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ABSTRACT 

Random effect and time delay are inherent properties of many real 
phenomena around us, hence it is required to model the system via stochastic 
delay differential equations (SDDEs). However, the complexity arises due to the 
presence of both randomness and time delay. The analytical solution of SDDEs 
is hard to be found. In such a case, a numerical method provides a way to solve 
the problem. Nevertheless, due to the lacking of numerical methods available 
for solving .SDDEs, a wide range of researchers among the mathematicians and 
scientists have not incorporated the important features of the real phenomena, 
which include randomness and time delay in modeling the system. Hence, 
this research aims to generalize the convergence proof of numerical methods for 
SDDEs when the drift and diffusion functions are Taylor expansion and to develop 
a stochastic Runge—Kutta for solving SDDEs. Motivated by the relative paucity 
of numerical methods accessible in simulating the strong solution of SDDEs, the 
numerical schemes developed in this research is hoped to bridge the gap between 
the evolution of numerical methods in ordinary differential equations (ODEs), 
delay differential equations (DDEs), stochastic differential equations (SDEs) and 
SDDEs. The extension of numerical methods of SDDEs is far from complete. 
Rate of convergence of recent numerical methods available in approximating the 
solution of SDDEs only reached the order of 1.0. One of the important factors of 
the rapid progression of the development of numerical methods for ODEs, DDEs 
and SDEs is the convergence proof of the approximation methods when the drift 
and diffusion coefficients are Taylor expansion that had been generalized. The 
convergence proof of numerical schemes for SDDEs has yet to be generalized. 
Hence, this research is carried out to solve this problem. Furthermore, the 
derivative-free method has not yet been established. Hence, development of a 
derivative—free method with 1.5 order of convergence, namely stochastic Runge-
Kutta, to approximate the solution of SDDEs with a constant time lag, r > 0, is 
also included in this thesis.



ABSTRAK 

Kesan rawak dan masa lengahan adalah ciri-ciri yang dipunyai 
oleh kebanyakan fenomena di sekeliling kita. Maka fenomena mi perlu 
dimodelkan menggunakan persamaan pembezaan stokastik lengahan (SDDEs). 
Walaubagaimanapun, kerawakan dan masa lengahan menyebabkan persamaan 
pembezaan bertambah rumit. Penyelesaian analitik SDDEs sukar untuk dicari. 
Bagi kes tersebut, kaedah berangka menyediakan cara untuk menyelesaikan 
masalah yang terlibat. Namun, disebabkan oleh kekurangan kaedah-kaedah 
berangka yang sedia ada untuk menyelesaikan SDDEs, ramai penyelidik 
dari kalangan ahli matematik dan saintis tidak memasukkan ciri-ciri penting 
fenomena nyata iaitu kesan rawak dan masa lengahan dalam memodelkan 
sistem tersebut. Maka, kajian mi bertujuan untuk mengitlakkan pembuktian 
penumpuan kaedah-kaedah berangka SDDEs apabila fungsi hanyutan dan 
resapan merupakan pengembangan Taylor dan membangunkan kaedah berangka 
stokastik Runge—Kutta untuk menyelesaikan SDDEs. Dimotivasikan oleh 
kekurangan relatif kaedah-kaedah berangka yang boleh diakses dalam simulasi 
penyelesaian kukuh SDDEs, skema-skema berangka yang dibangunkan diharap 
dapat merapatkan jurang di antara perkembangan kaedah-kaedah berangka 
persamaan pembezaan biasa (ODEs), persamaan pembezaan lengahan (DDEs), 
persamaan pembezaan stokastik (SDEs) dan SDDEs. Perkembangan kaedah-
kaedah berangka SDDEs adalah jauh ketinggalan. Kadar penumpuan kaedah-
kaedah berangka yang boleh didapati kini bagi menghampirkan penyelesaian 
SDDEs hanya mencapai peringkat 1.0. Salah satu daripada faktor-faktor penting 
perkembangan pesat pembangunan kaedah-kaedah berangka untuk ODEs, DDEs 
dan SDEs ialah pembuktian penumpuan kaedah-kaedah penghampiran apabila 
pekali-pekali hanyutan clan resapan merupakan kembangan Taylor yang telah 
diitlakkan. Pembuktian penumpuan kaedah-kaedah berangka SDDEs masih 
belum diitlakkan. Maka, kajian mi dijalankan untuk menyelesaikan masalah 
tersebut. Tambahan pula, kaedah bebas terbitan belum pernah dibangunkan. 
Maka, pembangunan kaedah bebas terbitan dengan kadar penumpuan 1.5, iaitu 
stokastik Runge—Kutta, untuk menghampirkan penyelesaian SDDEs dengan masa 
lengahan malar, r> 0, juga telah dimuatkan di dalam tesis mi.
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Modeling of physical phenomena and biological system via ordinary 

differential equations (ODEs) and stochastic differential equations (SDEs) had 

been intensively researched over the last few decades. In both types of equations, 

the unknown functions and their derivatives are evaluated at the same instant 

time, t. However, many of the natural phenomena do not have an immediate 

effect from the moment of their occurrence. The growth of a microbe, for 

example, is non—instantaneous but responds only after some time lag r > 0. 

Generally, many systems in almost any area of science, for which the principle 

of causality, i.e. the future state of the system is independent of the past 

states and is determined solely by the present, does not apply. A crucial point 

with delay equations is the dynamics of the systems differ dramatically if the 

corresponding characteristic equations involve time delay. Therefore, ODEs and 

SDEs which are simply depending on the present state will be better of should 

the model incorporate time delay. Such phenomenon can then be modeled via 

delay differential equations (DDEs) for deterministic setting and stochastic delay 

differential equations (SDDEs) for their stochastic counterpart. However, DDEs 

are inadequate to model the process with the presence of random effects. Thus, 

the dynamical systems whose evolution in time is governed by uncontrolled



fluctuations as well as the unknown function is depending on its history can 

be modeled via SDDEs. 

Most of the SDDEs do not have an explicit solution. Hence, there is 

a need for the development of reliable and efficient numerical integrators for 

such problems. The research on numerical methods for SDDEs is still new. 

Among the recent works are of Baker [1], Baker and Buckwar [2], Buckwar [3], 

Küchler and Platen [4], Hu et al. [5], Hofmann and Muller [6] and Kb eden and 

Shardlow [7]. Euler scheme for SDDEs was introduced by Baker [1] and Baker and 

Buckwar [2]. The derivation of numerical solutions for SDDEs from stochastic 

Taylor expansions with time delay showed a strong order of convergence of 1.0 

was studied by Küchler and Platen [4]. Hu et al. [5] introduced Ito formula 

for tame function in order to derive the same order of convergence but with a 

different scheme. They provide the convergence proof of Milstein scheme to the 

solution of SDDEs with the presence of anticipative integrals in the remainder 

term. Moreover, Hofmann and Muller [6] presented an approximation of double 

stochastic integral involving time delay and introduce the modification of Milstein 

scheme. The convergence proof of Euler—Maruyama method for SDDEs was 

provided in Baker [1]. Baker and Buckwar [2] and Buckwar [3] provided the 

convergence proof of discrete time approximations of SDDEs in a general way. 

Meanwhile, Hu et al. [5] and Kloeden and Shardbow [7] prepared the proof of 

the order of convergence for Milstein scheme. Later work on numerical method 

for SDDEs can be found in Kloeden and Shardlow [7]. They improved the 

convergence proof of Milstein scheme presented in [5] by avoiding the used of 

anticipative calculus and anticipative integrals in the remainder term. Hence, the 

convergence proof of Milstein scheme in [7] is much simpler than the convergence 

proof expounded in [5]. The proof of the order of convergence of Taylor methods 

of SDEs had been generalized by Milstein [8]. Theorem 1.1 on page 12 in the book 

of Milstein [8] showed this result, which underlying the significant development of 

numerical methods from stochastic Taylor expansion that occurred in the SDEs. 

However, the proof is not yet generalized in SDDEs. It is quite natural now to 

ask, can the convergence proof of numerical methods for SDDEs when the drift 

function, f and diffusion function, g are Taylor expansion be generalized?
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Stochastic delay differential equation is a stochastic generalization of 

DDEs, which is systematically treated in Mohammed [9]. In fact, SDDEs 

generalize both DDEs and SDEs. Therefore, numerical analysis of DDEs and 

SDEs provide some bearing on the problems regarding the SDDEs which is of 

concern here. The derivation of numerical methods for solving SDDEs found in 

the literature up to the date are based on stochastic Taylor expansion. As the 

order increases, the complexity of implementing those numerical methods can 

become more complicated as one needs to compute more partial derivatives of 

the drift and diffusion functions. To overcome the above-mentioned difficulty, it 

is natural to look for a derivative-free method for solving the problem at hand. 

Among the references therein, we realize that there is no derivative-free method 

such as stochastic Runge—Kutta (SRK) to facilitate the approximation of the 

strong solution to SDDEs. Moreover, the approximation schemes to the solution 

for SDDEs in the literature up to the date do not achieve the order of convergence 

higher than 1.0. Conversely, evolutionary works on the numerical method in SDEs 

are much more advance. Until now, most researchers have ignored both delay and 

stochastic effects because of the difficulty in approximation of the solution due 

to the involvement of multiple stochastic integrals with time delay. However, 

both of them cannot be neglected as many natural phenomena involve random 

disturbances as well as non—instantaneous effects. It is now natural to ask the 

question, is it possible for us to extend the pioneering work of Runge—Kutta (RK) 

over the last few decades to approximate the solution of SDDEs. 

Thus, this research proposes to generalize the convergence proof of 

numerical methods of SDDEs when the drift and diffusion functions are Taylor 

approximation as well as to develop SRK for SDDEs. SRK method is a 

derivative—free method, hence it does not require the computation of derivative 

for drift and diffusion functions. The method proposed in this research having 

the order of convergence of 1.5, improves the convergence rate of numerical 

approximation of SDDEs arising from the literature so far. Moreover, both 

time delay and stochastic extensions of a mathematical model for bio—process 

engineering is considered. In this research, the system of batch fermentation 

involving the growth of the microbe and solvent production of acetone and



4 

butanol is highlighted. The simulated result of the mathematical model is 

approximated using the newly developed SRK method of order 1.5. 

1.2 Problem Statement 

As mentioned earlier in the previous section, most of the SDDEs do not 

have analytical solution, and numerical method provides a tool in handling this 

problem. Baker et at. [10] modified RK of ODE to approximate DDE. It was 

emphasized by Bellen and Zennaro [11] that the main difficulty arising from the 

numerical integration of DDEs is the discontinuity. Obviously, the discontinuity 

may occur in DDEs because of the initial function, '(t) specified on the entire 

interval [t 0 - r, to], instead of the use of initial values problem in ODEs. The 

term to corresponds to the starting time of the process. In fact, Baker et at. 

[10] had verified that Runge—Kutta methods are natural candidates for solving 

DDEs because they can be easily modified to handle discontinuities. On the other 

hand, SDE was taken care by the SRK. It is a derivative-free method with the 

order of convergence of at least 2.0 for SDEs with additive noise and 1.5 if the 

corresponding SDEs is multiplicative. Further advantages of implementing the 

RK methods for ODEs and DDEs and the SRK methods for SDEs, are they are 

stable and easy to adapt for variable step—size. The investigation of stability and 

variable step—size adaptation of RK (for ODEs and DDEs) and SRK (for SDEs) 

methods was prepared by Butcher [12] and Hairer et at. [13] for ODEs, Baker et 

at. [10] and Beflen and Zennaro [11] for DDEs and Rumelin [14], Burrage and 

Burrage [15] and Burrage [16] for SDEs. 

RK and SRK methods of ODEs and SDEs respectively have difficulties in 

achieving high accuracy at reasonable cost. To overcome the disadvantage of the 

methods in maintaining a particular order, Butcher [12] developed rooted—trees 

theory so that these order conditions of RK methods can be expressed using trees. 

Then, Burrage [16] extending the Butcher's rooted—trees theory to the area of 

stochastic. This theory allowed us to compute the order of RK and SRK methods



5 

for ODEs and SDEs respectively in an easy way. The suitability and efficiency of 

employing RK in DDE and SRK in SDE motivate us to explore the applicability of 

this method in approximating the solution of SDDE. To the best of our knowledge, 

the literature on SRK for SDDE has not been found. The exploration of numerical 

approximation to the strong solution of SDDEs is just relied on the truncating of 

stochastic Taylor expansions, up to 1.0 order of accuracy. Accordingly, the Euler-

Maruyama and Milstein schemes had been proposed to apply them in practice 

or to study their properties. Indeed, the implementation of Taylor method in 

differential equations leads to complexity, as it requires the computation of the 

derivative in drift and diffusion functions should a high-order method is needed. 

Since no effort has been made to derive the derivative-free method with the 

convergence rate greater than 1.0 and specifically stochastic Runge—Kutta with 

time delay, we propose to derive SRK for SDDE in this research as well as to 

approximate the strong solution of SDDE via this method. Obviously, when 

constructing a numerical method of differential equations, the rate of convergence 

between the true and numerical solutions is one of the important features to be 

considered. The key to the rapid progress of numerical methods in handling SDEs 

is the convergence proof of the corresponding methods when the drift and diffusion 

coefficients are Taylor expansion had been generalized. It was Milstein [8] who 

proved in a more general way of numerical methods of SDEs when the drift and 

diffusion functions are Taylor expansion. However, the later is not yet discovered 

in SDDEs, hence it is the aim of this research to provide the convergence proof of 

Taylor methods of SDDEs in a more general way. Therefore, the main research 

questions are setup as; 

(i) Will the convergence proof of numerical methods of SDDEs when the drift 

and diffusion coefficients are Taylor approximations be generalized? 

(ii) What is the SRK scheme for SDDEs? 

(iii) Will the general 4—stage stochastic Runge—Kutta (SRK4) for SDDE be a 

more efficient tool in approximating the solution of SDDE?
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Problem (i) is covered in Chapter 4, whereas Chapter 6 provides the answer 

to problem (ii) and problem (iii). 

1.3 Research Objectives 

Based on the research questions in Section 1.2, this study embarks on the 

following objectives: 

(i) To derive a stochastic Taylor expansion of SDDE. It is a key 

feature to the development of higher—order methods for solving 

SDDE numerically. 

(ii) To generalize a convergence proof of numerical methods for 

SDDEs when the drift and diffusion coefficients are Taylor 

approximations. 

(iii) To develop a Stochastic Runge—Kutta of order 1.5 for SDDE by 

modifying SRK for SDE and RK for DDE. 

(iv) To analyze the stability of SRK for SDDE. 

(v) To apply the SRK method of 1.5 in simulating the strong solution 

of SDDE for batch fermentation process. 

1.4 Scope of the Study 

This study was undertaken to generalize the convergence proof of 

numerical methods for SDDEs when the drift and diffusion are Taylor expansion 

as well as to propose a derivative—free method, i.e. SRK up to order of 1.5 for 

Solving SDDEs. To achieve this goal, the following scopes will be covered; 

(i) The derivation of Stratonovich Taylor series expansion for both actual and 

numerical solutions.
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(ii) The convergence proof of numerical methods from Taylor expansion has 

been generalized. The Euler—Maruyama, Milstein scheme and Taylor 

method having the order of convergence of 0.5, 1.0 and 1.5 respectively 

have been proposed. 

(iii) The derivation of SRK4 for solving SDDEs with 1.5 order of convergence. 

(iv) Stability analysis of Euler—Maruyama (EM), Milstein scheme and 4—stage 

SRK (SRK4) for solving SDDEs are measured via MS—stability. The 

algebraic computation is performed using Maple 15. 

(v) Model the two phases of fermentation namely the growth phase of C. 

acetobutylicum P262 and the production of Acetone and Butanol via 

SDDEs. The strong solution of the corresponding mathematical model is 

simulated via newly developed SRK4. 

1.5 Significance of the Findings 

The influence of noise and delay in many fields of applications such as 

engineering, physics and biology contributes to an accelerating interest in the 

development of stochastic models with time delay. As a result, numerical methods 

for solving SDDEs are required, and work in this area is far less advanced. The 

recent work of numerical methods for SDDEs were based on the truncating 

of stochastic Taylor expansions. Moreover, the stochastic Taylor expansion as 

expounded in the literature currently is derived to develop the approximation 

method up to 1.0 order of convergence. In order to achieve high order of 

convergence, it is necessary to derive stochastic Taylor expansion of high order. 

The convergence proof of numerical methods of SDDEs when the drift and 

diffusion functions are Taylor expansion has been generalized in this research. 

Currently, there is no derivative—free method to approximate the strong solution 

of SDDEs and this research is aimed to develop SRK4 of order 1.5. By the end of 

this research, it is hoped that the newly developed SRK methods of SDDEs will 

benefit the mathematicians and scientists by providing the derivative—free tool for
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solving SDDEs in various fields. It can also be shown in this research, the SRK 

methods are easy to implement compare to the approximation methods obtained 

from the truncating stochastic Taylor expansion. In this way the computation 

of high—order partial derivatives can be avoided. Moreover, the generalization of 

convergence proof when the drift and diffusion functions are Taylor expansion is 

hoped can facilitate mathematicians to explore this area more widely. 

1.6 Thesis Organization 

A brief description of the chapters contained in the thesis is now presented. 

Chapter 1: This chapter provides an introduction to the whole thesis. It 

introduces the concept of stochastic differential equations and stochastic delay 

differential equations. It also presents some numerical methods used to simulate 

the mathematical models of SDEs and SDDEs. 

Chapter 2: Contains the review of literature for numerical methods in SDEs, 

DDEs and SDDEs. 

Chapter 3: This chapter contains various theories and results from probability 

theory as well as stochastic calculus that are required in later chapters. 

Chapter 4: In this chapter, the stochastic Taylor expansion for autonomous 

SDDEs with a constant time lag is derived. The derivation of three numerical 

schemes up to order 1.5 are presented and the convergence proof stated our 

fundamental result. Numerical examples are performed to assure the validity 

of the numerical methods. 

Chapter 5: This chapter consists of our main result. A new class of SRK for 

Solving SDDEs is formulated. The local truncation error and stability analysis 

for SRK are presented. Numerical algorithm is developed to perform a numerical



example so that the efficiency of the newly develop numerical schemes of SRK4 

can be assured. 

Chapter 6: It is well—known that many of the natural systems in biology have the 

property of an after—effects and subject to the stochasticity. Thus, this chapter 

discusses the possibility of modeling a real phenomenon in batch fermentation via 

SDDEs. With no doubt that the exact solutions of these models are hard to be 

found, hence the newly developed SRK4 is used to simulate the approximation 

solutions of SDDEs.



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The purpose of this chapter is to survey the recent works of numerical 

methods for SDEs, DDEs and SDDEs. The survey is divided into three sections 

by focusing on those kinds of differential equations and numerical methods used 

to approximate them. 

2.2 Stochastic Differential Equations, SDEs 

SDEs arise when the random effect is incorporated into their deterministic 

counterpart. The necessity of this inclusion is due to the fact that almost every 

natural phenomenon in this world is influenced by environmental noise. Indeed, it 

is an inherent property of many physical systems in biology, epidemiology, finance 

and chemical reactions. In the last few years, there has been an accelerating 

interest in the study of SDEs. The inclusion of the noise term in differential 

equations may lead to a fundamentally different methods of analysis. Certainly, 

a reasonable mathematical interpretation of the noise term is a white noise, W(t) 

i.e. frequently known as Wiener process. In SDEs, it is formally interpreted 

as a derivative of a Wiener process, W(t). This process possess the property
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of nowhere differentiable and unbounded variation, hence its integral cannot be 

defined in an ordinary way. In such a case, it is necessary to study the stochastic 

nature of the Wiener process, which then laid to a very important fundamental 

theory in stochastic area, i.e. Ito stochastic integral. Let consider the following 

SDE

dx = ax(t)dt + bdW(t) (2.1) 

where a and b are constants and process W(t) is interpreted as an irregular 

stochastic process such as white noise. It is a Gaussian process which shall 

be treated in details in the next chapter. The white noise is closely linked 

to the theory of Markov processes, hence it provides a convenient tool for the 

investigation of such systems. For further details, we refer readers to a book by 

Has'minskii [17]. In integral form, Eq. (2.1) is written as 

itx(t) = x(to) + 
	

ax(s)ds + b dW(s) 
o	 to 

where the second integral cannot be interpreted as a Riemann—Stieltjes integral. 

Conversely, the integral with respect to Wiener process can be interpreted either 

as ItO stochastic integral or Stratonovich integral. 

As mentioned—above, the white noise process W(t) is nowhere 

differentiable and it is not bounded variation on any bounded interval. Moreover, 

the consequences of unbounded variation property make this integral cannot 

even be interpreted as the Riemann—Stieltjes integral for each sample path. 

Obviously, a significant different between Ito and Riemann—Stieltjes integral is 

the corresponding integrand is evaluated at the left end point of the interval 

t E [t_ 1 , ti]. However, Stratonovich integral follows the same rule with Riemann-

Stieltjes integral as it is obtained as the mean—square limit of the Riemann-

Stieltjes sums, that is evaluated at the middle points of the intervals t E [4 1 , t2]. 

Evidently, deterministic calculus is much more robust to approximation than 

stochastic calculus because the integrand function in Riemann integral can be 

evaluated at an arbitrary point of the discretization sub—interval. Meanwhile, 

the integrand of stochastic integral needs to be evaluated at a specific point in 

the sub—interval, Kloeden and Platen [18].

(2.2)
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