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Abstract: In this work, the mixed convection flow of non-Newtonian Eyring–Powell fluid with the
effects of temperature dependent viscosity (TDV) were studied together with the interaction of dust
particles under the influence of Newtonian Heating (NH) boundary condition, which assume to
move over a vertical stretching sheet. Alternatively, the dusty fluid model was categorized as a two-
phase flow that consists of phases of fluid and dust. Through the use of similarity transformations,
governing equations of fluid and dust phases are reduced into ordinary differential equations (ODE),
then solved by efficient numerical Keller–box method. Numerical solution and asymptotic results for
limiting cases will be presented to investigate how the flow develops at the leading edge and its end
behaviour. Comparison with the published outputs in literature evidence verified the precision of the
present results. Graphical diagrams presenting velocity and temperature profiles (fluid and dust)
were conversed for different influential parameters. The effects of skin friction and heat transfer rate
were also evaluated. The discovery indicates that the presence of the dust particles have an effect on
the fluid motion, which led to a deceleration in the fluid transference. The present flow model can
match to the single phase fluid cases if the fluid particle interaction parameter is ignored. The fluid
velocity and temperature distributions are always higher than dust particles, besides, the opposite
trend between both phases is noticed with β. Meanwhile, both phases share the similar trend in
conjunction with the rest factors. Almost all of the temperature profiles are not showing a significant
change, since the viscosity of fluid is high, which can be perceived in the figures. Furthermore, the
present study extends some theoretical knowledge of two-phase flow.

Keywords: dusty Eyring–Powell fluid; Newtonian heating; temperature dependent viscosity; vertical
stretching sheet

MSC: 35Q30; 76D05; 35Q35; 34A45; 65Q10

1. Introduction

Research and studies in the area of heat and mass transport of fluids flow have
discovered strategies for their development, as well as key problems. Nevertheless, it
is important to choose the form of ideal fluid from the point of view of homogeneous
or inhomogeneous, compressible or incompressible, Newtonian or non-Newtonian, and
monophasic or polyphasic fluids, which have a significant role in determining suitable
solutions for heat transfer and fluid flow enhancement. In the past few years, the new
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environment of accelerated technical progress has contributed to the emergence of creative
approaches to analyse the suspension of fluid particles in a fluid flow that is also known as
a two-phase flow model, which explains the actions of fluid dust characteristics. Industrial
applications, such as petroleum transport, wastewater treatment, vehicle smoke emissions,
power plant piping, and corrosive particulate matter in mining, generally involve fluid dust
movement activities [1]. The movement of dust particles in a fluid leads to a two-phase
cycle. Numerous pieces of research on the dynamics of solid particles in the fluid have
been conducted as a result of recent advancements in the field of two-phase flow. The
fluid and solid phases of this solid–liquid system are independently formulated using
different continuum equations. This phenomenon includes micro-propulsion, aerosol
filtration, powder transport, oil industry, and the flow of corpuscle in plasma (a liquid
with suspended solids). Overall, it is very useful for modelling flow with a binary mixture
of non-Newtonian fluid and solid particles linked to certain conditions. It can thus be
suggested that this two-phase model could benefit in studying the dusty Eyring–Powell
fluid that exhibits the binary characteristics of the Eyring–Powell fluid and spherical dust
particles, such as undertaken here. Ref. [2] studied the process of radiative heat transfer in
the flow of dusty liquid under the power generation aspects. The boundary layer flow of a
dusty fluid with electrically conducting criteria in a porous medium has been studied by [3].
When the interaction of these phases is significant, the temperature of the fluid is always
higher than that of the dust. In accordance with these applications, the literature includes a
variety of works in corresponding flow for various contexts, such as multiple geometries,
boundary conditions and fluid-based forms. The non-Newtonian Casson model with dust
particles have been developed by [4,5]. In addition, [6,7] utilized the treating fluid–particle
interaction with buoyancy forces on Jeffrey fluid with Newtonian heating indicates that
the presence of the dust particles has an effect on the fluid motion, which led to decelerate
the fluid transference. The natural convection flow caused by non-Newtonian fluid with
dust nanoparticles has been addressed in [8,9]. Furthermore, [10] theoretically analysed
along a vertical stretching sheet for magnetohydrodynamic (MHD) mixed convection of
non-Newtonian tangent hyperbolic nanofluid flow with suspended dust particles. In [11],
a detailed study has been done on a two-phase model implemented in the presence of
hybrid nanoparticles on the dusty liquid flow through a stretching cylinder by employing
the modified Fourier heat flux law. The study was conducted by considering the effect of
viscous dissipation and non-linear thermal radiation, which demonstrated a two-phase
dusty liquid movement across a permeable surface. Other contributions of flow models
on dusty non-Newtonian fluid have drawn substantial interest among researchers under
different conditions [12–15].

Consideration of the study on boundary layer phenomenon focussing on non-Newtonian
heat-transported substances is essential for a deeper comprehension of engineering and
industrial–technology issues, and the movement of these materials occurs extensively in
various industrial processes, such as guided missiles, rain erosion, fluidisation, atmospheric
failure, lunar ash fall, paint and aerosol spraying, as well as the cooling of nuclear reactors.
Although the existence of such substances is greatly complicated and troublesome, a
variety of constitutive models have been developed and studied to research the correct flow
behaviour. Eyring–Powell fluid model is one of the subcategories of the non-Newtonian
fluid model. It has a clear characteristic under other non-Newtonian models, conveniently
derived from the kinetic theory of gases rather than empirical relations and comes baked
from Newtonian behaviour for low and high shear rates. The rheological paradigm is
known for its robustness and versatility in physical action. Ref. [12] addressed movement
attributable to pulsatile pressure gradient of dusty non-Newtonian fluid with heat transfer
in a channel. A preliminary analysis of the magnetohydrodynamic movement of the
Eyring–Powell liquid under the suspension of nanoparticles and dust has been done
by [13] in which this model has shown that the intensity of heat transfer in the aluminium
oxide nanofluid was higher than that in the ferro oxide nanofluid with the current viscous
variance parameter. In [14], by considering variable thermal conductivity and thermal
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radiation, analytical solutions of unstable flow Eyring–Powell and Carreau non-Newtonian
fluids in the suspension of dust and nickel nanoparticles, a higher heat transfer rate was
recorded in the nickel + Eyring–Powell mixture compared to the nickel + Carreau case.
Ref. [15] attempted to examine the effects of heat and mass transfer in the presence of
nonlinear convection and thermal radiation of MHD rheological Eyring–Powell fluid with
dust and graphene nanoparticles in a mixture of ethylene glycol. In order to study the
relationship between the fluid and dust phased, this analysis was conducted to further
investigate the flow behaviour of dusty Powell–Eyring fluid in the vertical stretching
sheet associated with temperature-dependent viscosity combined with NH as a thermal
boundary conditions.

Over recent decades, the thermal boundary conditions have a great influence on the
heat transfer in the laminar boundary layer flow problem. However, there is a situation
in which the heat transfer rate is proportional to the local difference in temperature with
ambient conditions or usually termed conjugate boundary conditions, which are driven by
NH, should be considered as well. The case of NH has been mentioned by [16] during a
study on the boundary layer flow over an upright plate. Ref. [17] made further headway
during an investigation on free convection flow across horizontal surface. Ref. [18] pro-
posed a series of solutions and numerical Eyring fluid flow with NH. Ref. [19] provided
detailed nonlinear convective magneto nanofluid Eyring fluid with the effects of NH,
while Ref. [20] included the effects of the thermal radiation Eyring fluid subjected to NH
boundary condition. Meanwhile, Refs. [21,22] highlighted the effects of MHD and NH on
Powell–Eyring fluid over a stretching cylinder and inclined permeable surface, respectively.
Ref. [23] reviewed the problem of temperature-dependent viscosity on mixed convection
flow of Eyring–Powell fluid studied together with NH. A mathematical model of forced
convective flow on non-Newtonian Eyring–Powell fluid under temperature-dependent
viscosity circumstance is formulated by [24]. The effects of non-Newtonian magnetohydro-
dynamic nanofluid over a stretched plate with NH effect have been investigated by [25].
Other studies associated with particular impact for fluid–solid flow considering different
fluid models were established and reported in [26–29].

Motivated by the impactful research as scrutinised above, this present study is ded-
icated to examining the two-phase boundary layer flow of Eyring–Powell fluid together
with the temperature-dependent viscosity from a vertical stretching sheet, the temperature
of which is higher than that of the ambient fluid. The simulation of mixed convection
influence with NH was also implanted in this investigation. The mathematical formula-
tions of the problems are constructed as mentioned in the study scope, which involves the
derivation of governing equations for the proposed problem. The similarity transformation
is used to transform the non-linear governing equations into ordinary differential equations
(ODE). Then, the numerical solutions of the transformed equations are solved using the
Keller-box method.

The step size of time and space can be arbitrary, since this method is implicit with
second order accuracy, which makes it suitable to solve the parabolic partial differential
equations efficiently [30]. However, the computation could be time consuming if the small
step size of time and space is inserted. The algorithm of the Keller-box method is computed
in Matlab software to generate the results and the figures for various non-dimensional
parameters on the velocity and temperature profile. The comparison with the previous
published result were tabulated to verify the present results by fixing several parameters.
The output from the investigation are useful for the scientist and experimentalist in studying
the behaviour of fluids, which have interactions with dust particles.

2. Mathematical Formulation

Flow suspended with particles affected by TDV over a vertical stretching sheet was
introduced for the steady incompressible mixed convection of non-Newtonian Eyring fluid
under NH condition. The term, T∞, is related to temperature of ambient fluid. The x-axis
was oriented to the vertical plane, and the y-axis to the plane was perpendicular. The sheet
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is stretched with the velocity, uw(x) = bx where, b > 0 is stretching rate. The flow was
created by the stretching of the sheet due to the simultaneous application of two equal and
opposite forces along the x-axis, holding the origin fixed and finding the flow to be limited
to the area, b > 0. The configuration of a physical model is displayed in Figure 1.
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Figure 1. Physical sketch and coordinate system.

The solid particles are presumed to be spherical in shape and uniform size, where
their density remains constant and the inter-particle collision may be neglected, since they
are considered to be diluted throughout the flow. In terms of heat transfer from one atom
to another, all of these were ignored: the volume fraction of dust particles, coagulation,
phase transition and deposition. The fluid and sediment particle motions were linked
only through drag-and-heat flow across them, the stokes linear drag theory was used for
modelling the drag force. Based on the preceding assumptions, the basic two-dimensional
boundary layer equations involving continuity, momentum and energy for both the fluid
and particle phases with usual ratings can be written as [31,32] shown below:

For fluid phase:
∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
1
ρ

∂

∂y

(
µ

∂u
∂y

)
+

1
ρβ̃c

(
∂2u
∂y2

)
− 1

2ρβ̃c3

(
∂u
∂y

)2 ∂2u
∂y2 + βg(T − T∞) +

ρp

ρτ

(
up − u

)
, (2)

ρcp

(
u

∂T
∂x

+ v
∂T
∂y

)
= k

(
∂2T
∂y2

)
+

ρpcs

γT

(
Tp − T

)
. (3)

For dust phase:
∂up

∂x
+

∂vp

∂y
= 0, (4)

ρp

(
up

∂up

∂x
+ vp

∂up

∂y

)
=

ρp

τv
(u− up), (5)

ρpcs

(
up

∂Tp

∂x
+ vp

∂Tp

∂y

)
= −

ρpcs

γT
(Tp − T). (6)

Here, (u, v), T, ρ, cp and µ represents the components of velocity in (x, y) directions,
temperature, density, specific heat at constant pressure and viscosity coefficient, respec-
tively. Meanwhile,

(
up, vp

)
, Tp, ρp, cs, τv and γT denote the velocity components in (x, y)

directions, temperature, density, specific heat, velocity and thermal relaxation time for dust
phase, respectively. The corresponding fluid and particle phase boundary conditions were
given as.

u = uw(x) = ax, v = 0, ∂T
∂y = −hsT at y = 0

u→ 0, up → 0, vp → v, T → T∞, Tp → T∞ as y→ ∞
(7)

In (7), the parameter was corresponded to the velocity of the stretching surface with a
being a positive constant of uw(x), thermal conductivity k, heat transfer coefficient hs and
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ambient temperature T∞. To obtain the set of similarity equations in the form of ordinary
differential equations, the similarity transformations (8) were adopted and applied to the
governing Equations (1)–(6).

u = ax f ′(η), v = −(aυ)1/2 f (η), η =
( a

υ

)1/2y,
θ(η) = T−T∞

T∞
, up = axF′(η), vp = −(aυ)1/2F(η), θp(η) =

Tp−T∞
T∞

,
(8)

The Reynolds exponential viscosity model was used to predict temperature-dependent
variability in viscosity that gave a detailed approach as:

µ(θ) = µ0e−(β1θ) = µ0

[
1− (β1θ) + O

(
β1

2
)]

, (9)

The Equations (1)–(6) are changeable from PDEs to ODEs, which can be represented as:

(1 + M) f ′′′ (η)− ( f ′(η))2 + f (η) f ′′ (η) + βN(F′(η)− f ′(η))
−BM( f ′′ (η))2 f ′′′ (η)− α f ′′ (η)θ′(η)− αθ(η) f ′′′ (η) + λθ = 0,

(10)

θ′′ (η) + Pr f (η)θ′(η) +
2
3

βN
(
θp(η)− θ(η)

)
= 0, (11)(

F′(η)
)2 − F(η)F′′ (η) + β

(
F′(η)− f ′(η)

)
= 0, (12)

θp
′(η)F(η) +

2
3

β

Prγ

(
θ(η)− θp(η)

)
= 0 (13)

Subjected to boundary conditions:

f (0) = 0, f ′(0) = 1, θ′(0) = −γ1(1 + θ(0)) at η = 0
f ′(η)→ 0, F′(η)→ 0, F(η)→ f (η),
θ(η)→ 0, θp(η)→ 0 as η → ∞

(14)

In Equations (10)–(14), a notation prime (′) corresponds to the differentiation with
respect to η. Additionally, the dimensionless numbers and parameters are as follows where
M = 1

µ0 β̃c
and B = a3x2

2c2ν f
are the fluid parameters, Pr = ν f /α represents Prandtl num-

ber, α = k/ρcp represents viscosity parameter, γ1 conjugate parameter of heat transfer,
λ = gcβT(Tf − T∞)/a2xλ is mixed convection parameter, γ = cs/cp specific heat ra-
tio of mixture parameter, N = ρp/ρ parameter of mass concentration of particle phase,
fluid–particle interaction parameter β = 1/aτv and Reynolds number Rex = (ax2/ν). A
limiting case arising in this problem was without the presence of dust particles effect where
the buoyancy force is negligible and can be obtained using the following expression [33]:

f (η) = S + Aη + (1− A)(1− exp(−η)), θ(η) =
γ1

1− γ1
exp(−η). (15)

It is important to mention here that the comparison between the present results with
the exact solution is necessary to claim the accuracy of the current model and its output.
The primary physical quantity of importance is the dimensionless coefficient of skin friction
and the local Nusselt number, which has been described by (16), where the shear stress and
surface heat are compatible with those referred in [34].

C f x =
τw

ρU2
w(x)

, Nux =
xqw

k(Tw − T∞)
(16)

where

τw =

(
µ0 +

1
β̃C∗

)
∂u
∂y
− 1

6β̃

(
1

C∗
∂u
∂y

)3
, and qw = −k

(
∂T
∂y

)
y=0

(17)
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The shear stress and surface heat transfer is calculated using the following definition:

C f Re1/2
x = ((1− αθ(0)) + M) f ′′ (0)− B

3
M f ′′ 3(0), NuxRex

−1/2 = γ1

(
1

θ(0)
+ 1
)

(18)

3. Results and Discussion

Equations (10)–(13) were solved numerically, along with boundary conditions (14)
using the Keller-box approach as computed in the Matlab program. The Keller-box method
comprise of four steps which are:

Step 1: The nonlinear partial differential equation are first transformed to first order system;
Step 2: The first order system is then approximated using central difference;
Step 3: The Newton’s method is applied to linearize the system;
Step 4: The linearized system is solved by block elimination technique;
To initially integrate the procedure, the nonlinear structure of ordinary differential

equations was converted into a structure of linear first-order equations. Our bulk cal-
culations were viewed with η∞ = 8 and identified as appropriate for all values of the
parameters, which were considered asymptotically to achieve the far-field boundary condi-
tions as seen in Figures 2–17. The interaction force among two phases is significant, where
usually, both governing equations are coupled through the term of total fluid–particle
interaction force per unit volume that is clearly different from single phase flow. Numerical
computation are conducted for fluid parameters, namely M and B, Prandtl number Pr,
viscosity parameter α, mixed convection parameter λ, γ1 conjugate parameter of heat trans-
fer, a parameter of mass concentration of particle phase N and fluid–particle interaction
parameter β.

The local Nusselt number is one of the important characteristics in the heat transfer
field, which indicates the ratio of convective heat transfer to conductive heat transfer.
Hence, in order to check the accuracy of the numerical method used, the comparison in
Nusselt number NuxRex

−1/2 for a fixed value of Pr with the established results in [35–37]
and it is revealed to be in strong agreement as displayed in Table 1. In addition, a direct
comparative study was carried out with the exact Equation (15), as well as the existing
study reported with the available published result by [38–41] shown in Table 2. From
Tables 1 and 2, an excellent agreement is achieved, which indicates that the current model
and its findings are acceptable. It is worth declaring here, even in the limiting cases, the
present model does not exactly give the same solution, but the difference is very small.
It is logical since the present model is more complex with multiple parameters. Table 3
demonstrates the variance of the skin friction coefficient and the Nusselt numbers for
various parameters of the present analysis.

Figures 2–5 was plotted to understand the velocity and temperature distribution of the
fluid and particle phase under variance of Pr and α. It was revealed that the velocity were
decreased for both fluid and particle phases as Pr and α increases. The similar trend was noticed
in temperature distribution for both phases in increasing Pr but contrary in the growing of α. At
far from the surface, it is remarked the profile asymptotically reached the boundary conditions,
and, therefore, the authors are confident on the correctness of present results.

Table 1. Comparative study on value −θ′(0).

Pr [35] [36] [37] Present

1 1.3333 1.3333 1.3333 1.3329
3 2.50970 2.50972 2.50972 2.50969
10 4.79690 4.79686 4.79687 4.79689

100 15.7120 15.7118 15.7120 15.7098
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Table 2. Comparative study on f ′′ (0).

Existing
Literature Model of Problem Boundary

Condition Limiting Cases Value of f”(0)

Exact Solution
(15) f ′′ = −e−η - - −1.0000

[38] f ′′′ − f ′2 + f f ′′ − A
(

f ′ + 1
2 η f ′′

)
+ λθ = 0

f (0) = 0
f ′(0) = 1
f ′(∞) = 0

A = λ = 0 −1.0000

[39] f ′′′ − f ′2 + f f ′′ − k1

(
2 f ′ f ′′′ − f ′′ 2 − f f ′′′

)
= 0

f (0) = 0
f ′(0) = 1
f ′(∞) = 0

k1 = 0 −1.0000

[40] (1 + M)(1 + 2ηγ) f ′′′ − αM(1 + 2ηγ)2 f ′′ 2 f ′′′

+2γ(1 + M) f ′′ + f f ′′ − 4
3 αM

(
γ + 2ηγ2) f ′′ 3

− f ′2 + λθ sin ϕ = 0

f (0) = 0
f ′(0) = 1
f ′(∞) = 0

α = γ = 0
λ = M = 0

−1.0000

[41] (1 + M) f ′′′ − f ′2 + f f ′′ −MB f ′′ 2 f ′′′ − H f ′ = 0
f (0) = 0
f ′(0) = 1
f ′(∞) = 0

B = H = 0,
M = 0.0001

−1.0000

Present study (1 + M) f ′′′ − f ′2 + f f ′′ + βN(F′ − f ′)
−BM f ′′ 2 f ′′′ − α f ′′ θ′ − αθ f ′′′ + λθ = 0,

f (0) = 0
f ′(0) = 1
f ′(∞) = 0

B = M = 0
N = β = 0
α = λ = 0

−1.0015

Table 3. Numerical results of C f Rex
1/2 and NuxRex

−1/2 for various values of Pr, α, M, B, λ, γ1, β

and N.

Pr α M B λ γ1 β N CfRex
1/2 NuxRex

−1/2

7 0.1 0.6 0.6 0.1 0.5 0.5 0.5 −1.076579 0.105283
9 −1.078272 0.104603

12 −1.079770 0.103939
10 0.2 −1.077788 0.104348

0.4 −1.075612 0.104349
0.7 −1.072307 0.104350

10 0.1 0.5 −1.048326 0.104357
0.9 −1.173040 0.104324
1.5 −1.351057 0.104292

10 0.1 0.6 0.1 −1.133436 0.104328
0.5 −1.088912 0.104324
0.9 −1.048210 0.104322

10 0.1 0.1 0.6 0.3 −1.754138 0.342542
0.5 −1.741401 0.630439
0.9 −1.706099 1.433335

10 0.1 0.6 0.6 0.1 0.1 −1.085300 0.104326
0.6 −1.081074 0.104324
1.2 −1.076098 0.104318

10 0.1 0.6 0.6 0.1 0.5 0.1 −1.180434 0.104421
0.4 −1.114385 0.104359
0.9 −1.044242 0.104282

10 0.1 0.6 0.6 0.1 0.5 0.5 0.1 −1.182364 0.104415
0.4 −1.125083 0.104364
0.9 −1.019745 0.104280

Figures 6–9 display the distribution on velocity and temperature for multiple values
of M and B. It was found that with higher elasticity parameter (presence Eyring fluid),
the magnitude of velocity for both fluid and particle were enhanced. The change in the
velocity contributed to boosting the heat of the fluid (for increasing M) but against the
heating development (for increasing B).
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Figures 10 and 11 indicate that the amount of γ1. Physically, the heat transfer rate with
the γ1 was reduced; this reduced the temperature and resulting thickness of the boundary
layer. During the event with large values of the heat transfer equation, which implies a
strong heat transfer rate as it slowly declines, the fluid became a small heat transfer rate.
Through mixed convection and the effects of the fluid–particle interaction parameters β and
λ, the velocity of all the phases and their associated boundary layer thicknesses increased.
The response to the temperature profile was quite the opposite of the speed field with λ and
β, as seen in Figures 12–15, further finding that the flow properties of the dusty fluid can be
greatly regulated by changing the influence of the parameters of fluid–particle interaction β.

Figures 16 and 17 were plotted to evaluate all fluid and particle phase velocity and
temperature components for the variance of N. Within the boundary layer, temperature
profiles reduced with improvement within N. On the other hand, the velocity profile was
improved by increasing the parameter N. This was because the fluid tends to raise the
intensity of drag between the phases with the mass content of dust particles rising. The
fluid movement was thus slowed down, resulting in reduced surface-phase energy, since
the surface layer was pulled together with the liquid. By continuing to increase the mass
content of the dust particles, more fluid-phase energy was converted into a larger number
of particles, but less energy from the fluid phase was supplied to the individual particles.
Therefore, it can be inferred that varying N will greatly affect the flow characteristics.
Furthermore, the boundary momentum layer for ordinary Eyring fluid was observed
thinner than that of the dusty Eyring fluid.
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4. Conclusions and Future Work

The results of temperature-dependent viscosity on the mixed convection flow of non-
Newtonian Eyring–Powell fluid due to a vertical stretching surface interacting with dust
particles under the control of NH boundary conditions have been numerically explained.
Highly non-linear governing PDEs were first converted to ODEs, utilising similarity trans-
formations and then numerically resolved using the Keller-box method. MATLAB program
has been applied to conduct computational. Velocity and temperature profile for all fluid
and particle phases were illustrated graphically. The value of sheer rate and heat transfer
coefficient were calculated and have tabulated in table for various pertinent parameters. In
addition, the current output was validated by comparative study with previously reported
results and perceived a good agreement between them. In conjunction, a few important
findings from the existing research are indicated as:

1. For certain applications, the fluid’s flow and heat transfer can be regulated by embed-
ding the particles of fine dust.

2. The process velocity (temperature) of fluid and dust have the opposite effects for
buoyancy force parameter variability.



Mathematics 2022, 10, 3111 14 of 16

3. In the mixed convection regime, the local shear stress increases and the local rate of
heat transfer decreases as the value of buoyancy parameter increases for all values of
the Prandtl number and the viscosity variation parameter.

4. The fluid–particle interaction parameter variability is favourable for the thickness of
the dust boundary layer. However, for the thickness of boundary layer of momentum,
it is unfavourable.

5. The velocity distribution was suppressed with the Prandtl number compared to
temperature distribution.

6. The velocity profiles increase and the viscosity of the fluid decrease near the surface
of the plate owing to increase in the value of the viscosity variation parameter. The
temperature profiles of both phases are enhanced by rising α.

7. The quantity of skin friction decreases with greater values of fluid parameters, mixed
convection, conjugate parameter of heat transfer, mass concentration of particle phase
and fluid–particle interaction parameter.

8. Increase in the value of the viscosity variation parameter leads to increase in the local
shear stress and to decrease in the local rate of heat transfer. Its effect on the increase
of the rate of heat transfer is less than that of the local shear stress.

Ultimately, it is worth concluding that the existence of dust particles has a substantial
effect on the flow behaviour of Eyring fluid in the presence of TDV.
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