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 ABSTRACT 

Application of natural fibers as reinforcing material of polymer matrix is the prime 

attention in this research. Oil palm empty fruit bunch (EFB) fiber has been considered 

as reinforcing material of Poly lactic acid (PLA) for preparation of EFB/PLA 

biocomposites. The limitation in the broad use of EFB fiber in PLA matrix is poor 

compatibility between fibers and matrix due to presence of non cellulosic components 

and the hydroxyl groups of cellulose. Moreover, the hydroxyl groups form hydrogen 

bonds inside the macromolecule itself (intra-molecular) and also with hydroxyl groups 

from moist air that restrict the fiber matrix adhesion and also bring about dimensional 

changes in the fiber. These limitations has been successfully overcome by removing the 

non cellulosic components, altering the fiber surface, through conventional alkali 

(ALK) and non conventional ultrasound (ULS) pre-treatment methods. The Pre-

treatment were conducted with variation of sodium hydroxide (NaOH) concentration, 

soaking or exposing time and treatment temperature. Fiber characterization was done by 

the single fiber strength, FTIR spectrum, SEM and TGA-DTG thermal analysis. The 

ULS EFB fiber was given best properties compare to ALK EFB fiber at mild treatment 

conditions. The treatment parameters were optimized on the basis of that treated 

EFB/PLA composites mechanical properties and by using Design Expert Software. 

Optimization of fiber loading was carried out by 10 wt%, 20wt%, 30 wt% and 40wt% 

raw EFB fiber, composite was prepared by extrusion with PLA followed by injection 

molding. The composites properties were examined by mechanical tests such as tensile 

strength (TS), tensile modulus (TM), elongation at break (EB) and impact strength (IS). 

It was found that 30wt% EFB fiber incorporated composite represented good TS, TM, 

EB and IS. By considering these mechanical properties, 30wt% EFB was considered as 

optimum loading in EFB/ PLA composite. Beside this comparative analysis was done 

for 30wt% EFB fiber incorporated raw EFB/PLA, ALKEFB/PLA and ULSEFB/PLA 

composites.  This comparison was carried out by the analysis of melt flow index (MFI), 

mechanical properties (TS, TM, EB, IS), kinetic property (activation energy, Ea) by 

TGA-DTG data and crystallinity index (IDSC) by DSC thermograms.  The 

ULSEFB/PLA composite was shown better properties, such as higher MFI (3.55 

g/10min), mechanical strength (TS= 63MPa, TM=2468 MPa, IS=18.67 J/m
2
), 

crystallinity index (IDSC=43.12) and lower activation energy (Ea=69.73 kJ/mol), 

compare to ALKEFB/PLA composite. Moreover, these properties were obtained when 

the ULSEFB fiber was treated at lower NaOH concentration (3 wt%) and treatment 

temperature (80
0
C) at 90 minutes exposing time. The ULSEFB/PLA composite 

properties were increased by treating that ULSEFB fiber with HBPE as coupling agent 

in ULSEFB/HBPE/PLA composite. It shows highest MFI (4.15 g/10min) and 

mechanical properties (TS=66.78 MPa, TM=2629MPa, IS=19.33), greater thermal 

stability, highest crystallinity index (IDSC=45.13) and lowest activation energy 

(Ea=67.89 kJ/mol) among all composites.  
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ABSTRAK 

Aplikasi fiber semulajadi sebagai bahan penguat matrik plastik menjadi perhatian utama 

dalam kajian ini. Serat tandan kelapa sawit kosong (EFB) merupakan bahan penguat 

kepada asid polilaktik (PLA) bagi penyediaan biokomposit  EFB/PLA. Dalam 

penggunaan serat EFB di dalam matrik PLA, kesesuaian antara serat dan matrik  plastik 

adalah terhad disebabkan kehadiran komponen  yang bersifat bukan selulosik dan terdiri 

daripada kumpulan hidroksil  pada struktur selulosa. Tambahan lagi, kumpulan 

hidroksil menbemtuk ikatan hidrogen di dalam makromolekul itu dan kehadiran 

kumpulan hidroksil kesan dari kelembapan udara menghadkan lekatan antara serat-

matrik yang akhirnya menyebabkan perubahan dimensi pada serat tersebut. Faktor-

faktor  yang menghadkan lekatan ini dapat diatasi melalui penyingkiran bahan  yang 

tidak bersifat selulosa, pengubahsuaian permukaan serat melalui kaedah pra-rawatan 

alkali konvensional dan ultra-bunyi bukan konvensional. Pra-rawatan telah dijalankan 

dengan kepelbagaian tahap kepekatan natrium hidroksida (NaOH), tempoh  

rendaman atau  masa pendedahan dan suhu rawatan. Pencirian serat telah dijalankan 

melalui kaedah analisis kekuatan gentian tunggal, spektrum FTIR, imbasan SEM dan 

terma TGA-DTG. Serat ULS EFB menunjukkan sifat yang terbaik berbanding dengan 

ALK EFB dengan  keadaan rawatan yang sederhana. Parameter rawatan telah 

dioptimumkan berdasarkan sifat mekanikal komposit EFB/PLA dan menggunakan 

perisian Design Expert.Pengoptimuman muatan serat dijalankan dengan peratusan berat 

kandungan gentian EFB yang berbeza iaitu 10wt%, 20wt%, 30wt% dan  40wt%, 

komposit telah disediakan oleh kisaran campuran dengan PLA diikuti oleh 

pembentukan acuan. Sifat-sifat  komposit  telah dianalisa melalui ujian mekanikal 

seperti kekuatan tegangan (TS), modulus tensil (TM), pemanjangan pada takat putus 

(BP) dan kekuatan kesan (IS). Didapati bahawa gentian EFB 30wt% gabungan 

komposit menunjukkan sifat yang baik bagi sifat-sifat TS, TM, EB  dan IS. Dengan 

mengambil kira sifat-sifat mekanik ini, EFB  30wt% dianggap sebagai muatan yang 

optimum dalam komposit EFB / PLA. Selain analisis ini,  perbandingan telah dilakukan 

terhadap gentian EFB yang mengandungi 30wt% serat dan PLA, ALK EFB / PLA dan 

ULS EFB / PLA komposit.  Perbandingan komposit dilakukan melalui analisis indeks 

pengaliran leburan (MFI), sifat mekanik (TS, TM, EB, IS), sifat kinetik 

(tenaga pengaktifan, Ea) menggunakan TGA-DTG dan indeks penghabluran (IDSC) oleh 

DSC termogram. Komposit ULSEFB / PLA telah menunjukkan sifat yang lebih baik, 

iaitu nilai yang tinggi bagi MFI (3.55 g/10min), kekuatan mekanikal (TS = 63MPa, TM 

= 2468 MPa, IS= 18.67 J/m
2
), penghabluran indeks (IDSC = 43.12%),. Manakala, tenaga 

pengaktifan lebih rendah (Ea = 69.73 kJ / mol), berbanding dengan komposit ALKEFB / 

PLA. Selain itu, sifat-sifat ini telah diperolehi apabila  ULSEFB serat dirawat pada 

kepekatan NaOH yang lebih rendah (3%) dan suhu rawatan (80˚C) selama 90 minit bagi 

masa pendedahan. Sifat-sifat komposit ULSEFB / PLA meningkat dengan perawatan 

ULSEFB serat dengan HBPE sebagai agen gandingan pada komposit ULSEFB / HBPE 

/ PLA. Ia menunjukkan MFI tertinggi (4.15 g/10min) dan sifat mekanik (TS = 66.78 

MPa, TM = 2629MPa, IS = 19.33 J/m
2
), kestabilan terma yang lebih baik, indeks 

penghabluran tertinggi (IDSC = 45.13%) dan tenaga pengaktifan terendah (Ea = 67.89 kJ 

/ mol) di antara kesemua komposit. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  INTRODUCTION 

In recent years there has been an expanding search for new materials with high 

performance at affordable costs. Due to environmental awareness, this search 

particularly emphasis on environment friendly materials, in terms of renewable, 

recyclable, sustainable and triggered biodegradable. In this perception composite 

materials make from renewable resources are very prospective in the field of composite 

science. Several lignocellulosic fibers such as jute, sisal, pineapple, coconut etc. are 

source of raw materials in plastic industries. These fibers have established their 

potentiality as reinforcing fillers in many polymers to develop new composite materials. 

In recent years it has found that the demand of these materials increasing on a 

commercial scale.   (Satyanarayana  et al.,2008; Singh, et al.,2008; Zheng et al., 2008) . 

These examples give emphasis to the development of new materials based on renewable 

materials. 

 Similarly, use of natural polymers is not new, since bamboo, straw, paper, silk, 

etc., have been used from historical times. The use of natural polymers was superseded 

in the 20
th

 century as a wide-range of synthetic polymers was developed based on raw 

materials from low cost petroleum. However, since the 1990s, increased attention has 

been paid to the use of natural polymers and lignocellulosic fibers. The reasons for this 
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include: (a) growing interest in reducing the environmental impact of polymers or 

composites (b) finite petroleum resources, decreasing pressures for the dependence on 

petroleum products with increasing interest in maximizing the use of renewable 

materials  and (c) the availability of improved data on the properties and morphologies 

of natural materials such as lignocellulosic fibers, through modern instruments at 

different levels, and hence better understanding of their structure–property correlations. 

These factors have greatly increased the understanding and development of new 

materials such as biocomposites (Kestur et al., 2009).  

Synthetic polymer-based composite materials are now well established all over 

the world for a wide variety of applications because of their high specific strength and 

modulus compared to conventional materials such as metals and alloys, along with their 

long durability (Bledzki and  Gassan 1999; Marikarian  2008). However, the use of 

large volumes of polymer-based synthetic fiber composites in different sectors in spite 

of their high cost has led to disposal problems. In fact, several countries have already 

approved laws for the reduction of such environmentally abusive materials, triggering 

greater efforts to find materials based on natural resources in view of the latter’s eco-

friendly attributes.  

Natural fibers are sourcing of organic materials also a source for carbon and a 

host of other useful materials and chemicals, particularly for the production of “green” 

materials. Several countries such as India, Malaysia, Indonesia, Philippines, Brazil and 

some of the African countries have national projects for the utilization of their agro 

wastes such as coconut based materials, wastes from rubber and palm oil industries, rice 

husk, etc., These materials thus form inexpensive “new or secondary resources”, which 

could make them more valuable for extensive utilization (Rijswijk and Brouwer, 2002). 

Lignocellulosic fibers have some unique attributes, such as being less abrasive 

to tooling and not causing as many respiratory problems for workers (Kandachar, 2002 

and Sanadi, 2004). Furthermore, because they are inexpensive and have load bearing 

capacity, the use of natural fiber based composites has spread to various sectors, 

including aircraft, construction, grain and fruit storage and footwear. Natural fiber 

reinforced polymer composites are used in cars behind the vinyl carpeting on the doors, 

consoles and seat backs. Residential construction applications include windows, sidings, 

and roof tiles. Many window and door manufacturers are considering natural fiber 


