PREPARATION AND CHARACTERIZATION OF BIODEGRADABLE POLY LACTIC ACID (PLA) COMPOSITES WITH OIL PALM EMPTY FRUIT BUNCH (EFB) FIBER

ABU KASHEM MOHAMMAD MOSHIUL ALAM

Thesis submitted in fulfillment of the requirements For the award of the degree of Master of Engineering in Chemical

Faculty of Chemical and Natural Resources Engineering UNIVERSITY MALAYSIA PAHANG

APRIL 2012

ABSTRACT

Application of natural fibers as reinforcing material of polymer matrix is the prime attention in this research. Oil palm empty fruit bunch (EFB) fiber has been considered as reinforcing material of Poly lactic acid (PLA) for preparation of EFB/PLA biocomposites. The limitation in the broad use of EFB fiber in PLA matrix is poor compatibility between fibers and matrix due to presence of non cellulosic components and the hydroxyl groups of cellulose. Moreover, the hydroxyl groups form hydrogen bonds inside the macromolecule itself (intra-molecular) and also with hydroxyl groups from moist air that restrict the fiber matrix adhesion and also bring about dimensional changes in the fiber. These limitations has been successfully overcome by removing the non cellulosic components, altering the fiber surface, through conventional alkali (ALK) and non conventional ultrasound (ULS) pre-treatment methods. The Pretreatment were conducted with variation of sodium hydroxide (NaOH) concentration, soaking or exposing time and treatment temperature. Fiber characterization was done by the single fiber strength, FTIR spectrum, SEM and TGA-DTG thermal analysis. The ULS EFB fiber was given best properties compare to ALK EFB fiber at mild treatment conditions. The treatment parameters were optimized on the basis of that treated EFB/PLA composites mechanical properties and by using Design Expert Software. Optimization of fiber loading was carried out by 10 wt%, 20wt%, 30 wt% and 40wt% raw EFB fiber, composite was prepared by extrusion with PLA followed by injection molding. The composites properties were examined by mechanical tests such as tensile strength (TS), tensile modulus (TM), elongation at break (EB) and impact strength (IS). It was found that 30wt% EFB fiber incorporated composite represented good TS, TM, EB and IS. By considering these mechanical properties, 30wt% EFB was considered as optimum loading in EFB/ PLA composite. Beside this comparative analysis was done for 30wt% EFB fiber incorporated raw EFB/PLA, ALKEFB/PLA and ULSEFB/PLA composites. This comparison was carried out by the analysis of melt flow index (MFI), mechanical properties (TS, TM, EB, IS), kinetic property (activation energy, E_a) by TGA-DTG data and crystallinity index (I_{DSC}) by DSC thermograms. The ULSEFB/PLA composite was shown better properties, such as higher MFI (3.55 g/10min), mechanical strength (TS= 63MPa, TM=2468 MPa, IS=18.67 J/m^2), crystallinity index (I_{DSC}=43.12) and lower activation energy (E_a=69.73 kJ/mol), compare to ALKEFB/PLA composite. Moreover, these properties were obtained when the ULSEFB fiber was treated at lower NaOH concentration (3 wt%) and treatment temperature $(80^{\circ}C)$ at 90 minutes exposing time. The ULSEFB/PLA composite properties were increased by treating that ULSEFB fiber with HBPE as coupling agent in ULSEFB/HBPE/PLA composite. It shows highest MFI (4.15 g/10min) and mechanical properties (TS=66.78 MPa, TM=2629MPa, IS=19.33), greater thermal stability, highest crystallinity index (I_{DSC}=45.13) and lowest activation energy $(E_a=67.89 \text{ kJ/mol})$ among all composites.

ABSTRAK

Aplikasi fiber semulajadi sebagai bahan penguat matrik plastik menjadi perhatian utama dalam kajian ini. Serat tandan kelapa sawit kosong (EFB) merupakan bahan penguat kepada asid polilaktik (PLA) bagi penyediaan biokomposit EFB/PLA. Dalam penggunaan serat EFB di dalam matrik PLA, kesesuaian antara serat dan matrik plastik adalah terhad disebabkan kehadiran komponen yang bersifat bukan selulosik dan terdiri daripada kumpulan hidroksil pada struktur selulosa. Tambahan lagi, kumpulan hidroksil menbemtuk ikatan hidrogen di dalam makromolekul itu dan kehadiran kumpulan hidroksil kesan dari kelembapan udara menghadkan lekatan antara seratmatrik yang akhirnya menyebabkan perubahan dimensi pada serat tersebut. Faktorfaktor yang menghadkan lekatan ini dapat diatasi melalui penyingkiran bahan yang tidak bersifat selulosa, pengubahsuaian permukaan serat melalui kaedah pra-rawatan alkali konvensional dan ultra-bunyi bukan konvensional. Pra-rawatan telah dijalankan dengan kepelbagaian tahap kepekatan natrium hidroksida (NaOH), tempoh rendaman atau masa pendedahan dan suhu rawatan. Pencirian serat telah dijalankan melalui kaedah analisis kekuatan gentian tunggal, spektrum FTIR, imbasan SEM dan terma TGA-DTG. Serat ULS EFB menunjukkan sifat yang terbaik berbanding dengan ALK EFB dengan keadaan rawatan yang sederhana. Parameter rawatan telah dioptimumkan berdasarkan sifat mekanikal komposit EFB/PLA dan menggunakan perisian Design Expert.Pengoptimuman muatan serat dijalankan dengan peratusan berat kandungan gentian EFB yang berbeza iaitu 10wt%, 20wt%, 30wt% dan 40wt%. komposit telah disediakan oleh kisaran campuran dengan PLA diikuti oleh pembentukan acuan. Sifat-sifat komposit telah dianalisa melalui ujian mekanikal seperti kekuatan tegangan (TS), modulus tensil (TM), pemanjangan pada takat putus (BP) dan kekuatan kesan (IS). Didapati bahawa gentian EFB 30wt% gabungan komposit menunjukkan sifat yang baik bagi sifat-sifat TS, TM, EB dan IS. Dengan mengambil kira sifat-sifat mekanik ini, EFB 30wt% dianggap sebagai muatan yang optimum dalam komposit EFB / PLA. Selain analisis ini, perbandingan telah dilakukan terhadap gentian EFB yang mengandungi 30wt% serat dan PLA, ALK EFB / PLA dan ULS EFB / PLA komposit. Perbandingan komposit dilakukan melalui analisis indeks pengaliran leburan (MFI), sifat mekanik (TS, TM, EB. IS). sifat kinetik (tenaga pengaktifan, E_a) menggunakan TGA-DTG dan indeks penghabluran (I_{DSC}) oleh DSC termogram. Komposit ULSEFB / PLA telah menunjukkan sifat yang lebih baik, iaitu nilai yang tinggi bagi MFI (3.55 g/10min), kekuatan mekanikal (TS = 63MPa, TM = 2468 MPa, IS= 18.67 J/m²), penghabluran indeks (I_{DSC} = 43.12%),. Manakala, tenaga pengaktifan lebih rendah ($E_a = 69.73 \text{ kJ} / \text{mol}$), berbanding dengan komposit ALKEFB / PLA. Selain itu, sifat-sifat ini telah diperolehi apabila ULSEFB serat dirawat pada kepekatan NaOH yang lebih rendah (3%) dan suhu rawatan (80°C) selama 90 minit bagi masa pendedahan. Sifat-sifat komposit ULSEFB / PLA meningkat dengan perawatan ULSEFB serat dengan HBPE sebagai agen gandingan pada komposit ULSEFB / HBPE / PLA. Ia menunjukkan MFI tertinggi (4.15 g/10min) dan sifat mekanik (TS = 66.78 MPa, TM = 2629MPa, IS = 19.33 J/m²), kestabilan terma yang lebih baik, indeks penghabluran tertinggi ($I_{DSC} = 45.13\%$) dan tenaga pengaktifan terendah ($E_a = 67.89$ kJ / mol) di antara kesemua komposit.

TABLE OF CONTENTS

SUP	ERVIS	OR'S DECLARATION	ii
STU	DENT'	S DECLARATION	iii
ACF	KNOWL	LEDGEMENTS	iv
ABS	STRAC7	Г	v
ABS	TRAK		Vi
LIS	Г OF TA	ABLES	XV
LIST	Г OF FI	IGURES	xviii
LIST	Г OF SY	YMBOLS	xxiv
LIS	Г OF AI	BBREVIATIONS	XXV
CHA	APTER	1 INTRODUCTION	
1.1	Introdu	uction	1
1.2	Proble	em Statement	6
1.3	Object	tives	6
1.4	Scope	of Study	7
CHA	APTER	2 LITERATURE REVIEW	
2.1	Introdu	uction	8
2.2	Natura	al Fiber and Its Source	8
	2.2.1	Oil Palm Empty Fruit Bunch (EFB)	9
	2.2.2	Morphology and properties of EFB	10
2.3	Treatm	nent of Fiber	15
	2.3.1 2.3.2	Alkali Treatment Of Natural Fibers Ultrasonic Treatment	15 17

	2.3.3	Coupling Agent	19
	2.3.4	Pre-Treatment of Fiber with Coupling Agents	23
2.4	Matrix		24
	2.4.1	Thermosets	24
	2.4.2	Thermoplastics	25
	2.4.3	Biodegradable Plastics	27
	2.4.4	Poly (lactic acid)	29
2.5	Natura	l Fiber Reinforced Plastics	33
	2.5.1	Mechanism of Reinforcement	33
	2.5.2	Factors Controlling Performance of Fiber Reinforced Composites	34
		(i) Dispersion of Fiber in to Matrix	34
		(ii) Thermal Stability of the Fiber	35
		(iii) Hydrophilic Nature of Natural Fiber	35
		(iv) Critical Fiber Length	36
		(v) Fiber Orientation	36
		(vi) Fiber Volume Fraction	37
2.6	Oil Pal	m Empty Fruit Bunch (EFB) Fiber Reinforced Polymer Composites	37
	2.6.1	Physical Properties of EFB Fiber Composites	38
	2.6.2	Mechanical Properties of Oil Palm EFB Fiber Composites	39
		(i) Effect of Oil Palm EFB Fiber Loading on Composite Machanical Proparties	39
		 (ii) Effect of Fiber Size on Mechanical Properties of Oil Palm FFB Fiber Composites 	41
		(iii Effect of Fiber Treatment on Mechanical Properties of Oil Palm EFB Fiber Composites	42
	2.6.3	Thermal Properties of Oil palm EFB Fiber Reinforced Polymer Composites	43
2.7	Natura	al Fiber Reinforced Poly Lactic Acid Composites	44
2.8	Proces	sing Methods	48
	2.8.1	Extrusion	48

	2.8.2	Injection Molding	49
СНА	PTER	3 MATERIALS AND EXPERIMENTAL METHODS	
3.1	Introd	uction	51
3.2	Mater	ials	51
	3.2.1	Matrix	51
	3.2.2	Fiber	52
	3.2.3	Chemicals	52
3.3	Metho	ods	52
	3.3.1	Flow Chart of Methodology	52
	3.3.2	Materials Processing	53
	3.3.3	Fiber Treatment	53
		(i) Alkali treatment of EFB fiber	53
		(ii) Ultrasonic treatment of EFB fiber	54
		(iii) Hyper Branched Polyester (HBP) Treatment of EFB Fiber	54
	3.3.4	Composites Fabrication	55
	3.3.5	Response Surface Method (RSM) For Optimization of EFB Fiber Treatment Parameters	55
3.4	Chara	cterization and Testing of Fiber and Composites	58
	3.4.1	Fourier Transformation Infrared Spectroscopy (FTIR)	58
	3.4.2	Scanning Electron Microscopy (SEM)	58
	3.4.3	Density Measurement	59
	3.4.4	Single Fiber Tensile Testing	59
	3.4.5	Melt Flow Index (MFI)	59
	3.4.6	Tensile Testing of Composites	59
	3.4.7	Impact Testing	59
	3.4.8	Thermogravimetric Analysis (TGA)	60
	3.4.9	Differential Scanning Calorimetry (DSC) Analysis	60

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Optimi	zation	of EFB Fiber Treatment Parameters Using Response	62
	Surface	e Metho	od (RSM)	
	4.1.1	Optim Fiber	ization of Alkali Treatment Parameters of Oil Palm EFB	62
	4.1.2	Optim Fiber	ization of Ultrasound Treatment Parameters of Oil Palm EFB	70
4.2	Effect	Of All	kali Treatment On The Compatibility And Mechanical	77
	Proper	ties Of	Oil Palm Empty Fruit Bunch (EFB) Fiber Reinforced	
	Polylac	tic Acie	d Composites	
	4.2.1	Mecha	anism of Alkali Treatment	77
	4.2.2	SEM o	of Raw and Alkali Treated EFB Fiber	78
	4.2.3	Single	e Fiber Strength of ALKEFB Fiber	78
		(<i>i</i>)	Effect of NaOH Concentration on Single Fiber Strength of ALKEFB Fiber	78
		(ii)	Effect of Soaking Time on Single Fiber Strength of ALKEFB Fiber	80
		(iii)	Effect of Treatment Temperature on Single Fiber Strength of ALKEFB Fiber	82
	4.2.4	Comp	osite Melt Flow Index (MFI)	83
	4.2.5	Mecha	anical Properties of Raw EFB Fiber Incorporated PLA	85
		Comp	osites	
	4.2.6	Mecha	anical Properties of Alkali Treated EFB/PLA Composites	87
		(<i>i</i>)	Effect of NaOH Concentration on Mechanical Properties ALKEFB/PLA Composites	87
		(ii)	Effect of Soaking Time on Mechanical Properties of	89
		(iii)	Effect of Temperature on Mechanical Properties of ALKEFB/PLA Composites	92
	4.2.7	Therm	nogravimetric Analysis (TGA) of Oil Palm EFB Fiber	94
		(<i>i</i>)	TGA Curves Analysis of Raw EFB Fiber and Alkali Treated	94

		FFR (ALKFFR) Fiber	
	(ii)	Effect of NaOH Concentration on Thermal Stability of ALKEFB Fiber	95
	(iii)	Effect of Soaking Time on Thermal Stability of ALKEFB Fiber	96
	(iv)	Effect of Treatment Temperature on Thermal Stability of ALKEFB Fiber	97
4.2.8	Differen	ntial Thermal Analysis (DTG) of Raw EFB and Alkali	98
	Treated	EFB (ALKEFB) Fiber	
	(i) .	DTG Curves of Raw EFB and ALK EFB Fibers	98
	(ii)	Effect of NaOH Concentration on Activation Energy of Raw	99
	(iii)	Effect of Soaking Time on Activation Energy of ALKEFB	100
	(iv)	Effect of Treatment Temperature on Activation Energy of ALKEFB Fiber	101
4.2.9	Thermo	ogravimetric Analysis (TGA) of EFB/PLA Composites	102
	<i>(i)</i>	TGA Curves Analysis of Alkali Treated EFB/PLA Composites	102
	<i>(ii)</i>	Effect of NaOH Concentration on Thermal Stability of ALK EFB/PLA Composites	103
	(iii)	Effect of Soaking Time on Thermal Stability of ALKEFB/PLA Composites	103
	(iv)	Effect of Treatment Temperature on Thermal Stability of ALKEFB/PLA Composites	104
4.2.10	Differen	ntial Thermal Analysis (DTG) of Raw EFB/PLA and Alkali	105
	Treated	ALKEFB/PLA Composites	
	(i) .	Effect of NaOH Concentration on Activation Energy of ALKEFB/PLA Composites	106
	(<i>ii</i>)	Effect of Soaking Time on Activation Energy of ALK EFB/PLA Composites	107
	(iii)	Effect of Treatment Temperature on Activation Energy of ALKEFB/PLA Composites	108
4.2.11	Differen	ntial Scanning Calorimetric (DSC) Analysis of ALK	108
	EFB/PI	_A Composites	
	(i)	Effect of NaOH Concentration on DSC Thermograms of	109
	(ii)	Effect of Soaking Time on DSC Thermograms of ALK EFB/PLA Composites	110

		(iii)	Effect of Treatment Temperature on DSC Thermograms of ALKEFB/PLA Composites	111
4.3	Effect	of Ultra	asonic Treatment on EFB Fiber and Study of Ultrasound	113
	Treated	d EFB I	Fiber Reinforced PLA Composites	
	4.3.1	SEM I	Raw EFB and Ultrasound Treated ULSEFB Fiber	113
	4.3.2	Single	Fiber Strength of Ultrasound Treated EFB (ULSEFB) Fiber	114
		(<i>i</i>)	Effect of NaOH Concentration on Single Fiber Strength of ULSEFB Fiber	114
		(ii)	Effect of Exposing Time on Single Fiber Strength of	116
		(iii)	Effect of Treatment Temperature on Single Fiber Strength of ULSEFB Fiber	118
	4.3.3	FTIR .	Analysis of Raw EFB and ULSEFB Fiber	120
	4.3.4	ULSE	FB Fiber Density	122
		(<i>i</i>)	Effect of NaOH Concentration on Density of ULSEFB Fiber	122
		(ii)	Effect of Exposing Time on Density of ULSEFB Fiber	123
		(iii)	Effect of Treatment Temperature on Density of ULSEFB Fiber	123
	4.3.5	ULSE	FB/PLA Composites Density	124
		(<i>i</i>)	Effect of NaOH Concentration on Density of ULSEFB/PLA Composites	124
		(ii)	Effect of Exposing Time on Density of ULS EFB/PLA	125
		(iii)	Effect of Treatment Temperature on Density of ULSEFB/PLA Composites	126
	4.3.6	Melt	Flow Index (MFI) of Different ULSEFB/PLA Composites	127
	4.3.7	ULSE	FB/PLA Composites Mechanical Properties	128
		(<i>i</i>)	Effect of NaOH Concentration on Mechanical Properties of ULSEFB/PLA Composites	128
		(ii)	Effect of Exposing Time on Mechanical Properties of	131
		(iii)	Effect of Treatment Temperature on Mechanical Properties of ULSEFB/PLA Composite	134
	4.3.8	Therm	nogravimetric Analysis (TGA) of Ultrasound Treated EFB	136
		(ULS	EFB) Fiber	

<i>(i)</i>	TGA Curves Analysis of Raw EFB and ULSEFB Fibers
(ii)	Effect of NaOH Concentration on Thermal Stability of ULSEFB Fibers
(iii)	<i>Effect of Exposing Time on Thermal Stability of ULSEFB</i> <i>Fibers</i>
(iv)	<i>Effect of Treatment Temperature on Thermal Stability of ULSEFB Fibers</i>
Differ Fibers	ential Thermal Analysis (DTG) Of Raw EFB And ULSEFB
(<i>i</i>)	Effect of NaOH Concentration on Activation Energy of ULSEFB Fibers
(ii)	Effect of Exposing Time on Activation Energy of ULSEFB Fibers
(iii)	Effect of Treatment Temperature on Activation Energy of ULSEFB Fibers
Therm	ogravimetric Analysis (TGA) of ULSEFB/PLA Composites

- *(i)* Effect of NaOH Concentration on Thermal Stability of 144 ULSEFB/PLA Composites
- Effect of Exposing Time on Thermal Stability of 144 (ii) ULSEFB/PLA Composites
- Effect of Treatment Temperature on Thermal Stability 145 (iii) of ULSEFB/PLA Composites

4.3.11 Differential Thermal Analysis (DTG) of ULSEFB/PLA Composites 146

4.3.9

4.3.10

- *(i)* Effect of NaOH Concentration on Activation Energy of 147 ULSEFB/PLA Composites
- Effect of Exposing Time on Activation Energy of (ii) 148 ULSEFB/PLA Composites Effect of Treatment Temperature on Activation Energy 149 (iii) of ULSEFB/PLA Composites
- 4.3.12 Differential Scanning Calorimetric (DSC) Analysis of 149 **ULSEFB/PLA** Composites
 - Effect of NaOH Concentration on DSC Thermograms *(i)* 150 of ULSEFB/PLA Composites
 - Effect of Exposing Time on DSC Thermograms of (ii) 151 ULSEFB/PLA Composites
 - Effect of Treatment Temperature on DSC Thermograms (iii) 152 of ULSEFB/PLA Composites
- Effect of Hyper Branched Polyester (HBPE) Coupling Agent on ULS 4.4 154 **EFB/PLA** Composite

136

137

138

138

139

140

141

142

143

	4.4.1	FTIR Analysis of ULSEFB/PLA and ULSEFB/HBPE/PLA	154
	4.4.2	Melt Flow Index (MFI) of ULSEFB/PLA and ULSEFB/HBPE/PLA Composites	155
	4.4.3	Mechanical Properties of ULSEFB/PLA and ULSEFB/HBPE/PLA Composites	155
4.5	Compa	arative Assessment of Composites Properties	159
	4.5.1	Comparative Melt Flow Index (MFI) of Raw EFB/PLA and Treated EFB/PLA Composites	159
	4.5.2	Comparative Mechanical Properties of Raw EFB/PLA and Treated EFB/PLA Composites	159
	4.5.3	Comparative FTIR Analysis of Raw EFB and Treated EFB incorporated PLA Composites	163
	4.5.4	Comparative TGA analysis of Raw EFB/PLA and Treated EFB/PLA Composites	166
	4.5.5	Comparative DTG Analysis of Raw EFB/PLA and Treated EFB/PLA Composites	167
	4.5.6	Comparative DSC analysis of Raw EFB/PLA and Treated EFB/PLA composites	167
CH	APTER	5 CONCLUSION AND RECOMENDATIONS	
5.1	CONC	LUSION	169

REFERENCES		
5.2	Recommendations and Future Work	170
5.1	concelesion	107

APPENDIX A List of Publications 185

LIST OF TABLES

Table No.	Title	Page
2.1	Chemical composition of OPF	12
2.2	Physico-mechanical properties of OPF	13
3.1	List of Chemicals	52
3.2	Processing parameters for Extrusion and Injection molding of composites	55
3.3	Independent variables (concentration, time and temperature) levels for response surface study prior to Alkali treatment of oil palm EFB fiber	56
3.4	Independent variables (concentration, time and temperature) levels for response surface study prior to ultrasonic treatment of oil palm EFB fiber	56
3.5	Experimental layout of 2^3 full factorial central composite designs for ALK EEB/PLA Composites	57
3.6	Experimental layout of 2 ³ full factorial central composite designs for ULS EFB/PLA composites	58
4.1	Experimental layout and results of 2^3 full factorial central composite design (ALKEER/PLA composites)	63
4.2	ANOVA for Response Surface Quadratic Model Response: TS (MPa) of ALK EFB/PLA composite	64
4.3	Results of operating conditions with experimental design in confirmation run	69
4.4	Experimental layout and results of 2 ³ full factorial central composite design (ULS EFB/PLA composites)	70
4.5	ANOVA for Response Surface Quadratic Model Response: TS (MPa) of ULS EFB/PLA composite	71
4.6	Predected optimum values for Ultrasonic treatment of EFB fiber	76
4.7	Results of operating conditions with experimental design in confirmation run	76
4.8	Effect of NaOH concentration on the thermal stability ALK EFB fiber	96
4.9	Effect of soaking time on the thermal stability of ALK EFB fiber	97
4.10	Effect of treatment temperature on the thermal stability of ALK EFB fiber	97
4.11	Effect of NaOH concentration on DTG curves and activation energy of ALK EFB fiber	100
4.12	Effect of soaking time on DTG curves and activation energy of ALK EFB fiber	101
4.13	Effect of treatment temperature on DTG curves and activation	102

energy of ALK EFB fiber

4.14	Effect of NaOH concentration on thermal stability of ALK EFB/PLA composite	103
4.15	Effect soaking time on thermal stability of ALKEFB/PLA composite	104
4.16	Effect of treatment temperature on the thermal stability of ALKEFB/PLA composite	104
4.17	Effect of NaOH concentration on DTG curves and activation energy of ALK EFB/PLA composite	106
4.18	Effect of soaking time on DTG curves and activation energy of ALK EFB/PLA composite	107
4.19	Effect of treatment temperature on DTG curves and activation energy of ALK EFB/PLA composite	108
4.20	Effect of NaOH concentration on the DSC thermogram of ALK EFB/PLA composites	110
4.21	Effect of soaking time on the DSC thermogram of ALK EFB/PLA composites	111
4.22	Effect of treatment temperature on the DSC thermogram of ALK EFB/PLA composites	112
4.23	Summary of FT-IR spectra for Raw EFB and ULS EFB fiber	121
4.24	Effect of NaOH concentration on thermal stability ULS EFB fiber	137
4.25	Effect of exposure time on thermal stability ULS EFB fiber	138
4.26	Effect of treatment temperature on thermal stability of ULS EFB fiber	139
4.27	Effect of NaOH concentration on DTG curves and activation energy of ULS EFB fiber	141
4.28	Effect of exposing time on DTG curves and activation energy of ULS EFB fiber	142
4.29	Effect of treatment temperature on DTG curves and activation energy of ULS EFB fiber	143
4.30	Effect of NaOH concentration on thermal stability of ULSEFB/PLA composite	144
4.31	Effect of Exposing time on thermal stability of ULSEFB/PLA composite	145

4.32	Effect of treatment temperature on thermal stability of ULS EFB/PLA composite	145
4.33	Effect of NaOH concentration on DTG curves and activation energy of ULS EFB/PLA composite	147
4.34	Effect of exposing time on DTG curves and activation energy of ULS EFB/PLA composite	148
4.35	Effect of treatment temperature on the DTG curves and activation energy of ULS EFB/PLA composite	149
4.36	Effect of NaOH concentration on DSC thermograms of ULSEFB/PLA composite	151
4.37	Effect of exposing time on DSC thermograms of ULSEFB/PLA composite	152
4.38	Effect of treatment temperature on DSC thermograms of ULSEFB/PLA composite	153
4.39	Comparative thermal stability of Raw EFB/PLA and Treated EFB/PLA composites	166
4.40	Comparative DTG curves analysis of EFB/PLA composites	167
4.41	Comparative DSC curves analysis of EFB/PLA composites	168

LIST OF FIGURS

Figure No	Title	Page
2.1	View of EFB wastes piled up in a palm oil mill premise	
2.2	SEM images of transverse sections of OPF	
2.3	Structure of cellulose	13
2.4	Structure of hemicellulose	14
2.5	Structure of Lignin	15
2.6	Structure of hyper branched polyester (HBPE)	23
2.7	Preparation of high molecular weight PLA	31
4.1	Normal probability plot of residual for TS	66
4.2	Plot of residual against predicted responseTS	66
4.3	3D surface of TS from the model equation: effect of NaOH concentration and Time	67
4.4	3D surface of TS from the model equation: effect of NaOH concentration and Temperature.	68
4.5	3D surface of TS from the model equation: effect of Time anTemperature	68
4.6	Normal probability plot of residual for TS	73
4.7	Plot of residual against predicted response TS	73
4.8	3D surface of TS from the model equation: effect of NaOH concentration and Time	74
4.9	3D surface of TS from the model equation: effect of NaOH concentration and Temperature	75
4.10	3D surface of TS from the model equation: effect of Time and Temperature	75
4.11	SEM of Raw EFB and alkali treated (ALKEFB) fiber	78
4.12	Effect of NaOH concentration on tensile strength of ALKEFB single fiber	78
4.13	Effect of NaOH concentration on tensile modulus of ALKEFB single fiber	79

4.14	Effect of NaOH concentration on elongation at break of ALKEFB single fiber	80
4.15	Effect of soaking time on tensile strength of ALKEFB single fiber	80
4.16	Effect of soaking time on tensile modulus of ALKEFB single fiber	81
4.17	Effect of soaking time on elongation at break of ALKEFB single fiber	81
4.18	Effect of treatment temperature on tensile strength of ALKEFB single fiber	82
4.19	Effect of treatment temperature on tensile modulus of ALKEFB single fiber	83
4.20	Effect of treatment temperature on elongation at break of ALKEFB single fiber	83
4.21	MFI of Virgin PLA, raw EFB/PLA and different ALKEFB/PLA composites	84
4.22	Tensile strength of virgin PLA and raw EFB/PLA composites	85
4.23	Tensile modulus of virgin PLA and raw EFB/PLA composites	86
4.24	Elongation at break of virgin PLA and raw EFB/PLA composites	86
4.25	Impact strength of virgin PLA and raw EFB/PLA composites	87
4.26	Effect of NaOH concentration on tensile strength of ALKFB/PLA composite	88
4.27	Effect of NaOH concentration on tensile modulus of ALK EFB/PLA composite	88
4.28	Effect of NaOH concentration on elongation at break of ALK EFB/PLA composite	89
4.29	Effect of NaOH concentration on impact strength of ALK EFB/PLA composite	89
4.30	Effect of soaking time on tensile strength of ALKEFB/PLA composite	90
4.31	Effect of soaking time on tensile modulus of ALKEFB/PLA composite	91
4.32	Effect of soaking time on elongation at break of ALKEFB/PLA composite	91
4.33	Effect of soaking time on impact strength of ALKEFB/PLA	92

composite

4.34	Effect of treatment temperature on tensile strength of ALKEFB/PLA composite	92
4.35	Effect of treatment temperature on tensile modulus of ALKEFB/PLA composite	93
4.36	Effect of treatment temperature on Elongation at break of ALKEFB/PLA composite	93
4.37	Effect of treatment temperature on impact strength of ALKEFB/PLA composite	94
4.38	TGA curves of Raw EFB and different ALKEFB fibers	95
4.39	DTG curves of Raw EFB and different ALKEFB fibers	98
4.40	ln[ln(1/y)] versus $1/T(K)$ for the second stage decomposition of raw EFB	99
4.41	SEM and EDX raw EFB fiber	100
4.42	TGA curves of Virgin PLA, Raw EFB/PLA and ALKEFB/PLA composites at optimum alkali treatment conditions	102
4.43	DTG curves of virgin PLA, Raw EFB/PLA and ALK EFB/PLA composites at optimum alkali treatment conditions	105
4.44	ln[ln(1/y)] versus 1/T(K) for decomposition stage of ALK EFB/PLA composite	106
4.45	DSC Thermograms of PLA and ALKEFB/PLA composites	109
4.46	SEM of (a) Raw EFB (b) Alkali treated EFB fiber (ALK EFB) (c) Ultrasound treated EFB fiber (ULS EFB)	113
4.47	Effect of NaOH concentration on tensile strength of ULS Single EFB fiber	115
4.48	Effect of NaOH concentration on tensile modulus of ULS Single EFB fiber	115
4.49	Effect of NaOH concentration on elongation at break of ULS treated Single EFB fiber	116
4.50	Effect of exposing time on tensile strength of ULS treated Single EFB fiber	117
4.51	Effect of exposing time on tensile modulus of ULS treated Single EFB fiber	117
4.52	Effect of exposing time on elongation at break of ULS treated	118

Single EFB fiber

4.53	Effect of treatment temperature on tensile strength of ULS treated Single EFB fiber	
4.54	Effect of treatment temperature on tensile modulus of ULS treated Single EFB fiber	
4.55	Effect of treatment temperature on elongation at break of ULS treated Single EFB fiber	120
4.56	FT-IR spectrum of Raw EFB and Ultrasound treated EFB fiber	121
4.57	Effect of NaOH concentration on density of ULS EFB fiber	122
4.58	Effect of exposing time on density of ULS EFB fiber	123
4.59	Effect of treatment temperature on density of ULS EFB fiber	124
4.60	Effect of NaOH concentration on density of ULS EFB/PLA composite	125
4.61	Effect of exposing time on density of ULS EFB/PLA composite	126
4.62	Effect of treatment temperature on density of ULS EFB/PLA composite	126
4.63	Melt flow index of virgin PLA, raw EFB/PLA and different ULS EFB/PLA composites	127
4.64	Effect of NaOH concentration on tensile strength of ULS EFB/PLA composites	129
4.65	Effect of NaOH concentration on tensile modulus of ULS EFB/PLA composite	129
4.66	Effect of NaOH concentration on elongation at break of ULSEFB/PLA composites	130
4.67	Effect of NaOH concentration on impact strength of ULSEFB/PLA composites	130
4.68	Effect of exposing time on tensile strength of ULSEFB/PLA composites	132
4.69	Effect of exposing time on tensile modulus of ULSEFB/PLA composites	132
4.70	Effect of exposing time on elongation at break of ULSEFB/PLA composites	133
4.71	Effect of exposing time on impact strength of ULSEFB/PLA composites	133

4.72	Effect of treatment temperature on tensile strength of ULSEFB/PLA composites	
4.73	Effect of treatment temperature on tensile modulus of ULSEFB/PLA composites	135
4.74	Effect of treatment temperature on elongation at break of ULSEFB/PLA composites	135
4.75	Effect of treatment temperature on impact strength of ULSEFB/PLA composites	136
4.76	TGA curves of Raw EFB and ULS EFB fiber at optimum ultrasonic treatment conditions	137
4.77	DTG curves of Raw EFB and ULS EFB at optimum treatment conditions	140
4.78	ln[ln(1/y)] versus 1/T(K) for the decomposition of 3% NaOH treated ULS EFB fiber	140
4.79	TGA curves of Raw EFB/ PLA and ULS EFB/PLA composites at optimum treatment conditions	143
4.80	DTG curves of Raw EFB/PLA and ULS EFB/PLA composites at optimum treatment conditions	146
4.81	ln[ln(1/y)] versus 1/T(K) for decomposition stage of 80 ⁰ C temperature treated ULS EFB/PLA composite	147
4.82	DSC thermograms of Raw EFB/PLA and ULS EFB/PLA composites with optimum treatment conditions	150
4.83	FTIR analysis of ULSEFB/PLA and HBPE treated ULS EFB incorporated (ULSEFB/HBPE/PLA) PLA composites	154
4.84	MFI of ULSEFB/PLA and HBPE treated ULS EFB incorporated ULSEFB/HBPE/PLA composites	155
4.85	Tensile strength of ULSEFB/PLA and ULSEFB/HBPE/PLA composites	156
4.86	Tensile modulus of ULSEFB/PLA and ULSEFB/HBPE/PLA composites	156
4.87	Elongation at break of ULSEFB/PLA and ULSEFB/HBPE/PLA composites	157
4.88	Impact strength of ULSEFB/PLA and ULSEFB/HBPE/PLA composites	157
4.89	SEM of ultrasound treated EFB/PLA (ULSEFB/PLA) and HBPE treated ULSEFB/PLA (ULSEFB/HBPE/PLA) composites	158

	٠	
vv		٠,
**	L	v
	۰	

4.90	Comparative MFI of raw EFB/PLA and treated EFB/PLA composites	159
4.91	Comparative tensile strength of raw EFB/PLA and treated EFB/PLA composites	161
4.92	Comparative tensile modulus of raw EFB/PLA and treated EFB/PLA composites	162
4.93	Comparative elongation at break of raw EFB/PLA and treated EFB/PLA composites	162
4.94	Comparative impact strength of raw EFB/PLA and treated EFB/PLA composites	163
4.95	Comparative FTIR spectra of PLA, EFB and EFB/PLA composites	163
4.96	Schematic illustration for the probable reaction sites of PLA and cellulose of EFB fibres	165
4.97	Schematic illustration for the probable reaction sites of PLA and HBPE grafted cellulose of EFB fibres	165

LIST OF SYMBOLS

Ea	Activation Energy (kJ/mol)		
I _{DSC}	% Crystallinity determined by DSC		
T _c	Crystallization Temperature (°C)		
у	Fraction of materials not been decomposed		
Z	Frequency factor		
R	Gas constant (J/mol K)		
Tg	Glass Transition Temperature (°C)		
ΔH	Heat of fusion (J/g)		
β	Heating Rate (^o C/min)		
T _m	Melting Temperature (°C)		
μm	Micrometer		
T _{max}	Temperature at maximum reaction rate (°C)		

LIST OF ABBREVIATIONS

ALK	Alkali
ASTM	American Standard Testing Method
DSC	Differential scanning calorimetri
DTG	Differential thermo gravimetry
EB	Elongation at break
EFB	Empty fruit bunch
EDX	Energy dispersive X-ray
ENR	Epoxidized Natural Rubber
ETP	Engineering thermoplastics
GPa	Giga Pascals
HBP	Hyper branched polyester
HBPEA	Hyper branched polyester amide
HMDI	Hexamethylene diisocyanate
IS	Impact strength
MPa	Mega Pascals
MA	Methyl acrylate
MCC	Microcrystalline cellulose
MFI	Melt flow index
NFRPC	Natural fiber reinforced polymer composites
OPF	Oil palm fiber

VVV	i	i	
~~ v	I	I	

PF	Phenol formaldehyde
PLA	Poly(lactic acid)
РР	Poly(propylene)
SEM	Scanning electron microscopic
TDI	Toluene diisocynate
TGA	Thermo gravimetric analysis
THF	Tetra hydrofuran
TM	Tensile moldulus
TPM	3-(trimethoxysilyl)-propylmethacrylate
TS	Tensile strength
ULS	Ultrasound
UTS	Ultimate tensile strength
UV	Ultra-violet

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In recent years there has been an expanding search for new materials with high performance at affordable costs. Due to environmental awareness, this search particularly emphasis on environment friendly materials, in terms of renewable, recyclable, sustainable and triggered biodegradable. In this perception composite materials make from renewable resources are very prospective in the field of composite science. Several lignocellulosic fibers such as jute, sisal, pineapple, coconut etc. are source of raw materials in plastic industries. These fibers have established their potentiality as reinforcing fillers in many polymers to develop new composite materials. In recent years it has found that the demand of these materials increasing on a commercial scale. (Satyanarayana et al.,2008; Singh, et al.,2008; Zheng et al., 2008). These examples give emphasis to the development of new materials based on renewable materials.

Similarly, use of natural polymers is not new, since bamboo, straw, paper, silk, etc., have been used from historical times. The use of natural polymers was superseded in the 20th century as a wide-range of synthetic polymers was developed based on raw materials from low cost petroleum. However, since the 1990s, increased attention has been paid to the use of natural polymers and lignocellulosic fibers. The reasons for this

include: (a) growing interest in reducing the environmental impact of polymers or composites (b) finite petroleum resources, decreasing pressures for the dependence on petroleum products with increasing interest in maximizing the use of renewable materials and (c) the availability of improved data on the properties and morphologies of natural materials such as lignocellulosic fibers, through modern instruments at different levels, and hence better understanding of their structure–property correlations. These factors have greatly increased the understanding and development of new materials such as biocomposites (Kestur et al., 2009).

Synthetic polymer-based composite materials are now well established all over the world for a wide variety of applications because of their high specific strength and modulus compared to conventional materials such as metals and alloys, along with their long durability (Bledzki and Gassan 1999; Marikarian 2008). However, the use of large volumes of polymer-based synthetic fiber composites in different sectors in spite of their high cost has led to disposal problems. In fact, several countries have already approved laws for the reduction of such environmentally abusive materials, triggering greater efforts to find materials based on natural resources in view of the latter's ecofriendly attributes.

Natural fibers are sourcing of organic materials also a source for carbon and a host of other useful materials and chemicals, particularly for the production of "green" materials. Several countries such as India, Malaysia, Indonesia, Philippines, Brazil and some of the African countries have national projects for the utilization of their agro wastes such as coconut based materials, wastes from rubber and palm oil industries, rice husk, etc., These materials thus form inexpensive "new or secondary resources", which could make them more valuable for extensive utilization (Rijswijk and Brouwer, 2002).

Lignocellulosic fibers have some unique attributes, such as being less abrasive to tooling and not causing as many respiratory problems for workers (Kandachar, 2002 and Sanadi, 2004). Furthermore, because they are inexpensive and have load bearing capacity, the use of natural fiber based composites has spread to various sectors, including aircraft, construction, grain and fruit storage and footwear. Natural fiber reinforced polymer composites are used in cars behind the vinyl carpeting on the doors, consoles and seat backs. Residential construction applications include windows, sidings, and roof tiles. Many window and door manufacturers are considering natural fiber