOPs include two phases of oxidation process: formation of strong oxidants (e.g.,

hydroxyl radicals) and the reaction of these oxidants with organic contaminants in water

[13�15]. Table 13.2 depicts the oxidants used in different wastewater treatment techni-

ques with corresponding oxidation potential values [16]. Among o them, OH- has stron-

ger oxidation power than normally used oxidants and decomposes the organic

compounds into moderately harmless compounds, such as CO2, H2O, or HCl.

To measure the effectiveness of the treatment, it is necessary to understand the

selected type of AOPs, physical and chemical properties of pollutants, and operating

parameters of the process. A variety of techniques were classified under the broad defini-

tion of AOPs. A list of possible techniques offered by AOPs are given in Fig. 13.1

Photocatalysis was included in the family of AOP, which enlisted many advan-

tages and can likely provide solutions for many environmental problems faced by

the modern world. This is because photocatalysis allocates a simple way of utilizing

Table 13.1 The advantages and disadvantages of existing water treatment technologies.

Water treatment

technology

Advantages Disadvantages

Biological High reliability

High load operation can be

processed

Difficulty in securing

stable process

High level of sludge

Operating management requires

expertise

Coagulation/

precipitation

High efficiency of processing

Low sites

Excessive sludge produced

Difficult to maintain

Fenton Wide coverage

Treatment process is simple

and easy to manage

Effective colored

discoloration of wastewater

High operating cost over the use

of the Fenton’s reagent

Removal of the equipment

needs iron salts

Photocatalytic

advanced

oxidation

Low operational and

installation cost

No sludge produces

Possible for nonbiodegradable

wastewater treatment

Limited lamp life when UV

lamp is used

Limitation on photocatalyst

recovery facility

Source: Adapted from Lim, S.Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications.
Chemical Society Reviews, 44(1), 362–381. https://doi.org/10.1039/c4cs00269e.
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summarizes some of the CQDs-TiO2 composite that has been conducted as photoca-

talyst for the degradation variety of target pollutants [29].

As reported in Table 13.6, Sun et al. outlined the fabrication of CQDs-TiO2 nano-

tubes photocatalyst with improved visible light absorption and photoelectrochemical

response [70]. The result shows that the prepared composite of CQDs-TiO2 nanotubes

exhibited higher degradation efficiency than TiO2 nanotubes arrays by 14% in 100 min

under given experimental condition (MB5 15 mL, 5 mg/L). From this study, it was

clear that CQDs-TiO2 nanotubes composite enhanced photocatalytic activity when illu-

minated with visible light compared to TiO2 nanotubes. Subsequently, in 2014, Yu and

coworkers reported that CQDs-TiO2 nanosheets (CQDs-TNS) and CQDs-P25 compos-

ite exposed an enhancement in photocatalytic activities, especially CQDs-TNS com-

pared to CQDs-P25. Besides, an increasing amount of CQDs solution from 2.5 to

10 mL increases the degradation efficiency gradually from 27.2% to 95.4%, which

indicates that utilization of a suitable amount of CQDs can effectively improve the visi-

ble light photocatalytic activity of TNS for RhB degradation [38].

Jun et al. attributed the improvement of the degrading efficiency of CQDs-TiO2

powder, which is notably higher than the controlled pure TiO2. At the point when

the volume of CQDs utilized was 10 mL, catalytic activity is most noteworthy, up

to 90%, which is almost 3.6 times higher than that of pure TiO2. It is fascinating

that, with the increase in CQDs from 5 to 10 mL, the catalytic activity of the

CQDs-TiO2 increased drastically due to improved absorbance of visible light and

increased separation efficiency of photogenerated charge carriers. However, further

increment of CQD content to 15 mL leads to an apparent decrease in photocatalytic

performance due to the distribution of CQDs on the surface of TiO2 [40].

Even though the reported studies successfully improved the visible light photoca-

talytic efficiency, the research gap still involves combining TiO2 with CQDs

derived from biomass as the carbon precursor, and the utilization of harmless sun-

light irradiation for photocatalytic activity needs to be explored. This is because,

the former studies were done using graphite rod and I-ascorbic acid as the precur-

sor. The precursor is not cost-effective, not easily available, and meanwhile, the

usage of chemicals as the precursor is considered not environmentally friendly

[29,38,40,70]. The previous studies also involved harsh and multiple steps proce-

dures, which were time-consuming and sometimes produced poor phase structure

and bigger size of photocatalyst that effect the photocatalytic activity [29,40,70].
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spectroscopy for, 414�416, 415f

time-resolved spectroscopy and

conductivity, 416

Carbon quantum dots

applications of, 410�414

carbon nanostructures in, 414�416

characteristic lengths, 400�402

distinctive properties of, 398

fabrication techniques of quantum dots,

404�406

nano carbon dots in light-emitting diode,

phototransistor, 399f

optical properties of quantum dots,

407�410

quantum dot, 402�404

structure of 0D fullerene, 398f

Carbon quantum dot-based nanosensors

chemical sensing, 206�223

introduction to, 205�206

Carbon quantum dot in the biomedical field

applications of, 410�414

crossing blood-brain barrier, 413�414

drug delivery, 413

gene delivery, 414

optical imaging, 410�412

photoacoustic imaging, 413

Carbon quantum dots, 243

in all-weather solar cells, 154

approaches for synthesis of, 244f

Arc Discharge method, 245

based bioimaging

carbon quantum dots, 243

cDot in bioimaging, 248�253

development of, 240�241

nanomaterials as imaging agents,

242�243

properties of cDots, 247�248

requirement of imaging agents, 241

surface activation, 245�247

synthesis and modifications in,

244�245

timeline of important discovery, 240f

for battery

and charge storage capacity, 365t

in lithium-ion and sodium-ion,

362�363

for charge storage applications

electrical, 350

optical, 350�351

property of, 349�351

structural property, 349�350

chemical ablation, 244

as counter electrode

bifacial DSSCs, 144f

charge carrier transfer processes, 144f

device applications

EL spectra and true color photographs

of multicolor, 171f

doping, 247

in dye-sensitized solar cells

as counter electrode, 142�144

for electrochemical energy storage

applications

for battery, 361�366

David V. Ragone plot, 342f

properties of, 349�351

for supercapacitors, 351�361

supercapacitors and batteries, 342�349

electrochemical method, 244
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EL spectra and true color photographs of

multicolor

CDs with tethered imidazolidinones

(IS-CDs), 173f

high-color-purity deep-blue (HCP-DB),

173f

quantum dot based LEDs(QD-LEDs),

174f

hydrothermal method, 245

laser, 200

laser ablation, 244�245

light-emitting diodes, 169�174

in lithium-ion and sodium-ion

with bicontinuous electron and Li/Na

ion transfer channels, 362f

and charge storage capacity, 363t

sodium-ion batteries, 364t

in lithium-sulfur battery, 364�365

microwave irradiation, 245

normalized green lasing emission, 175f

optical gain and lasing, 174�175

in organic solar cells

S-doped CQDs (N,S-CQDs), 147�148

solar device with CQDs, 146f

structure of device, 146f

tandem cell architecture, 147f

in perovskite solar cells

current density vs voltage, 153f

red CQDs (hydroxyl-rich) (RCQs)-

doped SnO2, 152�154

slow photon effect, 152�154

in potassium-ion battery, 364, 364t

pyrolysis method, 245

as sensitizer, 137�142

device structure of, 137f

N300-CQDs and N719 cosensitized

DSSCs device, 141f

NCQDs using citric acid and ammonia

via direct pyrolysis method, 140f

photovoltaic devices with, 142t

synthesis scheme of, 139f

in solid-state solar cells

cost-effective heterojunction

photovoltaic device, 148�150

CQDs-coated SiNWs, 149f

solid-state solar cells, 148

for supercapacitors

Bibekananda De’s group, 355

charge storage capacity, 361t

core-shell CuS@CQDs@carbon hollow

nanospheres, 355f

CQDs-inorganic supercapacitors, 356t

CQDs/PPy, 358f

of GO/CDs/PPy composite, 357f

graphene quantum dots, 360�361

graphene sheet structure, 351f

inorganic hybrid for supercapacitors,

353�355

MnO2/CQDs nanowires and cycling,

354f

organic CQDs and charge storage

capacity, 359t

organic hybrid supercapacitors,

355�359

oxygen groups, 352

sources and role of, 353f

surface functionalization, 246�247

surface passivation, 246, 246f

typical device structure of, 171f

in zinc-ion battery, 365�366

Outlook, 365�366

CDot in bioimaging

cDots in in vivo and in vitro bioimaging,

249f

microbiota using C dots, 250f

single-molecule imaging, 251�253

in in vitro bioimaging, 252t

in vitro imaging, 250�251

in vivo bioimaging, 253t

in vivo imaging, 251

Characteristic lengths

de Broglie’s theory of wave-particle

duality, 400

de Broglie wavelength, 400�401

diffusion, 401

localization, 402

mean free path, 401

screening, 401�402

Characterization and physical properties of

carbon quantum dots

allotropes structures, 57t

carbon quantum dots, 56�59

chemical and electronic structures of,

59�60, 60f

energy structure of, 57f

generalized structure of, 59f

and its lifetime, 58f

structure of, 59�60
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Characterization and physical properties of

carbon quantum dots (Continued)

classification as allotropes, 56f

types, 60�61

doped, 61, 62f

hydrophilic, 61

hydrophobic, 61

undoped, 61, 62f

Characterization of carbon quantum dots

photophysical analysis, 80�84

fluorescence, 82�83, 82f

Forster resonance energy transfer,

83�84

photoluminescence, 80�82, 81f

riboflavin absorption, 85f

stability of, 85

structural

atomic force microscopy, 79, 79f

Fourier-transform Infrared, 78�79, 78f

Raman spectroscopy, 75�76, 76f

scanning electron microscope, 74

transmission electron microscope,

74�75

UV-vis spectra, 79�80

X-ray photoelectron spectroscopy,

77�78, 77f

X-ray powder diffraction, 73�74

XRD pattern of crystalline, 73f

Charging energy, 425

Chemical sensing

CQDs, 208�212

fluorescence from, 208�210

fluorescence sensing by, 211�212

free zigzag sites with a carbine-like

triplet ground state, 210

quenching and, 211�212, 212f

radiative recombination in small nano-

domains, 209�210

fluorescence-based, 206�208

band edge and other transitions,

207f

strong emission characteristics in,

207�208

gas sensing with conducting carbon dots,

218�221

CQDs on the electrical properties of

conducting polymers, 221

designing of gas sensors using

carbonaceous, 220�221

gas sensors using carbonaceous

nanomaterials, 220�221

of PSS-CQDs, 220f

for Gas/VOC sensing, 222�223

pH sensor, 212�215

doped CQDs in sensors, 216�218

extensive fluorescence quenching of

DTT/C-dots, 217f

hydrothermal cutting of oxidized GSs,

213f

pH-dependent UV-vis absorption and

PL spectra, 214f

pH sensing with, 214�215

red emitting carbon dots for specific

metal ion detection, 218

sensing dielectric of surrounding

medium, 216

of solvent sensing, 216

surface groups in pH sensor

applications of, 213�214

time-resolved fluorescence decay

curves, 217f

time-resolved fluorescence decay

curves of NRCDs, 219f

sensors, 208

VOC sensor based on, 221�223

Coulomb blockade oscillation (CBO), 425

Crossing blood-brain barrier, 229�230

D

DeBroglie wavelength, 400�401

DNA intercalator, 21

Drug delivery, 227�229

E

Excitation-dependent fluorescence emission,

80

Exhibiting electroluminescence (EL), 70�71

F

Fabrication techniques of quantum dots

absorption spectra of CdS nanocrystals,

406f

based on II-VI compound semiconductors,

405�406

CdSe single nanocrystal absorption

spectra, 407f

growth modes, 405f

PL and El spectra of InAs/GaAs, 407f
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self-assembled, 406

Fundamentals of carbon quantum dots

MB degradation by, 273f

semiconductors, 273�274

simple and facile one-pot synthesis of

fluorescent, 274

Fundamentals of supercapacitors

of batteries, 345�349

lithium-ion, 346f

lithium-ion and sodium-ion, 348f

reaction mechanism in LSB, 348�349

and battery, 342�349

charge storage

in EDLC, 343f

in a hybrid supercapacitor, 344f

in pseudocapacitors, 344f

of supercapacitors, 342�345

Future perspectives of carbon quantum dots,

474�476

Colloidal CQDs for Green

Optoelectronics, 475�476

coupling of Rh nanoparticles (NPs), 476f

CQDs as Contrast Agent in Imaging, 475

Graphene QD-based PDs, 477f

heavy metal-free QDs, 475�476

luminescent doped/co-doped CQDs for

optical sensing, 474�476

multipotential applications of doped,

475f

Natural and Biogreen CQDs for

Biotechnology and Nanomedicine

Applications, 475

new development, 474f

potential drug delivery applications, 476f

G

Gene delivery, 230

Graphene quantum dots (GQDs), 40

H

Hotoluminescence properties of carbon

quantum dots

aggregation-induced emission in, 12�20,

13f

added metal ions effect, 18�20

changes in, 15f

concentration-dependent luminescence

mechanism, 19f

digital photographs of, 17f

emission maxima versus concentration

of, 18f

energy transfer process, 18f

excitation-dependent emission of, 14f

GSH-CQDs in varying ethanol-water

mixtures, 16f

material concentration effect, 15f

of N-CQDs, 20f

NDI-FONPs, 15f

of OPD-CQDs, 19f

PL decay curves of, 17f

PL spectra of GSH-CQDs, 16f

solvent polarity effect, 13�16

THF-water solvent percentage, 15f

blue-, green-, yellow-, and red-emissive,

5f

confinement effect, 4

CQDs in daylight, 5f

doping nonmetallic heteroatoms, 5�8

nitrogen precursor effect, 7f

wavelength-dependent emission

maxima, 7f

electroluminescence of carbon dots,

23�25

CQD-LED and doped CQD-LEDs,

25f

Förster resonance energy transfer, 20�22

coupling chemistry for FRET-CQD-

DDS, 19f

CQD-EtBr based FRET pair, 22f

FRET-CQD-DDS, 19f

heteroatom-mediated surface defects, 8

influence of edge states, 8�9

nonpolar solvents, fluorescence PL, 10f

normalized PL spectra of, 6f

photoinduced electron transfer, 22�23

red edge effect, 9�11

surface defect states, 11�12

passivated carbon dots with PEGs, 12f

triple carbenes at zigzag sites, 9f

Hydrothermal carbonization, 245

Hydrothermal treatment of carbon quantum

dots

type of green precursor, 281t

I

Imaging agents, 241

Inner filter effect, 95

Ionization energy, 402
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K

Kondo effect, 36�37

L

Light-emitting diode application of carbon

quantum dots

device applications, 169�175

optical properties of, 163�169

synthesis methods of functionalized,

159�163

Localization length, 402, 436�437

M

Magnetic and nanophotonics applications of

carbon quantum dots

applications, 378�389

context of magnetic and nanophotonics,

379f

Mechanism of photocatalysis

principle of photocatalytic, 267f

semiconductor photocatalyst, 266

Memory devices

classifications of, 185�186, 187f

light excitation dependence of

photoinduced current and

persistent photoconductivity, 187f

random access memory, 187�193

artificial neuromorphic networks

(ANNs), 190f

cyclic multiple-valued voltage, 192f

effects of UV irradiation on RS, 188f

energy band diagram of the rectifying

memory device, 189f

RS behavior and retention

characteristics, 191f

WRER cycles, 192f

Mesoscopic devices, 400

Metal sulfides

dye wastewater, 272t

Methodology of carbon quantum dots

amino-functionalized fluorescent, 94

amino-functionalized, 95

branched polyethylenimine

functionalized, 94�95

by hydrothermal carbonization of

chitosan, 94f

spiropyran-functionalized, 95�96

condensation reaction, 100�101

Europium-adjusted, 101

off-fluorescence probe of, 101f

microwave-assisted pyrolysis, 96�99

hyperbranched polyethylenimine and

isobutyric amide functionalized C-

dots, 96�97

organic dye-functionalized, 98�99

organosilane functionalized, 97�98, 98f

synthesis of organic dyes, 99f

oxidation-polymerization reaction,

101�102

preparation of CD-PANI, 102f

sol-gel reaction, 99�100

synthesis of CDs@MIP, 100f

N

Nanocarbon-based single-electron transistors

as electrometer

reviewing published work, 434�452

single-electron transistor as an

electrometer, 426�434

theory, 423�425

Nanodiamond photonics

ND photonic applications, 457�459

xz-profile of individual NV color

center, 458f

optical emission from diamond, 455�456

SiV defect, 456f

spectrum showing SiV, 457f

Nanodiamonds for advanced photonic and

biomedical applications

NDs for biomedical applications,

459�466

photonics, 455�459

Nanoelectronic applications of carbon

quantum dots

carbon quantum dot laser, 200

memory devices, 185�193

sensors, 194�197

transistors, 193�197

Nanomaterials as imaging agents, 242�243

NDs for biomedical applications

cancer therapy, 459�462

gain attention of researchers, 460f

imaging, 462�466

contrast agents for, 464�466

as contrast agents in MRI, 462�463

Overhauser effect, 464f

PA signal amplitude, 466f

as photostable markers in STED, 464
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STED microscopy of green, 465f

tumor metastasis inhibited by cNDs, 463f

unique electrostatic properties of

octahedral DNDs, 461f

O

Optical absorption and emission

and electrical property, 108�111

GQDs with size and morphology, 111f

PL spectra of NGQDs, 112f

spectrum of SNGQDs, 110f

Optical absorption properties of carbon

quantum dots

Kasha’s molecular exciton theory, 3f

UV-visible spectrum and, 3f

Optical properties of carbon quantum dots

electroluminescence, 168�169

based LED device structure, 170f

optical absorption, 164

daylight photographs, 165f

UV excited fluorescence, 166f

UV-visible optical absorption, 165f

from ultraviolet to near-infrared regions,

164�168

due to quantum confinement effect,

164�165

multicolor fluorescent CQDs, 167f

surface passivation and

functionalization effect, 166�167

up-conversion photoluminescence, 168

UV excited fluorescence images of,

168f

Optical properties of carbon quantum dots

and graphene quantum dots, 299�310

multicolor fluorescence, 303f

structural depiction of CDs, 302f

top-down and bottom-up methods, 301f

optical properties of, 304

absorption spectrum of aqueous

dispersed, 305f

chemical structure on the

photoluminescence behavior, 308f

fluorescence spectra of water-soluble,

306f

synthetic approaches and, 299�310

Optical properties of indirect gap

nanocrystal

enhanced phototransition in a silicon

nanocrystal, 409f

Optical properties of quantum dots

oscillator strength for phototransition, 408

phototransition in, 408

widening of bandgap, 408

Optoelectronics applications of carbon

quantum dots

Si/GQDs heterojunction solar cell, 113f

silicon-based heterojunction solar cell,

112�113

P

Photocatalysts material

semiconductors on the potential scale,

269f

Photocatalytic applications for wastewater

treatment

advanced oxidation process, 263�266

application of, 283�285

binary metal oxides, 268�270

fundamentals of, 271�274

hydrothermal treatment of, 278�282

mechanism of photocatalysis, 266�267

metal sulfides, 270�271

in photocatalysis, 274�277

photocatalysts material, 268

synthesis route of, 277�278

watermelon rinds potential as, 283

Photodetector applications of carbon and

graphene quantum dots, 113�128

optical absorption, emission, and electrical

property, 108�111

optoelectronics applications of,

112�113

synthesis of, 106�108

Photodetector applications of carbon

quantum dots

FET-based photodetectors using,

114�120

device structure of DUV photodetector,

114f

graphene/NGQDs FET-based

phototransistor, 116f

MoS2/GQDs phototransistor, 119f

photodetector fabrication process, 115f

schematic image of monolayer (ML),

118f

and graphene quantum dots, 113�128

polymer nanocomposite-based

photodetectors, 125�128
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Photodetector applications of carbon

quantum dots (Continued)

based photodetectors and performances,

127t

growth process of the hybrid device,

125f

I-V characteristics, 126f

sensitized nanomaterial-based

photodetectors, 120�125

IV characteristics of GQD/ZnO NRs

photodetector, 123f

sensitized ZnO NR/GaN-NT

heterostructure, 124f

Si nanowire/CQD device, 123f

time-dependent photocurrent, 122f

ZnO nanorods, 121f

Photophysical properties of carbon quantum

dots

classes of, 2f

optical absorption of, 2�3

photoluminescence of, 4�25

Photovoltaic application of carbon quantum

dots

in all-weather solar cells, 154

in dye-sensitized solar cells, 136�144

in perovskite solar cells, 150�154

in solid-state solar cells, 148�150

Physical and chemical properties of carbon

dots via computational modeling

applications in different fields, 30f

different carbon dots, 29�30

property of, 31

theoretical study of, 32�37

Physical property of carbon quantum dots

biological, 72

bioimaging of HeLa cells, 72f

catalytic reactions of, 66f

composite and hybrid structures of, 66f

optical, 66�71

absorption, 67�68

electroluminescence, 70�71

fluorescence, 69

from glucose/NaOH, 69f

of MCBF, 67f

phosphorescence, 69�70, 70f

photoluminescence, 68�70

up-converted photoluminescence, 71,

71f

photoinduced electron transfer, 72

physiochemical property, 64�65, 65f

Properties of cDots

fluorescence, 247�248

quantum yield, 248

Property of carbon dots

computational methods applied to study,

31

system size versus computational cost, 31f

Pyrolysis, 96

Q

Quantum dot

density of states of electrons in, 403�404,

404f

Schrodinger’s equation for a quantum

box, 403

R

Reviewing published work

Al-based single-electron transistor,

434�442

clean IQHE system, 435f

color map of spatial density, 443f

earlier discovered integer quantum Hall

effect (IQHE), 434

electrical imaging of the quantum hall

state, 434�440

inverse compressibility, 438f

Landau level contours, 437f

monolayer graphene, 441f

scanning single-electron transistor,

440�442

application of carbon nanotube-based

single-electron transistor, 442�452

cantilever-mounted SET scanning, 444f

CNT-based SET, 449

gate-dependent motion of domains,

446f

graphene device with a bent channel,

451f

optical micrograph of the device, 450f

origin of anomalous piezoelectricity in

LAO/STO, 443�447

piezoelectric response, 445f

resistivity, alternating current, 448f

voltage drop and current density in

graphene/, 447�452

Roles of carbon quantum dots in

photocatalysis
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allocate additional surface for adsorption

and reaction, 277

broaden the optical absorption range of,

274�275

charge separation and electron transfer,

276�277

photoexcitation of, 276f

upconversion photoluminescence, 276f

S

Scanning cavity microscopy, 457�458

Single-electron transistor as an electrometer

Al/AlOx/Al structure, 431f

backgate-2DES-SET structure, 427

2DES sample, 430f

experimental realization of, 429�434

measurement using a SET scanning probe,

428f

measuring inverse compressibility,

426�429

nanoassembled SET device, 432f

SETs using Al QD and CNT QD, 433t

Single-electron tunneling, 425

S-K mode, 406

Solar cell, 135�136

Surface engineering of carbon quantum dots

in carbogenic allotropes, 93

carbon nanotube versus, 91�92

functionalities in, 92f

methodology, 93�102

Synthesis methods of functionalized carbon

quantum dots

arc discharge, 160

liquids for production of, 161f

electrochemical synthesis, 160, 160f

hydrothermal and solvothermal synthesis,

163, 163f

microwave-assisted synthesis, 161�162,

162f

pulsed laser ablation/passivation

technique, 161, 162f

Synthesis of carbon quantum dots

basic techniques for, 42�51

carbon quantum dots, 39�42

graphene oxide, 40f

principles of synthesis, 41�42

structure of, 40�41, 41f

Synthesis of carbon quantum dots and

graphene quantum dots

bottom-up synthesis process, 107�108

AFM micrograph of NGQDs, 109f

boron doped GQDs(BGQDs), 110f

top-down synthesis process, 106�107

growth of GQDs from SWCNTs, 107f

treatment procedures of coal samples,

108f

Synthesis route of carbon quantum dots

bottom-up method, 278

methods to synthesize, 279t

top-down method, 277�278

T

Techniques for carbon quantum dot

preparation

bottom-up approach, 48�51

hydrothermal method, 49�51, 50f

microwave-assisted method, 49, 49f

PEG-functionalized FCNs, 52f

ultrasound-assisted method, 51

top-down approach, 42�48

arc discharge method, 42�43

chemical ablation/oxidation, 47�48

controllable synthesis of fluorescent

nanomaterials, 45f

electrochemical synthesis, 46�47

laser ablation, 43�45, 44f

plasma treatment, 45�46

from sugarcane bagasse pulp, 48f

Theoretical study of carbon quantum dots

electrocatalytic, 35�36

properties of CQDs and GQDs, 35f

electronic structure, 32�33

energy gap vs the size of the aromatic

ring, 32f

Kondo effect in, 36�37

optical property, 33�34

PL and fluorescence mechanisms, 34f

transport, 36

long-distance interaction via Klein

tunneling, 37f

Theory

energy for states, 426f

origin of coulomb blockade oscillation,

423�425

potential landscape across, 424f

SET showing the equivalent electrical

circuit, 424f

to single-electron transistor, 423
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The red edge effect, 11

Transistors

basics of, 193�194

carbon quantum dots used in, 194�197

CQD channel, 195f

current vs voltage curves, 197f

fluorescence decay traces of, 198f

humidity sensor fabrication and data

acquisition setup, 199f

phototransistor fabricated with the ZnS/

carbon QDs, 196f

U

Unipolar device, 193

W

Watermelon rinds potential as carbon

precursor, 283

Write-read-erase-read (WRER), 185
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