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This paper proposes a new block mapping technique for image authentication and self-recovery designed
to avoid the tamper coincidence problem called the AuSR3. The tamper coincidence problem can arise
when modifications to an image affect the original block and its recovery data, resulting in the inability
to recover the tampered region of the image. The new block mapping technique ensures that the recovery
data of a block is embedded into the most distant location possible, minimizing the tamper coincidence
problem. In addition, the improved LSB shifting algorithm is employed to embed the watermark data con-
sisting of authentication and recovery data. The experimental result shows that the AuSR3 can produce
high-quality watermarked images across various datasets with average PSNR values of 46.2 dB, which
improved by 2.1 dB compared to the LSB replacement technique. The new block mapping technique
avoids the tamper coincidence problem by up to 25% tampering rates. It contributes to the high-
quality recovered image with a PSNR and SSIM value of 39.10 dB and 0.9944, respectively, on a 10% tam-
pering rate on the USC-SIPI dataset.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of multimedia technology has revolutionized
the way we use and interact with images. One of the technologies
is image manipulation software, which refers to various tools and
techniques used to alter or enhance digital images. With advance-
ments in computer technology, image manipulation software has
grown significantly, expanding its capabilities and finding broader
applications across various fields. Nowadays, this software is
employed in diverse settings, from basic photo editing to creating
highly realistic and intricate visual effects. However, throughout its
evolution, image manipulation software has encountered criticism
and controversy due to its capacity to deceive and propagate false
information. In response to these concerns, the researchers have
developed techniques to detect and prevent the dissemination of
manipulated images, such as the image authentication technique.

The image authentication technique is a technique for verifying
the authenticity of digital images. There are two main categories of
image authentication techniques: active and passive. Active image
authentication techniques require preliminary data for authentica-
tion (Prasad and Pal, 2020; Bolourian Haghighi et al., 2019;
Bolourian Haghighi et al., 2018). The preliminary data are com-
monly represented as the watermark data, which will be embed-
ded into the cover image. This watermark data is imperceptible
to the human eye but can be detected using an image authentica-
tion algorithm. Later, the watermark data can be extracted and
used to localize the tampered region of the image. In contrast, pas-
sive image authentication techniques do not involve embedding
watermark data. Instead, they rely on the statistical or structural
properties of the image itself to verify its authenticity (Mushtaq
and Mir, 2014; Liu et al., 2020; Kaur and Gupta, 2019). Passive
techniques are often used when it is not feasible to embed the
watermark data into the image or when real-time authentication
is required (Wei et al., 2019; Armas Vega et al., 2020; Aldahdooh
et al., 2018). However, the passive technique cannot precisely
locate the tampering area of the image and does not provide self-
recovery.

Active image authentication may provide the self-recovery
capability. The technique divides the cover images into non-
overlapping blocks. The technique generates the watermark data
of each image block comprising the authentication and recovery
data. The authentication data is embedded in the original block,
while the recovery data is embedded into a different block within
the image determined by the block mapping (Dadkhah et al., 2014;
Ernawan et al., 2022; Sinhal and Ansari, 2022). The watermarked
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image is then distributed or published into communication chan-
nels with possible attacks. The receiver can now authenticate the
tampered region of the image using the authentication data and
recover it using the recovery data. This recovery capability proves
advantageous when the original image is either unavailable or has
been extensively disseminated, making requesting the original
image from all users impractical (Raj and Shreelekshmi, 2021;
Anbu, 2020; Anand and Singh, 2020).

The tamper coincidence problem can arise when the tampered
region may coincidentally match both the original blocks and the
recovery data, resulting in the inability to recover the tampered
area of the image (Tohidi et al., 2021; Huang et al., 2022;
Ernawan, et al., 2022). It is essential to carefully design the block
mapping technique to mitigate the tamper coincidence problem.
The technique may involve a more sophisticated block mapping
technique that is less prone to the tamper coincidence problem.
Additionally, embedding multiple instances of the recovery data
implementing multiple block mapping may be necessary to
improve image authentication and self-recovery reliability.

Tai and Liao (Tai and Liao, 2018) presented an image authenti-
cation method that detected image tampering and facilitated self-
recovery. The technique utilized a chaotic map embedding
sequence to insert a delicate watermark comprising authentication
and recovery data into another block. The wavelet transform was
utilized instead of the average to mitigate the block artifacts in
the recovered images, enhancing the image’s contrast. A hierarchi-
cal tamper detection strategy was implemented to achieve accu-
rate detection of tampering. Simulation results demonstrated
that the method could withstand collage and constant-average
attacks while maintaining high accuracy in tamper localization.
However, using a chaotic map to generate the block map intro-
duced the issue of tamper coincidence despite a low tampering
rate, adversely affecting the quality of the recovered image.

Fan and Wang (Fan and Wang, 2018) presented an enhanced
fragile watermarking scheme for digital image protection and
self-recovery. The scheme utilized the Set Partitioning in Hierarchi-
cal Trees (SPIHT) algorithm at a block level to ensure that modify-
ing the output bits of the source encoder would only affect the
corresponding image blocks rather than compromising the recon-
struction of the entire image. The embedding location of the recov-
ery data was determined using a chaotic map based on the logistic
map. The check bits were scrambled using a chaotic sequence,
which improved the tampering discrimination capability of the
scheme. However, using the logistic map in the block mapping
technique may lead to tamper coincidence problems, resulting in
a lower-quality recovered image.

Molina-Garcia et al. (Molina-Garcia et al., 2020) presented a
fragile watermarking scheme to authenticate and self-recover
color images. The original image is divided into non-overlapping
blocks, with two watermarks generated for recovery and authenti-
cation purposes in each block. Using a permutation process, these
watermarks were then embedded into different blocks, occupying
the two least significant bits. A bit-adjustment phase was subse-
quently applied to enhance the quality of the watermarked image.
A hierarchical tamper detection algorithm was employed to
achieve accurate detection of tampering. To address the issue of
tamper coincidence, three recovery watermarks were embedded
in different positions to reconstruct a specific block. However,
the random block mapping technique based on the permutation
process may still lead to instances of tamper coincidence despite
a small tampered area, as shown in the experimental result.

Sinhal et al. (Sinhal et al., 2020) presented a blind fragile water-
marking technique designed for color images to provide tamper
detection and self-recovery capabilities. The scheme employed a
secret key-based pseudo-random binary sequence as a fragile
watermark for tamper detection, with the recovery information
2

randomly preserved using the same secret key. In the embedding
process, each channel of the RGB image was divided into non-
overlapping blocks of size 2 � 4 pixels. Experimental results
demonstrated that the scheme successfully identified tampered
regions. However, the random distribution of the recovery data
introduced the possibility of tamper coincidence occurring despite
a low tampering rate, which will reduce the recovered image
quality.

Reyes-Reyes et al. (Reyes-Reyes et al., 2021) presented a fragile
watermarking scheme to handle high tampering rates and provide
color image authentication and self-recovery capabilities. The orig-
inal image is divided into non-overlapping blocks, generating a
recovery watermark for each block. A single bit was derived for
the block authentication by applying the bitwise exclusive OR
(XOR) operation to the recovery watermarks. To address the issue
of tamper coincidence, the embedding and extraction process
could be implemented in three variants. Three, six, or nine copies
of the generated watermarks could be embedded depending on
the chosen variant. In the post-processing stage, a specialized pro-
cedure was applied to identify regions affected by the tamper coin-
cidence problem within each recovery watermark. However, the
experimental results show that the scheme does not completely
eliminate the tamper coincidence problem occurring at a low tam-
pering rate.

Hussan et al. (Hussan et al., 2022) presented an image water-
marking technique for the detection of tampering and recovery
of color images. The method initially separated the color image
into three planes, each further divided into four equal halves. These
halves were then subdivided into non-overlapping blocks of size
4 � 4. From a group of four corresponding sub-blocks, a 32-bit
watermark was generated, consisting of the average value and an
8-bit data segment indicating the location of the mapped block.
This 32-bit watermark was encrypted using gray code and subse-
quently embedded into 2LSB of the mapped block. The embedding
process utilized a chaotic sequence to ensure a recovery process
could be performed even if all three planes were tampered with.
However, the chaotic sequence employed in this method for block
mapping has the potential to introduce tamper coincidence
problems.

Sahu et al. (Sahu et al., 2023) presented a dual image-based
reversible fragile watermarking scheme. The scheme embeds two
secret bits into each pixel using a pixel readjustment strategy.
Through maximal modifications of ± 1 to non-boundary pixels
based on watermark data, this technique ensures both reversibility
and a triple objective of higher capacity, improved perceptual
transparency, and robustness. The scheme could identify and local-
ize the tampered regions, maintaining high accuracy and precision
across diverse tampering scenarios while demonstrating resilience
against intentional and unintentional attacks (Sahu, 2023). In addi-
tion, the scheme implemented blind watermark bit generation
using a chaotic system based on the logistic map, improving tam-
per detection and localization efficiency.

It can be summarized that previous research has not considered
that the designed block mapping technique will affect the rate of
the tamper coincidence problem. A high tamper coincidence prob-
lem can lead to a low-quality recovered image caused by losing its
recovery information. This paper improves the previous research of
the AuSR1 (Aminuddin and Ernawan, 2022) and AuSR2
(Aminuddin and Ernawan, 2022) for image authentication and
self-recovery. The improved technique is called the AuSR3, focus-
ing on developing a new block mapping technique to avoid the
tamper coincidence problem. In addition, the AuSR3 also improves
the LSB shifting technique to produce a high-quality watermarked
image. In summary, the contribution of this paper is presented as
follows:
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1) Tamper coincidence problem: The new block mapping tech-
nique of the AuSR3 is expected to eliminate the tamper coin-
cidence problem by up to 25% tampering rate. In addition,
when it is higher than 25%, the AuSR3 is expected to
decrease the tamper coincidence problem by up to 10%.

2) Watermarked image quality: The improved LSB shifting
algorithm is expected to improve the watermarked image
quality by up to 2 dB of PSNR value compared to the LSB
replacement technique.

3) Recovered image quality: The elimination of the tamper
coincidence problem and the improved LSB shifting algo-
rithm is expected to increase the recovered image quality
by up to 2 dB of PSNR value compared to the existing
techniques.

In addition, the practical advantages of tamper localization in
the AuSR3 are diverse and span various fields, such as digital foren-
sics, criminal investigations, media authentication, biometric secu-
rity, and medical imaging. Furthermore, self-recovery mechanisms
are valuable when tampering attempts might go unnoticed or
manual intervention is impractical.

The following sections of the paper are structured as follows:
Section 2 reviews related to the existing AuSR framework and
the existing block mapping techniques. Section 3 outlines the pro-
posed AuSR3 method, including the AuSR3 block mapping, the
watermark embedding, the watermark extraction, and its evalua-
tion technique. Section 4 presents experimental results for the pro-
posed AuSR3 method and compares its performance to the existing
methods. Finally, Section 5 offers conclusions on the AuSR3.
2. Related works

This section discusses the existing image authentication and
self-recovery framework (AuSR) from the previous research. In
addition, this section also presents two block mapping techniques
to decide the embedding location of the recovery data: random
block mapping and uniform block mapping.
2.1. AuSR framework

The authentication and self-recovery (AuSR) framework was
previously introduced in the AuSR1. It covers various basic authen-
tication and self-recovery stages. The framework includes water-
mark embedding, tamper localization, and self-recovery
techniques. The AuSR1 was superior to the existing techniques
regarding watermarked image quality, tamper localization accu-
racy, and recovered image quality. Further improvements were
made on the AuSR2, emphasizing the texture preservation tech-
nique for recovery. The contribution of the AuSR1 and the AuSR2
is shown in Fig. 1. It also includes the improvement of the AuSR3
in the block map generation, watermark embedding, and block
map reconstruction, highlighted in blue.

The main concern of proposing the AuSR3 is that the AuSR1 and
AuSR2 still suffer the tamper coincidence problem despite a small
tampering area. Further investigation revealed that the random
block mapping technique is the cause of this problem. A block
map decides the embedding location of the recovery data. If the
recovery data is embedded in the original block location, then
the recovery data will not be available when the block has been
tampered with. In the AuSR1 and AuSR2, the recovery data is
embedded into another block location based on the random block
mapping technique. In a random block map, the recovery data may
be embedded near the original block location, leading to the tam-
per coincidence problem when both blocks are tampered with.
3

Therefore, the AuSR3 is proposed to avoid the tamper coincidence
problem, eventually increasing the recovered image quality.

2.2. Random block mapping

A random block map can be produced using the Pseudo-
Random Number Generator (PRNG). PRNG is a widely used compu-
tational tool that produces a sequence of numbers that appears to
be random but is generated by a deterministic algorithm. The
sequence of numbers produced by a PRNG is not truly random
because it is based on a mathematical formula or algorithm. It
means that the output is predictable and can be replicated if the
seed value and algorithm used to generate it are known. This deter-
ministic behavior is an advantage in block map generation as it
generates identical block maps in the watermark embedding and
extraction process. The AuSR1 and AuSR2 defined the seed value
as the key for authentication and self-recovery. Even though PRNG
has a deterministic behavior, the output of a good PRNG will be
statistically random, meaning that it will have properties similar
to a truly random sequence of numbers, such as being uniformly
distributed and having no discernible patterns. In a random block
mapping technique, the original block location is randomized using
PRNG and a secret key to produce a random block map. The ran-
dom block map can be illustrated in Fig. 2.

Fig. 2(a) shows that each image block is numbered from 1 to n,
where n is the maximum number of image blocks. In the example,
the 1D image block has eight blocks, while the 2D image block has
64 image blocks. The numbered block is then scrambled using
PRNG to produce a random block map, shown in Fig. 2(b). This ran-
dom block map determines the embedding location of the recovery
data in AuSR1 and AuSR2. This random block map is the basic tech-
nique to prevent the tamper coincidence problem. Furthermore,
Fig. 2(c) shows the Euclidean distances between the original block
location and the random block map. The Euclidean distance can be
calculated as follows:

edx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
obx � rbxð Þ2 þ oby � rby

� �2q
ð1Þ

where obx and oby represent the original block location, rbx and rby
denote the recovery block location, and edx,y indicates the Euclidean
distance of a block with � and y coordinates. In Fig. 2, the Euclidean
distance is color-coded between red and yellow, representing its
probability of tamper coincidence problem. Red means a high risk
of tamper coincidence problem, while yellow indicates a low risk
of tamper coincidence problem. Furthermore, the distribution of
the Euclidean distance in a random block map is shown in Fig. 3.

Fig. 3 shows the random block map distribution based on
256 � 256 blocks. It is based on an image with a size of
512 � 512 pixels divided into blocks of 2 � 2 pixels. The bell-
shaped curve of the normal distribution can be seen up to the
Euclidean distance of 256, which is the maximumwidth and height
of the image block. When the Euclidean distance passes this value,
the distribution slopes down to

p
2 of 256, representing the maxi-

mum Euclidean distance of the image diagonal. Based on Fig. 3(b),
it can be seen that almost 30% of the blocks lie at a high risk of tam-
per coincidence problems since the recovery block is embedded
near the original block location. In addition, 75% of recovery data
is embedded in the medium to high risk of tamper coincidence
problem.

2.3. Uniform block mapping

As previously mentioned, the random block mapping technique
has a limitation in which many recovery data are embedded near
the original block locations. It raises the question of the furthest
distance possible to embed the recovery data. In a 1D block map,



Fig. 1. Image authentication and self-recovery framework.

Fig. 2. Random block map and its Euclidean distance (a) Original block location (b) Random block map(c) Euclidean distance (i) 1D block map (ii) 2D block map.
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the recovery data of the first block can be embedded into the last
block. Next, the recovery data of the second block can be embed-
ded into the second last block. It ensures that the first block has
the most distance recovery data location. However, the recovery
data of the center block will be embedded into the next adjacent
block, which will cause the tamper coincidence problem. A better
way to embed the recovery data is based on uniform block map-
ping. It embeds the first half of the block map into the second half
4

sequentially. Thus, each recovery data is embedded in an equal dis-
tance, the half-width of the 1D block map. The uniform block map
can be illustrated in Fig. 4.

Based on Fig. 4(c), the Euclidean distance between the original
block location and the recovery data in a 1D block map is exactly
four blocks, half the image width. In comparison, a 2D uniform
block map embeds the recovery data based on the following
equation:



Fig. 3. Random block map distribution (a) Distribution (b) Integral distribution.

Fig. 4. Uniform block map and its Euclidean distance (a) Original block location (b) Uniform block map(c) Euclidean distance (i) 1D block map (ii) 2D block map.
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rbx ¼ bobx þ wb
2

� �
c mod wb ð2Þ

rby ¼ boby þ hb
2

� �
cmod hb ð3Þ

where wb and hb represent the width and the height of the block
map, obx,y denotes the original block location, rbx,y indicates the
recovery block location, and bxc represents the floor function of x.
The uniform block map provides a medium risk of tamper coinci-
dence problems. However, from a security perspective, it is easy
for the attacker to locate the recovery data since the distribution
is predictable. In addition, the uniformity of the block map may pro-
duce a large chunk of tamper coincidence problems when the tam-
pering rate is larger than 25%. Therefore, it will reduce the quality of
the recovered image.
3. Proposed method

This section explains the proposed method of the AuSR3. At
first, the new block mapping technique of the AuSR3 is presented.
Next, the watermark embedding and extraction are discussed.
5

Finally, the evaluation of the AuSR3, including the TCP rate, preci-
sion, PSNR, and SSIM, is explained.

3.1. AuSR3 block mapping

The proposed AuSR3 block mapping technique aims to over-
come the limitation of random and uniform block mapping while
maintaining the advantages. The random block mapping technique
has the advantage of the security key involved in PRNG, but it may
produce a high risk of tamper coincidence problems within a small
Euclidean distance. In comparison, the uniform block mapping
technique has the advantage of a safe Euclidean distance of recov-
ery data, while it does not provide any security. The proposed
AuSR3 block map is generated as follows:

1) Compute the required size of the block map. The block map
size is M/2 � N/2, where M represents the image’s height,
and N indicates the image’s width.

2) Generate a vector rn to store random numbers from 1 to n,
where n represents the number of blocks in Step 1. The ran-
dom number is generated using the PRNG with an integer
security key, as shown in (4).
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3) Generate a matrix for the AuSR3 block map with the
required size as in Step 1. Populate the block map using
(5) and (6) starting from the central location of the block
map. It moves in an outward spiral direction until it reaches
the edge of the block map.

rn1���n ¼ PRNGðn; keyÞ ð4Þ

rbx ¼ obx þ wb
2

� �� �
mod wb; if ; rni mod 2 ¼ 0

rni mod wb; if ; rni mod 2 ¼ 1

(
ð5Þ

rby ¼ oby þ hb
2

� �� �
mod wb; if ; rni mod 2 ¼ 1

rni mod wb; if; rni mod 2 ¼ 0

(
ð6Þ

where wb represents the width of the block map, hb denotes the
height of the block map, obx,y denotes the original block location,
and rbx,y indicates the recovery block location. The equation shows
that the recovery data is embedded into a random x-axis with a
fixed y-axis or a fixed x-axis with a random y-axis. The fixed axis
is derived from the uniform block mapping technique, while the
random axis is derived from the random block mapping technique.

4) Resolve the conflict that may occur when the rbx,y is already
populated in the previous iteration. Increment the value of
rni until it reaches the increment threshold. This threshold
is defined to prevent an infinite loop.

5) List all the residual conflicts in a vector. The 1D uniform
block mapping technique resolves the residual conflicts until
all blocks are mapped accordingly.

Once the block map is completed, it can be used for the water-
mark embedding and extraction process. The block map recon-
struction process must use the identical security key to the block
map generation process. Different security keys will produce dif-
ferent block maps, making it unusable for self-recovery. The pro-
posed AuSR3 block mapping technique can be illustrated in Fig. 5.

The original block location is color-coded to show each region of
the block map, as shown in Fig. 5(a). In the 1D block map, the block
map is divided into two regions, while in the 2D block map, the
block map is divided into four regions. Fig. 5(b) shows that the
recovery data is mapped in a different region of the block map.
For example, the purple region of the block map is distributed ran-
Fig. 5. AuSR3 block map and its Euclidean distance (a) Original block location (b)

6

domly to the other three regions. Therefore, the minimum Eucli-
dean distance of the 2D block map is 4, representing half of the
image’s width. Furthermore, the comparison of block map distribu-
tion is shown in Fig. 6.

In Fig. 6(a), the block map size is 256 � 256 blocks, representing
the number of image blocks tested in the experiment. It shows that
the block map distribution of the proposed AuSR3 is shifted to the
right compared to the random block map distribution. In compar-
ison, the uniform block map has 65.536 blocks, with a single Eucli-
dean distance value being half the block map diagonal distance. In
Fig. 6(b), 47% of the random block map lies within the Euclidean
distance of less than 128, representing half of the image width or
height. Therefore, these blocks may suffer the tamper coincidence
problem despite a low tampering rate of less than 25%. In compar-
ison, the minimum Euclidean distance of the AuSR3 block map is
128, which prevents the tamper coincidence problem on the image
when the tampering rate is less than 25%. Furthermore, each block
mapping technique will be evaluated to find the tamper coinci-
dence problem rate under various tampering scenarios.

3.2. Watermark embedding

The proposed method embeds the watermark data into two LSB
of 2 � 2 pixels image block. The watermark data consists of
authentication data and recovery data. The authentication data is
designed to be sensitive to changes in the image. Thus, when
embedded, any tampering or modification of the image would
cause the authentication data to become distorted or destroyed,
which makes it possible to detect any unauthorized changes made
to the image. On the other hand, the recovery data is embedded
into another block location based on the block mapping to prevent
the recovery data from being destroyed when tampering or modi-
fication occurs. The embedding process is shown as follows:

1) Divide the cover image into RGB channels and divide each
channel into image blocks of 2 � 2 pixels.

2) Generate the proposed AuSR3 block map with a secret inte-
ger as a key for the selected channel. The block map size and
the channel type (red = 1, green = 2, or blue = 3) are incorpo-
rated into the secret key to ensure each channel has a differ-
ent AuSR3 block map.
AuSR3 block map(c) Euclidean distance (i) 1D block map (ii) 2D block map.



Fig. 6. Comparison of block map distribution (a) Distribution (b) Integral distribution.
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3) Calculate the average value of the four pixels of each image
block and take 6 MSB of the average value as the recovery
data.

4) Embed the recovery data into a distant block location based
on the AuSR3 block map. Select three pixels of the target
block location to embed the 6 bits of recovery data using
the LSB shifting algorithm (Aminuddin and Ernawan,
2022). Those three pixels are randomly selected using the
target block map location as the secret key.

5) Generate two bits of authentication data from the first 6
MSB of the selected three pixels in the original block loca-
tion. The first bit is taken from the parity bit of those 18 bits.
At the same time, the second bit is taken from the parity bit
of the target block map location. This step ensures that two
similar blocks would have different authentication data.

6) Embed the authentication data into the last pixel of its orig-
inal block location using the LSB shifting algorithm
(Aminuddin and Ernawan, 2022). It is safe to embed the
authentication data using the LSB shifting algorithm since
the selected pixel is not considered in the authentication
data generation.

7) Repeat steps 2 to 6 until each image channel and block are
embedded with the respective watermark data.

Once the authentication and recovery data is successfully
embedded, the watermarked image can be published or sent to
the internet. If the watermarked image undergoes any modifica-
tion, the proposed method should be able to detect and localize
the tampered region of the image. In addition, the tampered region
could be recovered using the recovery data.

3.3. Watermark extraction

In the communication channel, the watermarked image may be
tampered with or modified by an unauthorized party. The pro-
posed method can extract the watermark data to localize and
recover the tampered region of the image. The extraction process
consists of block map reconstruction, watermark extraction and
reconstruction, tamper detection and localization, tamper coinci-
dence localization, image inpainting, and self-recovery. The extrac-
tion process is described as follows:

1) Divide the tampered image into RGB channels and divide
each channel into image blocks of 2 � 2 pixels.
7

2) Reconstruct the AuSR3 block map of each channel using the
secret key. The secret key is used as the seed number of the
PRNG in the proposed AuSR3 block mapping technique.
Thus, the reconstruction process can only be done using
the identical key as the block map generation process.

3) Extract the watermark data from the tampered image. The
process extracts two LSB of the selected image block. The
first two bits are the authentication data of the selected
image block, while the last six bits are the recovery data of
another block based on the inversed AuSR3 block map.

4) Reconstruct the authentication and recovery data from the
tampered image. The reconstruction process is identical to
the watermark generation process. The only difference is
that the watermark generation process takes the cover
image as the input, while the watermark reconstruction pro-
cess takes the tampered image as the input.

5) Localize the tampered region of the image using three-layer
authentication, previously defined in (Aminuddin and
Ernawan, 2022). The three-layer authentication requires
two inputs: the extracted and reconstructed authentication
data.

6) Localize the tamper coincidence problem inside the tam-
pered region of the image. A block is considered a tamper
coincidence problem when the original and recovery blocks
are tampered with at the same time.

7) Solve the tamper coincidence problem using the image
inpainting as follows:

tc ¼
P8

i¼1ntci �wiP8
i¼1wi

ð7Þ
di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntcx � tcxð Þ2 þ ðtcy � tcyÞ2

q
; i ¼ 1 � � �8 ð8Þ
wi ¼ 1� di

dmax

� �
� d�2

i ð9Þ

where tc and tcx,y represents the new pixel value and location of the
tamper coincidence problem, ntci and ntcx,y describes the current
pixel value and location of the selected neighboring non-tamper
coincidence problem, di indicates the Euclidean distance between
tcx,y and ntcx,y, and wi is the weight of the selected ntci. Each ntcx,y
is the closest neighbor of tcx,y, representing the cardinal direction
within a 45-degree angle.



A. Aminuddin and F. Ernawan Journal of King Saud University – Computer and Information Sciences 35 (2023) 101755
8) Recover the tampered blocks with their respective recovery
data. If the recovery data undergoes the tamper coincidence
problem, the output of the image inpainting is used instead.

9) Repeat steps 2 to 8 until the tampered region of each image
channel and block are recovered.

Once the extraction process is completed, the proposed method
produces three images. The first image shows the tampered region
of the image in white, while the untampered region is shown in
black. The second image is the recovered image. The third image
shows the tamper coincidence problem within the recovered
image.

3.4. Evaluation

The proposed method can be investigated through three evalu-
ation techniques. The performance of the block mapping technique
can be evaluated based on the rate of the tamper coincidence prob-
lem. The precision of the tamper localization technique can be
evaluated using the confusion matrix. The watermarked and recov-
ered image quality can be evaluated using the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The
rate of the tamper coincidence problem is defined as follows:

tcprate ¼
tcp
m � n ð10Þ

where tcp represents the number of pixels with the tamper coinci-
dence problem,m represents the image’s height, and n indicates the
image’s width. A low tcprate value represents a robust block map-
ping technique, while a high tcprate value represents severe tamper
coincidence problems. The precision of the tamper localization is
calculated as follows:

precision ¼ TP
TP þ FP

ð11Þ

where TP represents the number of true positive detections, and FP
represents the number of false positive detections. Finally, the
watermarked and recovered image quality is measured using the
PSNR (Pourasad et al., 2021). The PSNR is defined by:

PSNRðp; qÞ ¼ 10 log10
S2

1
m�n

Pm�1
x¼0

Pn�1
y¼0 p x; yð Þ � q x; yð Þð Þ

ð12Þ

where S represents the maximum intensity value of 255 on an 8-bit
image, p is the cover image, and q is the watermarked or recovered
image. PSNR is calculated by comparing the mean squared error
(MSE) between the two images. The MSE represents the average
squared difference between both images in the corresponding pixel
locations. PSNR is derived from MSE and expressed in decibels (dB),
which provides a logarithmic scale to represent the difference in
quality. Higher PSNR values indicate lower distortion levels and
better quality, while lower values indicate more pronounced distor-
tion and poorer quality. Furthermore, SSIM is also used to measure
the similarity between two images based on the quality perception
of the Human Visual System (HVS) (Ranjbarzadeh et al., 2020). The
SSIM is defined by:

SSIM p; qð Þ ¼ 2lplq þ C1

l2
p þ l2

q þ C1
� 2rprq þ C2

r2
p þr2

q þ C2
� rpq þ C3

rprq þ C3
ð13Þ

where C1, C2, and C3 are numerical constants that stabilize the divi-
sion of a weak denominator. SSIM compares the local image struc-
ture in small windows across two images. It measures the similarity
of the luminance, contrast, and structure of each window between
the two images and combines these measures to obtain an overall
SSIM score. SSIM is a perceptual metric used to measure the similar-
ity between two images. Unlike PSNR, which primarily focuses on
8

pixel-level differences, SSIM considers structural information and
human visual perception systems. The SSIM index ranges from �1
to 1, where 1 indicates perfect similarity between the images, and
�1 indicates complete dissimilarity. The closer the SSIM value is
to 1, the more similar the images are perceived.
4. Experimental results

In this section, multiple experiments are performed to evaluate
the superiority of the proposed method compared to the existing
methods. The experiments were carried out on a computer with
an 8 � 2 cores of 1.8 GHz base clock AMD Ryzen 7 5700U and
32 GB memories which runs Matlab R2021a on the Windows 11
operating system. The test images are taken from the USC-SIPI
database (‘‘SIPI Image Database, 2023) comprising eight color
images: Airplane, Baboon, House, Lena, Peppers, Sailboat, Splash,
and Tiffany. Each image has a size of 512 � 512 pixels. In addition,
two more datasets are included in the experiment: Kodak-
PCD0992 and UCID-1338. The Kodak-PCD0992 dataset (‘‘True
Color Kodak Images, 2023) comprises 24 images (512 � 768 pix-
els), while the UCID-1338 dataset (Schaefer and Stich, 2004) com-
prises 1.338 images (512 � 384 pixels). The performance of AuSR3
is assessed in four sets of experiments. The first set compares the
watermarked image quality using PSNR and SSIM between the
cover and watermarked images. The second set compares the pre-
cision of the tamper detection and localization. The third set com-
pares the number of the tamper coincidence problem. The fourth
set compares the recovered image quality in terms of PSNR and
SSIM between the cover and the recovered image.
4.1. Watermarked image quality

In the first set of experiments, the watermark data consisting of
authentication and recovery data are embedded into the cover
image. The differences between the cover and watermarked
images can be measured using PSNR and SSIM. As previously men-
tioned, the AuSR3 embeds the cover image with the watermark
data using the LSB shifting algorithm improved from AuSR1 and
AuSR2. Previously, the LSB shifting algorithm could only be used
for embedding the recovery data, while the authentication data
was embedded by replacing 2 LSB of the selected pixel. Implement-
ing the LSB shifting algorithm on authentication data may render
the authentication data useless since the authentication data gen-
eration was computed based on 6 MSB of all pixels in a block. This
is because the LSB shifting algorithm may modify up to 6 MSB of
the selected pixel for embedding the authentication data. There-
fore, the authentication data of that block must be recomputed
to produce new authentication data. However, embedding the
new authentication data using the LSB shifting algorithm may fur-
ther destroy the new authentication data. It will lead to an infinite
loop or race condition unless the authentication data is embedded
using 2 LSB replacements.

The improvement of AuSR3 is that all the watermark data can
be embedded using the LSB shifting algorithm, including the recov-
ery data and authentication data. The AuSR3 only considers the n-1
pixels in each block for authentication data generation. The
authentication data generation does not consider the selected pixel
for authentication data embedding. Therefore, the LSB shifting
algorithm can embed all the watermark data without destroying
the authentication data. As a result, the quality of the watermarked
image is significantly improved, as shown in Tables 1–3.

The AuSR3 achieves an average PSNR value of 46.20 dB and
SSIM value of 0.9978 in the USC-SIPI dataset, higher than the exist-
ing schemes. In comparison, the most common technique for LSB
embedding is using the LSB replacement technique, which has



A. Aminuddin and F. Ernawan Journal of King Saud University – Computer and Information Sciences 35 (2023) 101755
been implemented by Tai (Tai and Liao, 2018) and Fan (Fan and
Wang, 2018). In this technique, the difference between the original
and watermarked pixels ranges from 0 to 3 intensity levels for 2
LSB embedding. When these differences are computed based on
PSNR, the value will be averaged to 44.08 dB. In comparison,
Molina-Garcia (Molina-Garcia et al., 2020) and Hussan (Hussan
et al., 2022) have implemented the bit adjustment technique,
which produces the PSNR value of 44.64 and 44.83 dB, respec-
tively. Their technique has slightly improved the common LSB
replacement technique. However, the AuSR3 significantly
improves the watermark embedding technique using the LSB shift-
ing algorithm, producing a high-quality watermarked image com-
pared to the existing techniques.
4.2. Tamper detection and localization

In the second set of experiments, the watermarked images are
tampered with using regular and irregular attacks. Regular attacks
refer to adding a square noise in the central region of the water-
marked images, ranging from 10% to 80% tampering rates. Regular
attacks provide precise tampering rates, while irregular attacks
provide a real-life example of image tampering attacks. Once the
image is tampered with, the AuSR3 can be used to detect and local-
ize the tampered region of the image. The tamper localization tech-
nique can be evaluated based on the confusion matrix comprising
true positive rate (TPR), false positive rate (FPR), false negative rate
(FNR), and true negative rate (TNR). Furthermore, the precision, F1
score, and accuracy can be derived from the confusion matrix.
These values are then compared to the existing schemes to show
the performance of tamper localization, as shown in Table 4 and
Table 5.

Table 4 shows that the AuSR3 can produce high precision, F1
score, and accuracy. Furthermore, Table 5 shows that the AuSR3
is comparable to the AuSR1 and produces a high precision com-
pared to other techniques. The result of AuSR1 was quite similar
to AuSR3 because both use the same technique with block sizes
of 2 � 2 pixels, while AuSR2 employed a larger block size of
3 � 3 pixels. Smaller block sizes increase the precision of tamper
localization as it can reduce the FPR. However, the FPR can be tol-
erated in image authentication and self-recovery as the false posi-
tive detection should be recovered in the recovery process. At the
same time, FNR will render the tampered region of the image unre-
coverable as the recovery process fails to detect the block as a tam-
pered block. Therefore, researchers are competing to maximize the
TPR while minimizing the FNR. Furthermore, the authentication
data for each block is limited to 2 bits. If computed based on the
probability, 1-bit authentication data may produce 50% TPR, while
2-bit authentication data may produce 75% TPR. The AuSR3 imple-
mented the three-layer authentication algorithm, increasing the
TPR to 100% on regular attacks and 99% on irregular attacks. There-
fore, it increases the chance of recovering the tampered region.
Table 1
Watermarked images comparison of the PSNR values on the USC-SIPI dataset.

Image Tai (Tai and
Liao, 2018)

Fan (Fan and
Wang, 2018)

Molina-Garcia (Molina-
Garcia et al., 2020)

Hussa
et al.,

Airplane 44.12 44.11 44.69 44.70
Baboon 44.14 44.12 44.64 44.92
House 44.18 44.18 44.66 44.70
Lena 44.12 44.13 44.60 44.98
Peppers 44.06 44.06 44.54 44.76
Sailboat 44.11 44.10 44.61 44.87
Splash 44.09 44.08 44.47 44.84
Tiffany 43.85 43.84 44.87 44.89
Average 44.08 44.08 44.64 44.83
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The AuSR3 embeds the authentication data on the randomly
selected pixel of the image block. One of the four pixels in the
image block stores the authentication data, while the other three
are used to store the recovery data of another block. The image
tampering attack on an image block can be categorized into three
possible scenarios. The first scenario is that the tampering attack
only applied to the pixel with the authentication data. The second
scenario is that the tampering attack only occurred on the pixels
without the authentication data. In both cases, the difference
between the extracted and reconstructed authentication data will
firmly localize the block as the tampered block. The third scenario
is that all the pixels in the image block are tampered with. In such a
case, the extracted and reconstructed authentication data could be
precisely identical, which leads to false negative detection. There-
fore, the three-layer authentication is implemented to reduce false
negative detection.

In Fig. 7, the images from the USC-SIPI dataset undergo various
irregular attacks. It includes a Gaussian blur attack applied to the
Airplane and Sailboat images. The cropping attacks are applied to
the Lena and Tiffany images. Furthermore, various attacks, such
as normal, protocol, collage, copy-move forgery, and vector quanti-
zation (Bolourian Haghighi et al., 2019), are also applied to the
dataset. In this scenario, the AuSR3 can detect and localize the tam-
pered region of the image with high precision and accuracy. In
addition, Fig. 7 also shows the tamper coincidence problem under
various irregular attacks. The tamper coincidence problem is elim-
inated when the tamper region is below 25 %, such as on the Splash
image.
4.3. Tamper coincidence problem

In the third set of experiments, the performance of the AuSR3 is
evaluated based on the rate of the tamper coincidence problem in
the tampered region of the image. As mentioned earlier, the AuSR3
implements a new block mapping technique to avoid the tamper
coincidence problem. The AuSR3 ensures that the recovery data
of a block should be embedded into the most distant location pos-
sible from the original block location. Therefore, it lowers the
chance of the original and recovery blocks being tampered with
at the same time, avoiding the tamper coincidence problem. In this
experiment, the watermarked images are tampered with in various
locations, ranging from 10% to 80% tampering rates, as shown in
Fig. 8.

There are nine regions selected in this experiment: top left, top
center, top right, center left, center, center right, bottom left, bot-
tom center, and bottom right. These nine locations are selected
to prove that the new block mapping technique is carefully
designed to avoid the tamper coincidence problem wherever the
tamper is located. Once all of the images are tampered with, the
AuSR3 then detects and localizes the tampered region of the
images. The tamper localization and the new block mapping are
n (Hussan
2022)

AuSR1 (Aminuddin and
Ernawan, 2022)

AuSR2 (Aminuddin and
Ernawan, 2022)

AuSR3

45.68 46.05 46.37
45.70 46.06 46.37
45.69 46.07 46.36
45.71 46.06 46.37
45.54 45.87 46.16
45.68 46.04 46.35
45.57 45.93 46.22
44.95 45.20 45.38
45.57 45.91 46.20



Table 2
Watermarked images comparison of the SSIM values on the USC-SIPI dataset.

Image Tai (Tai and
Liao, 2018)

Fan (Fan and
Wang, 2018)

Molina-Garcia (Molina-
Garcia et al., 2020)

Hussan (Hussan
et al., 2022)

AuSR1 (Aminuddin and
Ernawan, 2022)

AuSR2 (Aminuddin and
Ernawan, 2022)

AuSR3

Airplane 0.9781 0.9781 0.9812 0.9830 0.9889 0.9901 0.9914
Baboon 0.9941 0.9941 0.9947 0.9984 0.9990 0.9991 0.9992
House 0.9815 0.9815 0.9834 0.9950 0.9967 0.9970 0.9974
Lena 0.9820 0.9820 0.9840 0.9989 0.9993 0.9994 0.9995
Peppers 0.9791 0.9791 0.9816 0.9988 0.9991 0.9992 0.9992
Sailboat 0.9868 0.9867 0.9884 0.9968 0.9980 0.9982 0.9984
Splash 0.9696 0.9695 0.9737 0.9975 0.9983 0.9985 0.9987
Tiffany 0.9805 0.9804 0.9846 0.9978 0.9985 0.9986 0.9987
Average 0.9815 0.9814 0.9840 0.9958 0.9972 0.9975 0.9978

Table 3
Watermarked images comparison between the AuSR3 and the existing methods across various datasets.

Dataset AuSR1 (Aminuddin and
Ernawan, 2022)

AuSR2 (Aminuddin and
Ernawan, 2022)

AuSR3

PSNR SSIM PSNR SSIM PSNR SSIM

USC-SIPI 45.57 0.9972 45.91 0.9975 46.20 0.9978
Kodak-PCD0992 45.58 0.9953 45.93 0.9958 46.22 0.9963
UCID-1338 45.62 0.9949 45.96 0.9954 46.25 0.9958
Average 45.59 0.9958 45.93 0.9962 46.22 0.9966

Table 4
The tamper detection and localization of the AuSR3 on the USC-SIPI dataset.

TR TPR FPR FNR TNR Accuracy F1 Score Precision

10 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 0.0022 0.0000 0.9978 0.9989 0.9989 0.9978
30 1.0000 0.0061 0.0000 0.9939 0.9969 0.9970 0.9939
40 1.0000 0.0083 0.0000 0.9917 0.9959 0.9959 0.9918
50 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
60 1.0000 0.0076 0.0000 0.9924 0.9962 0.9962 0.9925
70 1.0000 0.0217 0.0000 0.9783 0.9891 0.9893 0.9787
80 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
Average 1.0000 0.0057 0.0000 0.9943 0.9971 0.9972 0.9943

Table 5
The precision between the AuSR3 and the existing schemes on the USC-SIPI dataset.

TR Tai (Tai and
Liao, 2018)

Fan (Fan and
Wang, 2018)

Molina-Garcia (Molina-
Garcia et al., 2020)

Reyes-Reyes (Reyes-
Reyes et al., 2021)

AuSR1 (Aminuddin and
Ernawan, 2022)

AuSR2 (Aminuddin and
Ernawan, 2022)

AuSR3

10 0.9670 0.8007 0.9152 0.9157 1.0000 0.9986 1.0000
20 0.9855 0.9210 0.9580 0.9585 0.9978 0.9934 0.9978
30 0.9903 0.9144 0.9716 0.9718 0.9939 0.9909 0.9939
40 0.9939 0.9483 0.9797 0.9799 0.9918 0.9959 0.9918
50 1.0000 1.0000 0.9884 0.9885 1.0000 0.9890 1.0000
60 0.9943 0.9601 0.9848 0.9849 0.9925 0.9925 0.9925
70 0.9958 0.9748 0.9876 0.9877 0.9787 0.9785 0.9787
80 0.9963 0.9659 0.9891 0.9892 1.0000 0.9500 1.0000
Average 0.9904 0.9357 0.9718 0.9720 0.9943 0.9861 0.9943
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then employed to locate the tamper coincidence problem, as visu-
alized in Fig. 9.

In the recovery process, the tamper coincidence problem will be
recovered using the image inpainting technique. It solves the tam-
per coincidence problem using the neighboring pixels to predict
the recovery data. The closer the neighboring pixels, the better
the recovered image quality, and it will take less time to recover
the tamper coincidence problem. In the random block mapping,
the tamper coincidence problem is spread throughout the whole
tampered region of the image. In comparison, the tamper coinci-
dence problem of the uniform block mapping concentrates on four
edges of the tampered region of the image. This high density of
tamper coincidence problem makes it difficult for the image
inpainting technique to predict the recovery data precisely. In
10
addition, it will take more computation time to solve the tamper
coincidence problem. From the security perspective, the recovery
data location of the uniform block mapping is highly predictable.
Thus, the security of image authentication will be compromised.
The comparison of the tamper coincidence problem is shown in
Table 6.

Most experiments show that the AuSR3 produces zero tamper
coincidence problems on 10% and 20% tampering rates. Theoreti-
cally, the new block mapping technique should avoid the tamper
coincidence problem by up to 25% tampering rates, as formulated
in Eqs. (5) and (6). In comparison, the AuSR2 implemented a ran-
dom block mapping technique and multiple recovery data, produc-
ing 5.27% tamper coincidence problems under a 20% tampering
rate. At the same time, the AuSR1 produces a more severe tamper



Fig. 7. Irregular tampering attacks (a) Airplane (b) Baboon (c) House (d) Lena (e) Peppers (f) Sailboat (g) Splash (h) Tiffany (i) Tampered image (ii) Tamper detection and
localization (iii) Tamper coincidence problem (iv) Recovered image.
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coincidence problem of 7.36% on the same tampering rate. It
demonstrates that the new block mapping technique outperforms
the existing random block mapping techniques to avoid the tamper
coincidence problem. Furthermore, the standard deviation of the
11
AuSR3 between multiple tampering locations maximized at
0.55% at a 40% tampering rate. It shows that the tampering loca-
tions do not significantly affect the rate of tamper coincidence
problem of the AuSR3.



Fig. 7 (continued)
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4.4. Recovered image quality

In the fourth set of experiments, the tampered images are
recovered, and the results are then analyzed and compared based
on the PSNR and SSIM. The PSNR and SSIM values are computed
between the cover and recovered images. Thus, when no tamper-
ing is applied, the recovered image quality is identical to the water-
marked image. When tampering is applied, the less the tampering
rate, the higher the recovered image quality. In addition, a lower
tampering rate means less tamper coincidence problem. Further-
more, The recovered image quality is compared in Tables 7 and
Table 8.

With a 10% tampering rate, the Splash image has the highest
recovered image quality since the splash image has less texture
and edges than other test images. In contrast, the house image
has the lowest quality, as it has a high density of textures and
edges in the image. However, with an 80% tampering rate, the
Baboon image has the most severe recovered image quality since
the fur of the Baboon required a high density of textures and edges
to be recovered. In addition, the highest difference in the PSNR
value is between the 20% and 30% tampering rates, accounting
for 3.47 dB. This is because the tamper coincidence problem starts
to appear at a 25% tampering rate. However, the experiment on the
10% up to 40% tampering rates shows that the AuSR3 performs bet-
ter than the existing schemes regarding the PSNR value. In addi-
tion, according to SSIM value, the AuSR3 outperforms the
existing schemes on the 10% up to 50% tampering rates. The recov-
ered image quality comparison between the AuSR3 and the exist-
ing schemes is shown in Tables 9–12.
12
The schemes by Tai (Tai and Liao, 2018) and Fan (Fan andWang,
2018) did not successfully mitigate the tamper coincidence prob-
lem. Thus, it appears in the final recovered image and is amplified
further using the random block mapping technique in their
scheme. As a result, the recovered image quality was degraded sig-
nificantly at a higher tampering rate. In comparison, the schemes
by Molina-Garcia (Molina-Garcia et al., 2020) and Sinhal (Sinhal
et al., 2020) mitigated the tamper coincidence problem using the
image inpainting technique, which removes the artifacts of the
tamper coincidence problem in the recovered image. However,
they did not design the block mapping technique that prevents
the tamper coincidence problem from occurring in the first place.
Instead, they implemented the random block mapping technique
to determine the embedding location of the recovery data. There-
fore, the tamper coincidence problem began to appear at a small
tampering rate of 10%, which degraded the recovered image
quality.

4.5. Statistical analysis

The results of this study are analyzed using statistical analysis
to determine the significance of the AuSR3 compared to the exist-
ing methods. At first, the characteristics of the data are analyzed
using parametric analysis. It determines the normality and the dis-
tribution of the data. There are two possible outcomes of this anal-
ysis: parametric and non-parametric data. The paired t-test can be
used for parametric data, while the Wilcoxon signed-rank test can
be used when the data is non-parametric. The parametric analysis
shows that the distribution of PSNR and SSIM is non-parametric.



Fig. 8. Tampering rate of 30% in various locations on the Peppers image (a) Top left (b) Top center(c) Top right (d) Center left (e) Center (f) Center right (g) Bottom left (h)
Bottom center (i) Bottom right.

Fig. 9. The tamper coincidence problem with a tampering rate of 50% on the Baboon image(a) Random block mapping (b) Uniform block mapping (c) AuSR3 block mapping.
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Therefore, Wilcoxon signed-rank tests are performed in this study.
The test is conducted in pairs between two algorithms. The first
test compares the AuSR3 to the AuSR1, while the second compares
the AuSR3 and the AuSR2. Each evaluation and dataset are tested
individually to provide robust information about the significance
13
of the study. The statistical test of the watermarked image quality
using the Wilcoxon signed-rank test is presented in Table 13.

In this statistical test, the null hypothesis H0 refers to no signif-
icant improvement of the AuSR3. In contrast, the alternative
hypothesis H1 states that there is a statistically significant result



Table 6
The TCP rate under various tampering rates and locations on the USC-SIPI dataset.

Method Tampering locations Tampering rates

10 20 30 40 50 60 70 80

AuSR1 (Aminuddin and Ernawan, 2022) Average 0.0186 0.0736 0.1555 0.2607 0.3775 0.5097 0.6409 0.7710
Std. deviation 0.0013 0.0007 0.0014 0.0020 0.0022 0.0005 0.0029 0.0031

AuSR2 (Aminuddin and Ernawan, 2022) Average 0.0131 0.0527 0.1178 0.2091 0.3282 0.4581 0.6115 0.7578
Std. deviation 0.0002 0.0012 0.0014 0.0008 0.0007 0.0005 0.0008 0.0053

AuSR3 Top left 0.0000 0.0000 0.0445 0.1619 0.2973 0.4497 0.5887 0.7358
Top center 0.0000 0.0000 0.0458 0.1666 0.3011 0.4518 0.5948 0.7359
Top right 0.0000 0.0000 0.0443 0.1633 0.2987 0.4485 0.5935 0.7406
Center left 0.0000 0.0000 0.0463 0.1675 0.3021 0.4542 0.5962 0.7363
Center 0.0000 0.0000 0.0569 0.1814 0.3088 0.4571 0.6011 0.7359
Center right 0.0000 0.0000 0.0479 0.1697 0.3051 0.4537 0.6003 0.7405
Bottom left 0.0001 0.0001 0.0444 0.1627 0.2981 0.4485 0.5936 0.7407
Bottom center 0.0000 0.0000 0.0471 0.1689 0.3050 0.4519 0.5990 0.7406
Bottom right 0.0007 0.0009 0.0490 0.1686 0.3050 0.4496 0.5978 0.7451
Average 0.0001 0.0001 0.0474 0.1678 0.3024 0.4517 0.5961 0.7390
Std. deviation 0.0002 0.0003 0.0037 0.0055 0.0037 0.0028 0.0037 0.0031

Table 7
PSNR values comparison under various tampering rates on the USC-SIPI dataset.

TR Airplane Baboon House Lena Peppers Sailboat Splash Tiffany Average

10 37.91 38.40 37.19 39.05 39.00 37.98 42.50 40.84 39.11
20 35.91 34.99 35.01 36.56 37.39 35.49 41.13 38.95 36.93
30 32.93 29.43 31.89 32.87 34.92 31.36 37.31 36.94 33.46
40 29.35 25.51 28.17 29.71 32.08 27.12 33.94 34.61 30.06
50 27.20 23.21 25.84 27.41 29.03 24.81 31.33 32.00 27.61
60 25.08 21.38 23.72 24.98 25.89 22.63 28.55 29.05 25.16
70 22.65 19.83 22.05 23.27 22.72 20.34 25.96 26.65 22.94
80 20.33 18.34 19.80 21.10 19.93 18.59 23.11 24.45 20.71

Table 8
SSIM values comparison under various tampering rates on the USC-SIPI dataset.

TR Airplane Baboon House Lena Peppers Sailboat Splash Tiffany Average

10 0.9845 0.9966 0.9911 0.9969 0.9967 0.9946 0.9980 0.9971 0.9944
20 0.9794 0.9929 0.9853 0.9945 0.9953 0.9899 0.9975 0.9958 0.9913
30 0.9672 0.9625 0.9735 0.9881 0.9921 0.9761 0.9950 0.9939 0.9811
40 0.9395 0.9035 0.9456 0.9770 0.9867 0.9474 0.9907 0.9906 0.9601
50 0.9087 0.8415 0.9132 0.9641 0.9763 0.9158 0.9844 0.9837 0.9360
60 0.8659 0.7717 0.8709 0.9457 0.9572 0.8753 0.9738 0.9695 0.9038
70 0.8077 0.6948 0.8244 0.9286 0.9234 0.8191 0.9580 0.9522 0.8635
80 0.7417 0.6060 0.7576 0.9030 0.8818 0.7449 0.9310 0.9296 0.8120

Table 9
Recovered images comparison of the PSNR values on the USC-SIPI dataset.

TR Tai (Tai and
Liao, 2018)

Fan (Fan and
Wang, 2018)

Molina-Garcia (Molina-
Garcia et al., 2020)

Sinhal (Sinhal
et al., 2020)

AuSR1 (Aminuddin and
Ernawan, 2022)

AuSR2 (Aminuddin and
Ernawan, 2022)

AuSR3

10 25.89 31.47 37.34 36.18 37.96 38.11 39.11
20 20.57 28.36 33.98 32.39 34.65 34.21 36.93
30 17.43 21.62 31.28 29.99 31.79 31.10 33.46
40 15.21 15.79 28.47 28.34 29.48 28.63 30.06
50 13.54 15.69 26.00 27.02 27.64 26.43 27.61
60 12.01 11.57 23.51 25.46 25.72 24.60 25.16
70 10.80 11.57 21.23 23.95 23.80 22.66 22.94
80 9.81 8.10 19.20 22.47 21.63 20.64 20.71
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compared to the existing methods. The null hypothesis can be
rejected when the p-value < a, where a = 0.05, providing a 95% con-
fidence level. In Tables 13 and Table 14, the +sign rejects the H0,
while the �sign can not reject the H0. In addition, the Wilcoxon
signed-rank test also provides a positive rank, which indicates
the direction of change in the paired difference. When the positive
rank is more significant than 50%, the AuSR3 performs better than
the compared algorithm. According to Table 13, all the statistical
test provides the p-value < a. It proves that the watermarked image
14
quality of the AuSR3 is statistically significant compared to the pre-
vious method. Furthermore, most 1-to-1 comparisons show 100%
positive ranks, which means that the AuSR3 performs better than
the previous methods on all images within the selected dataset.
The Wilcoxon signed-rank test is also performed to compare the
recovered image quality, as presented in Table 14.

In terms of recovered image quality, the AuSR3 on the UCID-
1338 dataset shows a significant improvement in the statistical
test compared to other datasets with a p-value of 0.0. In addition,



Table 10
Recovered images comparison of the SSIM values on the USC-SIPI dataset.

TR Tai (Tai and
Liao, 2018)

Fan (Fan and
Wang, 2018)

Molina-Garcia (Molina-
Garcia et al., 2020)

Sinhal (Sinhal
et al., 2020)

AuSR1 (Aminuddin and
Ernawan, 2022)

AuSR2 (Aminuddin and
Ernawan, 2022)

AuSR3

10 0.9384 0.9731 0.9714 0.9878 0.9928 0.9935 0.9944
20 0.8443 0.9502 0.9390 0.9768 0.9864 0.9864 0.9913
30 0.7364 0.8875 0.8977 0.9638 0.9742 0.9734 0.9811
40 0.6226 0.7230 0.8368 0.9504 0.9555 0.9534 0.9601
50 0.5135 0.7202 0.7571 0.9358 0.9339 0.9255 0.9360
60 0.3899 0.4249 0.6460 0.9128 0.9059 0.8932 0.9038
70 0.2744 0.4249 0.5157 0.8843 0.8705 0.8490 0.8635
80 0.1655 0.0094 0.3958 0.8528 0.8219 0.7937 0.8120

Table 11
Recovered images comparison on the Kodak-PCD0992 dataset.

TR AuSR1 (Aminuddin and Ernawan,
2022)

AuSR2 (Aminuddin and Ernawan,
2022)

AuSR3

PSNR SSIM PSNR SSIM PSNR SSIM

10 36.04 0.9841 36.74 0.9870 37.05 0.9871
20 32.53 0.9685 32.93 0.9735 34.49 0.9783
30 30.13 0.9482 30.23 0.9537 31.79 0.9625
40 28.28 0.9229 28.07 0.9267 29.09 0.9344
50 26.74 0.8932 26.20 0.8902 27.06 0.9008
60 25.22 0.8545 24.59 0.8461 25.16 0.8577
70 23.76 0.8082 23.07 0.7909 23.43 0.8073
80 22.11 0.7493 21.47 0.7245 21.65 0.7459

Table 12
Recovered images comparison on the UCID-1338 dataset.

TR AuSR1 (Aminuddin and Ernawan,
2022)

AuSR2 (Aminuddin and Ernawan,
2022)

AuSR3

PSNR SSIM PSNR SSIM PSNR SSIM

10 34.71 0.9803 35.26 0.9838 35.81 0.9841
20 30.93 0.9594 31.08 0.9646 33.10 0.9726
30 28.48 0.9331 28.27 0.9373 30.27 0.9523
40 26.47 0.8987 25.98 0.8993 27.24 0.9143
50 24.76 0.8578 24.05 0.8505 24.95 0.8683
60 23.14 0.8077 22.30 0.7894 22.93 0.8123
70 21.44 0.7435 20.59 0.7140 20.97 0.7424
80 19.61 0.6645 18.93 0.6279 19.07 0.6606

Table 13
Wilcoxon signed-rank test of the watermarked image quality.

Dataset Evaluation AuSR3 vs. AuSR1 (Aminuddin and Ernawan, 2022) AuSR3 vs. AuSR2 (Aminuddin and Ernawan, 2022)

p-value +rank Sig. p-value +rank Sig.

USC-SIPI PSNR 0.0078 100% + 0.0078 100% +
SSIM 0.0078 100% + 0.0176 87.50% +

Kodak-PCD0992 PSNR 1.19 � 10-7 100% + 1.19 � 10-7 100% +
SSIM 1.19 � 10-7 100% + 1.19 � 10-7 100% +

UCID-1338 PSNR 2.58 � 10-220 100% + 2.58 � 10-220 100% +
SSIM 1.54 � 10-218 99.40% + 1.65 � 10-214 97.76% +

Table 14
Wilcoxon signed-rank test of the recovered image quality.

Dataset Evaluation AuSR3 vs. AuSR1 (Aminuddin and Ernawan, 2022) AuSR3 vs. AuSR2 (Aminuddin and Ernawan, 2022)

p-value +rank Sig. p-value +rank Sig.

USC-SIPI PSNR 0.0251 57.81% + 2.11 � 10-10 85.94% +
SSIM 0.3474 62.50% � 7.30 � 10-10 93.75% +

Kodak-PCD0992 PSNR 6.91 � 10-14 69.79% + 1.64 � 10-30 90.63% +
SSIM 1.33 � 10-17 80.21% + 1.48 � 10-31 94.79% +

UCID-1338 PSNR 0.0 64.27% + 0.0 91.72% +
SSIM 0.0 80.30% + 0.0 94.37% +
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almost all the statistical tests can reject the H0 hypothesis with p-
value < a except for the SSIM values between the AuSR3 and AuSR1
on the USC-SIPI dataset. However, the positive rank on this dataset
shows that 62.50% of the time, the AuSR3 produces higher SSIM
values than the AuSR1. Therefore, The improvement of the AuSR3
is statistically significant compared to the previous methods.

4.6. Computational complexity

The computational complexity of the AuSR3 is computed based
on the time it takes to execute the algorithm. The authentication
and self-recovery scheme comprises three algorithms to be evalu-
ated: watermark embedding, tamper detection and localization,
and self-recovery. Several factors may influence the execution
time, including the hardware environment, the software environ-
ment, the algorithmic complexity, the image size, and the tamper
size. The computational complexity presented in this section is
based on the same hardware and software environment for the
entire experiment. The time complexity comparison of the water-
mark embedding across various datasets and algorithms is pre-
sented in Table 15.

The Kodak-PCD0992 dataset takes the longest to execute since
it has the largest image size compared to the other datasets. In
comparison, the UCID-1338 takes the least time to execute for
Table 15
Time complexity comparison of watermark embedding in seconds (s).

Dataset USC-
SIPI

Kodak-
PCD0992

UCID-
1338

AuSR1 (Aminuddin and Ernawan, 2022) 2.7150 3.8673 2.6424
AuSR2 (Aminuddin and Ernawan, 2022) 3.2750 4.7520 2.4046
AuSR3 3.4974 5.3985 2.7069

Table 16
Time complexity comparison of tamper detection and localization in seconds (s).

Method Dataset Tampering rates

10 20

AuSR1 (Aminuddin and Ernawan, 2022) USC-SIPI 3.2160 3.14
Kodak-PCD0992 4.4299 4.33
UCID-1338 2.9787 2.94

AuSR2 (Aminuddin and Ernawan, 2022) USC-SIPI 2.3976 2.34
Kodak-PCD0992 3.5457 3.51
UCID-1338 2.0528 2.03

AuSR3 USC-SIPI 3.4661 3.40
Kodak-PCD0992 5.2505 5.17
UCID-1338 2.6858 2.64

Table 17
Time complexity comparison of self-recovery in seconds (s).

Method Dataset Tampering rates

10 20

AuSR1 (Aminuddin and Ernawan, 2022) USC-SIPI 3.6347 3.891
Kodak-PCD0992 5.2963 5.677
UCID-1338 2.8005 2.976

AuSR2 (Aminuddin and Ernawan, 2022) USC-SIPI 4.0650 4.366
Kodak-PCD0992 6.0455 6.633
UCID-1338 3.1408 3.386

AuSR3 USC-SIPI 4.1216 4.148
Kodak-PCD0992 6.2442 6.332
UCID-1338 3.4732 3.537
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being the smallest image size among the datasets. The algorithmic
complexity also contributes to the execution time in the experi-
ment. The proposed AuSR3 implements more complex block map-
ping, which adds the execution time compared to the existing
schemes. Furthermore, the time complexity comparison of the
tamper detection and localization is presented in Table 16.

The execution time for tamper detection and localization is neg-
atively correlated to the size of the tampering area. This is because
all of the algorithms presented in Table 16 implement the same
three-layer authentication framework. The tamper localization
emphasizes the detection of the non-tampered area of the image.
Therefore, the larger the tampered region, the less time it takes
to localize the image. At the same time, the image size positively
correlates to the time complexity of the tamper detection and
localization algorithm. In this comparison, the AuSR3 still requires
the longest time to execute the tamper detection and localization.
This is because the extraction process requires a block map to be
reconstructed from the tampered image, adding more time com-
plexity. Furthermore, the time complexity comparison of the self-
recovery process is presented in Table 17.

Unlike tamper detection and localization, the self-recovery exe-
cution time is positively correlated to the tamper size of the image.
The larger the tampered region, the longer it takes to recover the
image. As mentioned earlier, the AuSR3 does not completely elim-
inate the tamper coincidence problem. It may still exist on the
tampering rate larger than 25%. This problem is then solved using
the image inpainting technique. However, the execution time is
exponentially longer when the tampering rate exceeds 60%. This
is because the tamper coincidence problem is densely populated
in the four locations, as presented in Fig. 9(c). The denser the tam-
per coincidence problem, the more the image inpainting technique
takes time to solve the affected block. Nevertheless, the AuSR3 still
provides the highest recovered image quality compared to the
existing techniques.
30 40 50 60 70 80

22 3.1060 3.0709 3.0325 2.9876 2.9877 2.9384
74 4.2686 4.2312 4.1385 4.0934 4.0276 3.9610
53 2.9051 2.8548 2.8350 2.8044 2.7685 2.7200
04 2.3298 2.2947 2.2904 2.2627 2.2472 2.2301
06 3.4428 3.4444 3.4163 3.3950 3.3661 3.3277
52 2.0173 2.0079 2.0009 1.9850 1.9707 1.9521
61 3.3716 3.3444 3.3055 3.2750 3.2486 3.1766
82 5.1076 5.1065 5.0178 5.0063 4.9538 4.8315
97 2.6232 2.5944 2.5657 2.5372 2.5055 2.4789

30 40 50 60 70 80

1 4.2469 4.8419 5.7555 7.6813 11.9470 24.2965
5 6.1937 7.0916 8.5967 11.5302 17.9704 35.9167
7 3.2658 3.7413 4.5177 5.9348 9.2553 18.4920
7 4.8940 5.6775 7.0463 9.1633 13.6640 26.9634
4 7.6089 8.9741 11.1714 14.4635 21.2849 40.2820
4 3.7866 4.4179 5.3747 7.0185 10.6390 19.8766
5 4.4570 5.4356 7.2557 12.1951 26.0493 63.2257
3 6.7347 8.1435 10.8422 17.6329 35.1445 94.5124
2 3.7551 4.4905 6.0693 9.5647 19.3841 47.1154
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5. Conclusion

This paper has presented a new block mapping to avoid the
tamper coincidence problem in self-recovery. The new block map-
ping technique has embedded the recovery data into the most dis-
tant location possible, minimizing the tamper coincidence
problem. It has eliminated the tamper coincidence problem by
up to 25% tampering rates. When the tampering rate is higher than
25%, the tamper coincidence problem has been decreased by up to
10%. In addition, the improved LSB shifting algorithm has produced
a high-quality watermarked image with 2 dB improvements in
PSNR value compared to the LSB replacement technique. The
new block mapping technique and improved LSB shiting algorithm
have significantly contributed to the recovered image quality. A
20% tampering rate on all the images of the UCID-1338 dataset
has been recovered by the AuSR3, resulting in the average PSNR
and SSIM values of 33.10 dB and 0.9726, respectively. It has
increased by up to 2 dB PSNR value compared to the existing tech-
nique. The Wilcoxon signed-rank test has been carried out to find
the statistical significance of the AuSR3. Most of the test has shown
that the AuSR3 has produced significant results in term of PSNR
and SSIM compared to the previous methods.

The limitation of the proposed technique is that when the tam-
pering rates are above 70%, the tamper coincidence problem is
densely populated in four locations within the tampered region.
While it can still be solved using the current image inpainting tech-
nique, executing the self-recovery process takes a high computa-
tional time on such high tampering rates. In future works, the
image inpainting technique can be improved to incorporate a
deep-learning technique such as super-resolution, which may
reduce the computational time.
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