

STUDY OF VISION BASED TRAFFIC

CONGESTION CLASSIFICATION

MONITORING SYSTEM (VBTCCMS)

SHAMRAO A/L RAMASAMY

BACHELOR OF ELECTRICAL ENGINEERING

(ELECTRONICS) WITH HONOURS

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : SHAMRAO A/L RAMASAMY ,

Date of Birth : 9 FEBRUARY 1997 ,

Title : STUDY OF VISION BASED TRAFFIC CONGESTION ,

 CLASSIFICATION MONITORING SYSTEM (VBTCCMS) ,

Academic Session : ___

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

 970209-14-5567 ,

New IC/Passport Number

Date: 10 FEBRUARY 2022

 (Supervisor’s Signature)

DR. Ahmad Afif Bin Mohd Faudzi

Name of Supervisor

Date: 10 FEBRUARY 2022

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date: 10 FEBRUARY 2022

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name SHAMRAO A/L RAMASAMY

Thesis Title STUDY OF VISION BASED TRAFFIC CONGESTION

CLASSIFICATION MONITORING SYSTEM (VBTCCMS)

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and, in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Electrical Engineering

(Electronics) with Honours.

 (Supervisor’s Signature)

Full Name :

Position :

Date : 10 FEBRUARY 2022

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : SHAMRAO A/L RAMASAMY

ID Number : EA18033

Date : 10 FEBRUARY 2022

STUDY OF VISION BASED TRAFFIC CONGESTION CLASSIFICATION

MONITORING SYSTEM (VBTCCMS)

SHAMRAO A/L RAMASAMY

Thesis submitted in fulfillment of the requirements

for the award of the

Bachelor of Electrical Engineering (Electronics) with Honours

College of Engineering

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2022

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my appreciation to God for allowing

me to finally finish my Final Year Project Thesis during this time. I would be nowhere

today if it weren't for his blessings. Secondly, I would like to express my thanks to Dr.

Ahmad Afif bin Mohd Faudzi, my project supervisor, for his direction and critical

remarks while I worked on my project thesis. He has been really inspiring, and he has

piqued my interest in finishing this project thesis.

I would like to express my gratitude to my parents, Mr. Ramasamy A/L Muthaloo

and Mrs. Parvathy A/P Ramaloo, as well as my family members, for their unwavering

love and support during my studies and project progress.

Last but not least, I would like to express my gratitude to Dhilen A/L Manimaran,

my best friend, for his unwavering support, collaboration, and ideas. One of the keys to

my achievement was the assistance and inspiration. Thank you all so much.

iii

ABSTRAK

Pengelasan imej ialah tugas untuk mengenali item atau subjek mengikut kelas yang telah

diperuntukkan dalam dunia komputer. Begitu juga, tesis ini membincangkan kerja-kerja

yang telah dilakukan dan bagaimana kesesakan lalu lintas diklasifikasikan menggunakan

video CCTV tepi jalan. Matlamatnya adalah untuk menggunakan seni bina untuk

menyiasat dan mengklasifikasikan pembolehubah kesesakan lalu lintas kepada tiga

kategori: kesesakan rendah, kesesakan sederhana dan kesesakan yang berlebihan. Reka

bentuk memerlukan kajian seni bina serta aplikasi untuk mengesan setiap kelas. Kajian

faktor kesesakan menggunakan YOLO dan Deep Sort, yang dibina menggunakan

platform TensorFlow dan Keras, akan dibincangkan dalam tesis ini. Tujuan utama projek

ini adalah untuk membangunkan sistem untuk mengklasifikasikan kesesakan lalu lintas

di laluan yang sibuk, dengan sistem itu dapat membahagikan kesesakan lalu lintas kepada

tiga kategori: rendah, sederhana dan tinggi. Keseluruhan proses pengkategorian

dijalankan oleh sistem menggunakan penglihatan. TensorFlow ialah rangka kerja

pengaturcaraan sumber terbuka yang menyediakan pelbagai seni bina serta antara muka

yang mudah digunakan untuk aplikasi masa hadapan.

iv

ABSTRACT

Image classification is the task of recognising an item or subject according to the class to

which it has been allocated in the computer world. Similarly, this thesis discusses the

work that was done and how traffic congestion was classified using roadside CCTV

video. The goal is to use an architecture to investigate and classify traffic congestion

variables into three categories: low congestion, medium congestion, and excessive

congestion. The design entails a study of architecture as well as an application for

detecting each class. The study of congestion factor utilising YOLO and Deep Sort, which

was constructed using TensorFlow and Keras platform, will be covered in this thesis. The

major purpose of this project is to develop a system for classifying traffic congestion on

a busy route, with the system being able to classify traffic congestion into three

categories: low, medium, and high. The entire categorization process is carried out by the

system using vision. TensorFlow is an open source programming framework that

provides a variety of architectures as well as an easy-to-use interface for future

applications.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

 ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Background overview 1

1.2 Problem statement 2

1.3 Objective 2

1.4 Scope 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 TensorFlow 4

2.2.1 Tensors 5

2.2.2 Variables 5

2.2.3 Lite 6

2.2.4 Session 6

vi

2.2.5 Evaluation of Accuracy 7

2.3 Keras Documentation 7

2.4 Python 9

2.5 Anaconda 9

2.6 Spyder 10

2.7 Article/Journal Reviews 10

2.7.1 London : Congestion Charge 10

2.7.2 Baton Rouge: Continuous Intersection Flow 12

2.7.3 Traffic Congestion in China 13

2.7.4 Traffic Congestion of Urban Main Road under Accident

Conditions 14

2.7.5 Traffic Congestion and Remedial Measures at Traffic Mor in

Pabna City, Bangladesh 16

CHAPTER 3 METHODOLOGY 17

3.1 Introduction 17

3.2 Project architecture 17

3.2.1 YOLO (You Only Look Once) Model architecture. 17

3.2.2 DeepSort architecture 19

3.3 Visual Masking 20

3.3.1 Target-to-mask spatial separation 20

3.4 Project Block diagram 22

3.5 Project Flowchart diagram 23

CHAPTER 4 RESULTS AND DISCUSSION 26

4.1 Introduction 26

4.2 Dataset 26

vii

4.3 Anaconda prompt 27

4.4 Results and Analysis 28

4.4.1 Vehicle Detection 29

4.4.2 Vehicle Identification and Counting 29

4.4.3 Average Speed Counting 30

4.4.4 Classifying Congestion Rate 31

CHAPTER 5 CONCLUSION 33

5.1 Introduction 33

5.2 Future Recommendation 33

REFERENCES 35

APPENDIX 37

viii

LIST OF TABLES

Table 2.1 Classification table of average speed (km/h) of main road during peak

hours. 15

ix

LIST OF FIGURES

Figure 2.1 Initializing Variables for ‘yolov4.weights’. 5

Figure 2.2 tf.lite Interpreter. 6

Figure 2.3 Session Initialization in TensorFlow. 7

Figure 2.4 Initializing Training Accuracy. 7

Figure 2.5 Image Augmentation Arrangement. 8

Figure 2.6 Congestion Charging Zones' Signs in London. 11

Figure 2.7 Map of Congestion Zone in London. 11

Figure 2.8 Continuous Flow Intersection (Lee, 2013). 12

Figure 2.9 Average congestion delay index in major cities from 2015 to 2017

(Amap, 2018). 14

Figure 2.10 Pabna city map. 16

Figure 3.1 Image Separation in Yolo Architecture. 18

Figure 3.2 Yolo Architecture. 18

Figure 3.3 Deep Sort Architecture 19

Figure 3.4 Initializing Masking Technique in 'OpenCV'. 20

Figure 3.5 Masking Technique used in this system. 21

Figure 3.6 Project Block diagram. 22

Figure 3.7 Project Flowchart diagram. 24

Figure 4.1 Classes in 'coco.names'. 27

Figure 4.2 Initializing Allowed Classes. 27

Figure 4.3 Anaconda Prompt window. 28

Figure 4.4 Vehicle detection result. 29

Figure 4.5 Altering the colour and the thickness of the square. 29

Figure 4.6 Vehicle Identification and Counting result. 29

Figure 4.7 Average Speed Counting result. 30

Figure 4.8 Formula for Average Speed. 30

Figure 4.9 Result classifying Low Congestion Rate. 31

Figure 4.10 Result classifying Medium Congestion Rate. 31

x

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Program Interface

CCTV Closed Circuit Television

CFI Continuous Flow Intersection

CLI Command Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphic Processing Unit

IDE Integrated Development Environment

ITS Intelligent Transportation System

MOT Multiple Object Tracking

RGB Red Blue Green

tf TensorFlow

YOLO You Only Look Once

1

CHAPTER 1

INTRODUCTION

1.1 Background overview

Slower speeds, longer journey durations, and higher vehicular queueing are all

symptoms of traffic congestion[1] in transportation. Traffic congestion on Malaysia's

metropolitan road networks has significantly risen. Congestion occurs when traffic

demand is high enough that the interaction between cars reduces the pace of the traffic

stream. Engineers previously devised traffic lights[2] to alleviate traffic congestion in

metropolitan areas. Many road users have found the traffic light to be quite helpful,

particularly in minimising or preventing traffic accidents. In addition, it improves traffic

flow and saves time for many individuals. However, as the population grows and car

ownership rises, so does the need for road infrastructure, which frequently results in

traffic congestion, travel delays, and wasteful vehicle discharge. Two approaches are

likely to be used to address this problem. The first method is to expand capacity by

providing new alternative routes, however this method can be expensive, time-

consuming, and reduce capacity in the short term. The second strategy is to improve the

efficiency of existing infrastructure and technologies, such as traffic congestion

monitoring systems. We recommend the second option, which involves developing a new

traffic congestion monitoring system using current advances in the field of Artificial

Intelligence[3]. The following is how we want to solve the traffic congestion problem.

What is the congestion rate of the traffic lane, what sort of vehicle is approaching the

traffic lane, and how many cars are approaching the traffic lane, given the current

condition of traffic on a particular road? We would have seen a lot more learning, but

these systems don't use the data to its full potential. The major goal of this project is to

develop a visual-based traffic congestion categorization system that uses the proper

architecture to output the traffic lane's congestion rate and the number of cars approaching

it depending on its classifications.

2

1.2 Problem statement

According to the literature[3], traffic congestion causes individuals, businesses,

and the economy as a whole to incur additional costs and time, as well as stress.

Individuals and society pay a price for the additional gasoline used and the higher-than-

necessary level of car emissions.

If people need to adjust their routines to prevent delays or make concessions in

case of unforeseen delays, their lives are disrupted. People are considerably more affected

by unexpected delays if they are late for, or even miss, an event or appointment.

In addition, one of the major causes of traffic congestion is the expanding

population and increasing vehicles ownership. As a result, the need for road infrastructure

has increased, resulting in traffic congestion, travel delays, and wasteful vehicle

discharge.

Because of the monetary and quality-of-life implications of traffic congestion,

those in charge of designing and monitoring the highway network make every effort to

reduce substantial congestion wherever feasible. If nothing is done to alleviate traffic

congestion, circumstances will worsen, and travel times will become longer and less

reliable. This has an impact on public transportation as well.

Last but not least, the existing traffic congestion control technology[4] (sensor-

based) is costly and requires routine maintenance to ensure that it functions properly. The

sensor-based system also has some issues recognising traffic congestion during wet

seasons, and because it is sensor-based, it is unable to count or identify vehicle types.

1.3 Objective

The major goal of this research is to develop a visual-based traffic congestion

classifier utilising CCTV camera installed along highways. The system will subsequently

be able to determine the sort of traffic circumstances, such as low, medium, and high

congestion, by counting the number of cars approaching the traffic lane depending on its

classifications. As a result, the following goals breakdowns have been created to achieve

this goal:

3

i. Identify vehicles queuing up at the traffic lane and do counting of vehicles

approaching the traffic lane and record the data.

ii. Identify a suitable method for detection of congestion at a selected traffic

light junction via video frames.

iii. Identify methods for congestion classification.

iv. Perform comparison for congestion classification.

1.4 Scope

The major goal of this system is to classify traffic congestion in Cyber Jaya,

Selangor. This technology is capable of detecting traffic congestion (Low Congestion,

Medium Congestion, High Congestion). The classification will be based on continuous

image capture (video) from roadside CCTV cameras.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter covers the underlying notions relating to the software and functions

that were utilized to construct this project. In addition, this chapter goes into further

specifics regarding the project and research that has been done on a visual based

intelligent traffic monitoring system and a traffic congestion system study by other

researchers. This chapter will go through the previous approaches for analysing datasets

with Convolutional Neural Networks (CNN) and the constraints of the prior work.

2.2 TensorFlow

TensorFlow[5] is an open source programming toolkit that uses information

stream diagrams to do numerical computations. TensorFlow[5] was designed by Google

Brain Team specialists and designers for the purposes of doing machine learning and

deep neural network research within Google's Machine Intelligence research

organisation. However, the framework is broad enough to be used in a variety of

situations. TensorFlow's open source nature allows deep learning enthusiasts to use it for

exploratory testing as well as evaluating novel architectures and models. TensorFlow[5]

is compatible with the majority of operating systems, including Windows, Linux, and

iOS Mac. For quicker and more effective training, it's ideal to use an NVIDIA GPU.

Throughout the project, a Linux operating system with a CPU was used. TensorFlow's[5]

runtime environment is supported by the Python programming language.

5

2.2.1 Tensors

A tensor is a categorization of matrices and vectors to a theoretically high

dimension. Tensors are represented in TensorFlow as n-dimensional basic datatypes of

arrays. The key programme that we alter throughout the creation of a TensorFlow[5]

programme is tf.Tensor. The primary purpose of the tf.Tensor is to generate a value from

an object that represents a partly specified calculation. TensorFlow[5] projects operate

by creating a chart of tf.Tensor objects, stating how each tensor is represented in relation

to the other tensors available, and then executing sections of this chart to get the desired

outcomes. Tensors can be represented as vectors or scalars, with the dimensions of a

tensor determining its rank. For the training purposes of this project, a 225-by-225 picture

with RGB is utilised in the image dataset.

2.2.2 Variables

Variables are used in TensorFlow to express the weights inside a model. The

model's weights are trained over numerous iterations in order to achieve the best outcome.

As a result, the initial value assigned to them may alter rapidly throughout the training.

The graphic below shows an example of how the yolov4.weights[6] initialises a variable,

which was the major architecture employed in this project.

Figure 2.1 Initializing Variables for ‘yolov4.weights’.

The preceding example simply implies that the programmer may provide the

starting values, CPU devices, and the variable to be utilised. This improves the program's

efficiency and usability.

6

2.2.3 Lite

TensorFlow Lite[5] is a suite of technologies that allows developers to execute

their trained models on mobile, embedded, and IoT devices and desktops, enabling on-

device machine learning. It works with embedded Linux, Android, iOS, and MCUs,

among other platforms. As a result, the input details assigned to them may alter rapidly

throughout the training. The graphic below shows an example of how the tf.lite interprets

the input details , which was the major architecture employed in this project.

Figure 2.2 tf.lite Interpreter.

2.2.4 Session

TensorFlow employs a dataflow graph to express a user's computation in terms

of interdependencies between separate operations. This encourages you to use a low-level

programming style in which you first characterise the dataflow graph and then create a

TensorFlow session to run sections of it on a local and remote device. The example of

session initialization in TensorFlow[5] is shown in Figure 2.3 below.

7

Figure 2.3 Session Initialization in TensorFlow.

2.2.5 Evaluation of Accuracy

In order to offer feedback to the model during or after training, TensorFlow must

assess the output accuracy that has been produced. The output layer produces

unnormalized probabilities for each digit as a consequence. An example of how to plot

the training accuracy is shown in Figure 2.4.

Figure 2.4 Initializing Training Accuracy.

2.3 Keras Documentation

Keras[5] is a Python-based high-level programming interface that is optimised for

use with TensorFlow. It was created with the goal of facilitating fast experimentation. A

key to completing effective research is having the ability to go from thinking to action

with the shortest amount of time feasible. The following is why we are utilising Keras[5]

in this study:

i. Allows for easy and rapid prototyping, as well as being extremely user-friendly.

8

ii. Allows conventional convolutional and recurrent networks, as well as their

combinations.

iii. Runs reliably on both CPU and GPU.

Keras[5] central information structure is a model, or a way of composing layers. The

Sequential model, which is a linear stack of layers, is the simplest type of model. Using

the Keras[5] functional API, which allows you to construct arbitrary graphs of layers, is

the best way to go for more complex architectures. In deep learning, the computer can

occasionally overgeneralize a picture, which is known as overfitting. To overcome this,

we "enhance" the image by applying a number of random changes. This, in turn, aids us

in making use of all our training images, albeit in a little way. An example of image

augmentation arrangement is shown in Figure 2.5.

Figure 2.5 Image Augmentation Arrangement.

The 'from keras.preprocessing.image import ImageDataGenerator' class is used to

perform the image augmentation procedure described above. The above data

augmentations has the following function.

i. rescale is an option that allows us to double the amount of data accessible before

performing any picture processing. The original images in this project include

RGB coefficients ranging from 0-255, however these values are too high for our

models to comprehend, thus values between 0 and 1 are targeted instead by

scaling with a 1/255 factor.

ii. shear_range is used to apply shear transformations in a random order.

iii. zoom_range is useful for zooming in and out of photos at random.

9

iv. horizontal_flip allows you to flip photos horizontally or on a level plane.

2.4 Python

Python[7] is a widely used high-level programming language for collaborative

programming that was created by Guido van Rossum and initially released in 1991. This

language enables the creation of clear programmes on a small and large scale. Python[7]

features a dynamic sort system and programmable memory management, as well as

support for a variety of programming ideal models, like object-oriented, basic, functional,

and procedural programming. It boasts a massive and diverse library. Furthermore, for

the time being, only Python[7] is compatible with the TensorFlow[5] library. Python[7]

is frequently associated with intense sentiments among developers owing to the increased

profitability it provides. The edit-test-debug sequence is extraordinarily rapid because

there is no compilation phase. Python[7] programme troubleshooting is straightforward:

a bug or poor input will never result in a segmentation fault. When the software discovers

a flaw, it raises a particular instance. When the application fails to recognise the specific

instance, a stack follow is printed. Finally, adding a handful problematic print statements

to the program code is frequently the quickest way to troubleshoot a programme: the

rapid edit-test-debug sequence makes this simple technique quite practical.

2.5 Anaconda

Anaconda[8] is a Python[7] and R programming language distribution aimed for

simplifying package management and deployment in scientific computing (data science,

machine learning applications, large-scale data processing, predictive analytics, and so

on). Data-science software for Windows, Linux, and iOS Mac are included in the release.

Anaconda, Inc., created by Peter Wang and Travis Oliphant in 2012, is responsible for

its development and maintenance. Anaconda Distribution or Anaconda Individual

Edition are other Anaconda, Inc. goods, whereas Anaconda Team Edition and Anaconda

Enterprise Edition, both of which are not free, are other Anaconda, Inc. products. Over

250 packages are installed by default in the Anaconda installation, and over 7,500 more

10

open-source packages, including the conda package as well as virtual environment

manager, may be added via PyPI. Anaconda Navigator, a graphical user interface, is

included as a backup to the command-line interface (CLI).

2.6 Spyder

Spyder is a cross-platform, open-source Integrated Development Environment

(IDE) for scientific Python[7] programming. Spyder works with a variety of popular

Python packages, including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy, and

Cython, as well as other open-source applications. Spyder may be extended by first- and

third-party plugins, and features interactive data inspection tools as well as Python-

specific code process improvement and introspection tools like Pyflakes, Pylint, and

Rope. Anaconda[8] makes it cross-platform, including versions for Windows, iOS Mac,

and major Linux distributions like Arch Linux, Debian, Fedora, Gentoo Linux,

openSUSE, and Ubuntu.

2.7 Article/Journal Reviews

2.7.1 London : Congestion Charge

London launched the congestion charge[9] concept in February 2003 to combat

traffic congestion in the city. Non-residents driving private vehicles in the city centre

between the hours of 7:00 a.m. and 6:30 p.m. will be fined £5 ($8.60). Taxis and public

transportation are excluded from the fee. Security cameras are strategically installed

across the city to enforce this restriction. These cameras are capable of capturing licence

plates and verifying whether or not the driver has paid the charge. Violators are fined £80

($138) and their cars are sometimes seized.

11

Figure 2.6 Congestion Charging Zones' Signs in London.

The congestion charge zone in London spans an area of eight square miles. When

entering or exiting the congestion zone, there are directional signals and road markers to

alert you. More information regarding operation hours can be found on advance notice

signs [9].

Figure 2.7 Map of Congestion Zone in London.

12

In London, the congestion charge is seen as a success. Within six months of

deployment, the congestion rate had fallen by 30%. In the following years, fine revenue

increased from $138 million to $172 million each year. This sum is utilised to improve

the city's overall transportation system[9].Furthermore, the implementation of this

legislation has had a good influence on the city by reducing greenhouse gas emissions by

20% yearly[9].

2.7.2 Baton Rouge: Continuous Intersection Flow

Baton Rouge is one city that has made significant progress in reducing traffic

congestion. This city was the first to use Continuous Flow Intersection (CFI) road

design[10].

Figure 2.8 Continuous Flow Intersection (Lee, 2013).

A Continuous Flow Intersection is an "innovative at-grade intersection that

eliminates competing left turns at an intersection by positioning turning actions hundreds

of feet ahead of the main intersection". This design allows for simultaneous left turn and

mainline through movements, decreasing traffic congestion at the crossing. Furthermore,

a large majority of junction accidents occur when making a left turn. "First 'Continuous-

Flow' Intersection in Louisiana Opens in Baton Rouge," 2015, states that because this

design prevents left turns, there would be fewer accidents at junctions. In addition, this

design has been shown to be the most cost-effective. On Baton Rouge, the first CFI made

13

a significant improvement in traffic congestion. "During Pre-Hurricane Katrina evening

rush-hour traffic, the average delay for each vehicle crossing the junction was 225

seconds, or roughly 4 minutes," Bruce added. The time elapsed is estimated to be 30

seconds per vehicle with the introduction of the CFI turn lanes, an almost 90%

increase."[10]

2.7.3 Traffic Congestion in China

As the world's largest developing country, China has experienced severe traffic

congestion. According to China's Ministry of Public Security (MPS), the country's motor

vehicle inventory hit 325 million in 2018, up 15.56 million from the previous year's

conclusion. The number of people who drive automobiles has risen to 407 million, up

22.36 million from the previous year. Meanwhile, the number of private automobiles has

skyrocketed. In all, 187 million small and micro passenger cars were registered in the

names of people, with private automobile ownership per 100 homes exceeding 40. (MPS,

2018). There were 61 cities with more than one million automobiles, 26 cities with more

than two million cars, and eight cities with more than three million cars (MPS, 2018). For

the past few years, China has committed to reducing traffic congestion by promoting

Intelligent Transportation System (ITS) implementations, facilitating public

transportation, and advancing infrastructure construction, as measured by a "Congestion

Delay Index" (i.e., "the ratio of urban residents' average actual outgoing travel time to

their travel time under free flowing")[11]. Despite the fact that China's national GDP and

automobile ownership rate are increasing, its efforts appear to be paying off (MPS, 2018).

According to the annual study produced by local navigation provider a map, which

collaborates with the Ministry of Transportation's Scientific Research Institute and

Alibaba Cloud, China's traffic situation improved last year. 51 of the 100 main cities have

seen a reduction in traffic congestion, while 22 have seen an increase. The remaining 27

cities have remained unchanged from the previous year. The assessment is based on a

ratio of time spent driving during peak commute periods to time spent commuting during

free-flow hours, with a larger figure indicating more severe congestion. The index reveals

that travelling during rush hours - from 7 to 9 a.m. and 5 to 7 p.m. - takes more than 1.8

times as long as travelling during off-peak hours in the 22 cities where traffic has gotten

14

worse. In China's largest cities, the Congestion Delay Index decreased by 2.45 percent in

2016 compared to 2015, which is equal to the level of 2015. (Figure 2.9).

Figure 2.9 Average congestion delay index in major cities from 2015 to 2017 (Amap,

2018).

Shenzhen was rated fifth on the list of urban cities with reduced congestion, and

it was also the city with the least congestion at the mega-city level. Apart from

sophisticated ICT, rotating prohibitions on cars2 based on the final digit of the plate

number are likely additional contributions to the improvement in several Chinese cities,

according to the report's study [11].

2.7.4 Traffic Congestion of Urban Main Road under Accident Conditions

With China's continued urbanisation, automobile ownership is increasing, and

urban traffic is becoming increasingly congested[11]. Simultaneously, urban traffic

accidents occur often, causing traffic congestion, reduced road network operating

efficiency, and societal economic losses. In order to dredge and minimise the chance of

catastrophe, to lessen the effect of the road network, and to preserve the efficient and

smooth operation of the road traffic patterns, it is vital to handle traffic issues on complex

urban road networks. To address the issues, it is critical to have a thorough understanding

and assessment of the development law, as well as the extent and severity of traffic

congestion caused by accidents. This study examines the law of the formation and

15

expansion of road congestion under accident conditions, as well as the variables

influencing the growth of the congestion situation and its mechanism, based on current

research results in China and overseas. The severity of traffic congestion situation under

the relevant traffic circumstances is analysed, and the forecast technique of the spatial

influence scope generated by the propagation of accidental congestion on the road system

space after the accident is explored.

Table 2.1 Classification table of average speed (km/h) of main road during peak hours.

Evaluation

standard class

1st Clear 2nd Class 3rd Usually

crowded

4th Usually

crowded

5th Severe

congestion

Very large/ A

Class city

25 or higher [22, 25) [19, 22) [16, 12) [0 16th)

B Class city 28 or higher [25, 28) [22, 25) [19, 22) [0, 3)

C/D Class city 30 or higher [27, 30) [24, 27) [21, 24) [0, 25)

Index [22, 25) [80,90) [70, 80) [60, 70) [0, 60)

China's urban road traffic management evaluation index system (2012 edition)

(Ministry of Public Security, 2012). As shown in table 2.1, some scholars use city scale,

main peak time, and develop city proper scale of average velocity as traffic congestion

measures for related research, evaluation class that corresponds to the smooth flow of

traffic, first and second level 3 and level 4 for general crowded, five corresponding

serious congestion [11].

16

2.7.5 Traffic Congestion and Remedial Measures at Traffic Mor in Pabna City,

Bangladesh

Pabna is regarded as Bangladesh's most major commerce and manufacturing

centre[12]. The area is under the influence of Rajshahi City, which is one of the country's

fastest growing cities. Because of its convenient transit links to other regions of the

nation, the neighbourhood is densely populated with industrial facilities. It is also critical

for both Rajshahi and Pabna's food security. As a result, a study of the secondary city

next to the metropolis is very important as part of the Rajshahi Metropolitan Development

Program (RMDP). As a result, Pabna City (now Pabna Pourashava) has been chosen as

the research area (Figure 2.10).

Figure 2.10 Pabna city map.

One of Pabna's most important intersections is Traffic Mor. In the larger

perspective, the Mor road intersection is an important part of the city's current traffic

infrastructure. At ground level, the Traffic Mor road intersection is a tee type road

intersection[12]. The traffic flow at this crossroads is mixed, and both directions are two-

way. The geometric aspects, traffic congestion, and traffic control devices at the Traffic

Mor road intersection are investigated in this study.

17

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter goes into the approaches that were employed and the considerations

that were considered for this project. It begins with a discussion of the project

architecture, followed by a discussion of the project flow, as well as the techniques and

Softwares used in this project to achieve the project's goal throughout the training

purposes, as well as the importance of the project.

3.2 Project architecture

The YOLO Model[6], VGG16, VGG19, XCeption, ResNet50, Inception50,

InceptionV3, AlexNet, and other Convolutional Neural Network (CNN)[5] architectures

may all be used for image training. In this study, the YOLO model architecture will be

used because it already has learnt characteristics that are relevant to our classification

challenge.

3.2.1 YOLO (You Only Look Once) Model architecture.

Using YOLO[6] to prepare photos is simple and straightforward. The system

resizes the data image to 448 x 448 pixels, applies a single convolutional arrange on it,

then edges the next place based on the model's certainty. YOLO[6] is a well-known deep

learning-based method for picture identification problems. Figure 3.1 shows how it

18

separates the image into described bounding boxes and then performs a characterisation

computation in parallel for these containers to determine which object class they belong

to. After separating these classes, it proceeds to intelligently combine these examples to

form an optimal bounding box around the objects.

Figure 3.1 Image Separation in Yolo Architecture.

The entirety of this is performed in parallel so that it may continue to operate in a

progressive manner, processing up to 40 images per second. Regardless of the fact that it

has a lower level of execution than its RCNN companion, it has enough consistency to

be useful in daily situations. The architecture of YOLO[6] is seen in Figure 3.2:

Figure 3.2 Yolo Architecture.

19

3.2.2 DeepSort architecture

Deep Sort[13] is a new tracking method that enhances Simple Online and Real-

time Tracking, and it has shown excellent outcomes in the Multiple Object Tracking

(MOT) issue. Each frame contains more than one item to track in the MOT issue setup.

The technique necessitates a total score from all detections and tracks. The IOU metric is

computed across the video frames of the detection and the bounding boxes of the tracks,

and Deep Sort[13] uses it to generate this score. The Kalman filter assigned to each track

predicts the latter. It also employs appearance data to follow objects through occlusions,

minimising the number of identification shifts. Deep Sort[13] enables a programmer to

add this functionality by computing deep features for each bounding box and factoring in

the tracking algorithm based on deep feature similarity.

Figure 3.3 Deep Sort Architecture

Figure 3.3 above shows the network's CNN design of Deep Sort[13] architecture

which consist of a residual network, two convolutional layers, and six residual blocks

make up the deep association clock. The dense layer's calculated features map has a

dimensionality of 128. To be consistent with the cosine appearance metric, a batch layer

and l2 normalisation projects are added to the unit hypersphere.

20

3.3 Visual Masking

Visual masking[14] is a visual perception process. It occurs when the presence of

another image, called a mask, reduces the appearance of one image, called a target. It's

possible that the target isn't visible, or that it has a low contrast or brightness. Forward

masking, reverse masking, and simultaneous masking are the three possible time

configurations for masking. The mask comes before the target in forward masking.

Backward masking is when the mask moves in the opposite direction of the target.

Simultaneous masking shows both the mask and the target at the same time. The graphic

below shows an example of how the Open CV[14] initialises a visual masking, which was

the major architecture employed in this project.

Figure 3.4 Initializing Masking Technique in 'OpenCV'.

3.3.1 Target-to-mask spatial separation

This masking pattern[14] utilize a layer of filter, where the filter layer was

designed in black in colour and the targeted/masking point marked in white in colour.

When there is pattern masking, suppression can be noticed in both forward and backward

masking, but not when there is metacontrast. Simultaneous masking, on the other hand,

will make it easier to see the target during pattern masking. When metacontrast is paired

with either contemporaneous or forward masking, facilitation occurs. This is due to the

fact that lateral propagation requires time for the mask to achieve the target's position.

The time needed for lateral propagation rises as the target grows further away from the

21

mask. As the mask moves closer to the target, the masking effect will get stronger. The

visual masking technique used in the system is shown Figure 3.5.

Figure 3.5 Masking Technique used in this system.

Figure 3.5 above shows the visual masking technique used to identify the

detection zone for system to count the number of vehicles and to classify the status of

congestion. There are totally three types of zone to be considered. The first zone, has

been designed to detect two different traffic lane, which are left lane and right lane.

Whereas the second and third zone, has the design to detect the focussed traffic lane. This

is due to clarified that the system has multi features in detecting a zone, which are the

system itself can focus a specified targeted traffic lane and it also can focus multi traffic

lanes.

22

3.4 Project Block diagram

Figure 3.6 Project Block diagram.

The block diagram seen above depicts the project's complete life cycle. First, the

project's input, which is the camera's live captured image/video. Then it moves on to the

identifying zone, where it uses the YOLO model[6] architecture to detect things (cars,

motorbikes, trucks, and so on). The algorithm will then compute the number of items

identified in the identification zone and categorise them into three groups: “Low

Congestion,” “Medium Congestion,” and “High Congestion.” The flowchart graphic will

illustrate how the categorization will be depending on the number of items observed.

Following that, all of the data will be collected and saved in order to evaluate the recorded

footages. Finally, all identified items and congestion classifications, as well as the live

acquired image/video from the roadside CCTV camera, will be presented on the monitor.

23

3.5 Project Flowchart diagram

24

Figure 3.7 Project Flowchart diagram.

The flowchart diagram shown above depicts how the system is able to classify

traffic congestion circumstances. To begin, a new traffic data set based on real-time and

date will be developed for the purpose of preserving and examining recorded footage.

Then, using the YOLO model[6] architecture, it travels to the identifying zone and detects

the number of vehicles (cars, motorbikes, bus, and trucks) approaching the zone. In

addition, the system also calculates the speed of the identified vehicle in KM/H. The

system will then make a choice based on the programming. According to the project's

25

requirements, the system must categorise traffic congestion into three categories: “Low

Congestion,” “Medium Congestion,” and “High Congestion.” As a result, the choice is

divided into three categories. For case 1, if the number of vehicles counted is less than

five, the algorithm will classify it as “Low Congestion.” For case 2, if the number of

vehicles counted is less than 10, the algorithm will classify it as “Medium Congestion.”

For case 3, if the number of vehicles counted exceeds 10, the algorithm will classify it as

“High Congestion.” Finally, all of the data will be aggregated and saved so that the

captured footages may be reviewed.

26

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter highlights the findings and analysis of the architecture employed to

meet the project's goal throughout training, as well as its significance.

4.2 Dataset

A single phase of training was done in this experiment, with the goal of classifying

road objects into each of four different categories: motorcycle, car (car, taxi, mpv, and

van), bus, and truck. The fact that I am inexperienced to Deep Learning[2], the major

goal was to create a system for categorising traffic congestion. Identifying the observed

automobiles based on their categories was a terrific experience towards the conclusion of

this project, since the dataset received from 'coco.names' is quite unique and perfect for

this picture classification problem. For training purposes, over 80 types of categorization

of objects illustrated in Figure 4.1 that correspond to the following classes were

employed, although just four classes were needed for this system to meet the project's

aim.

27

Figure 4.1 Classes in 'coco.names'.

The classifications in this system are used to identify the type of vehicle that the

system has identified. To produce the best results, the coco.names dataset is trained

many times. The figure 4.2 below gives an example of how the classes were specified

in the software, which was one of the project's main framework.

Figure 4.2 Initializing Allowed Classes.

4.3 Anaconda prompt

Anaconda prompt is a Python 3.3+ package for prompting input on the command

line. There are no dependencies in the Python[7] code. A few recommendations should

be followed in order to process the output from the system: Tap Start, then search for or

28

pick Anaconda Prompt out from menu. Then, using the enter key on the PC, input the

code shown in Figure 4.3 line by line.

Figure 4.3 Anaconda Prompt window.

4.4 Results and Analysis

As this software was run on the GPU, it took less time to accomplish the training

than if it had been run on the CPU. The findings were optimal, indicating that the

detection and categorization of traffic congestion is quite accurate. Furthermore, the

identifications of the different types of vehicles are exact. The accuracy of determining

the speed of the identified vehicles is less than ideal. This is owing to a miscalculation in

the initial road distance estimate and an inconvenient location of the roadside CCTV

camera. If the aforementioned flaws can be addressed, the results produced may be more

accurate and superior than this.

29

4.4.1 Vehicle Detection

Figure 4.4 Vehicle detection result.

As shown in Figure 4.4 above a pink square emerged around the car, this indicates

that the system has detected an object at the detection zone. The colour and the thickness

of the square can be adjusted in the system program as shown in the Figure 4.5 below.

Figure 4.5 Altering the colour and the thickness of the square.

4.4.2 Vehicle Identification and Counting

Figure 4.6 Vehicle Identification and Counting result.

Figure 4.6 shows two images on the right shows the classes of vehicle (Car, Truck,

Bus, Motorbike) along with the number of vehicles that has been detected. The image on

the left shows two cars waiting for the traffic lights to turn green. From the Figure 4.6, it

is seen that the system has detected two vehicles on the detection zone and has identified

30

the vehicle is cars. Furthermore, the system displayed the digit '2' beside the class name

labelled car, indicating that this system has a high level of accuracy in counting vehicles

that has been detected on the detection zone.

4.4.3 Average Speed Counting

Figure 4.7 Average Speed Counting result.

Figure 4.7 above shows that a type of vehicle was detected in the detection zone

with the average speed of 40.7 km/h. The average speed can be calculated by using the

programming formula shown in Figure 4.8 below.

Figure 4.8 Formula for Average Speed.

Mathematical formula to calculate speed:

𝑆𝑝𝑒𝑒𝑑 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐾𝑀)

𝑡𝑖𝑚𝑒 (𝐻)

31

4.4.4 Classifying Congestion Rate

Figure 4.9 Result classifying Low Congestion Rate.

Figure 4.10 Result classifying Medium Congestion Rate.

Figure 4.9 & 4.10 shows that the result of classify the traffic condition of the

targeted area. The system classifies the traffic congestion rate based on the number of

vehicles detected in the detection zone. As mention in chapter 3, the number of vehicles

detected has three conditions to state the traffic congestion rate. If the number of vehicles

is less than 5 the congestion rate be shown as ‘Low’, if the number of vehicles is less than

10 the congestion rate be shown as ‘Medium’, and if the number of vehicles is more than

32

10 the congestion rate be shown as ‘High’. In Figure 4.9, the congestion rate shown as

‘Low’ because there are only two vehicles has been detected by the system. In Figure

4.10, the congestion rate shown as ‘Medium’ because there are more than 5 vehicles has

been detected by the system.

33

CHAPTER 5

CONCLUSION

5.1 Introduction

The project's objectives had been met. The Vision Based Traffic Congestion

Classifying Monitoring System (VBTCCMS) has the capacity of identifying and

classifying all vehicles that pass through its detection zone. Most crucially, the system

can detect traffic congestion rates in real time, which is necessary to meet the goals. To

summary, the VBTCCMS has a significant influence on Artificial Intelligence 4.0, which

sees computer vision systems replace manual systems. The concept of a VBTCCMS may

be used to a wide range of applications and research areas. Some computer vision project

researchers include SenseTime, MegVii, viso.ai, and NAUTO. As a result, the

VBTCCMS project is current and has a broad variety of possible applications in

engineering, scientific research, and design. For forthcoming engineers, the experience

and talents of this project will bring a great deal of value and opportunities.

5.2 Future Recommendation

Deep Learning is a fascinating field in which we may immerse ourselves. As a

future suggestion for this research, we may use several types of architectures to increase

the detection speed and accuracy derived from the system dataset. Varied designs give

different detection speeds and accuracy, which might make this traffic congestion

monitoring system easier to use.

34

Aside from that, the YOLO architecture might be fine-tuned and trained using

additional dataset as desired by the user. YOLO is a simple and fascinating design to

learn, with excellent results.

Furthermore, the arrangement of the roadside CCTV cameras site hampered the

monitoring potential. This is a crucial limiting factor in monitoring capability that might

be addressed if authorities properly site the roadside CCTV cameras. As a result, future

highways may be completely occupied by roadside CCTV cameras.

 Adding new lessons and a longer duration of CCTV video footages might also

make the training more complicated and demanding. This method, on the other hand,

might be used to assess the accuracy of the forecast and determine whether Deep Learning

is the way of the future. Last but not least, because data training can take a long time and

requires a lot of patience, it's better to do it with a powerful GPU. As a result, an optimal

GPU is recommended in order to take this research to the next level.

35

REFERENCES

[1] “Traffic Congestion - an overview | ScienceDirect Topics.”

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/traffic-

congestion (accessed Feb. 12, 2022).

[2] B. Liu and Z. Ding, “A distributed deep reinforcement learning method for traffic

light control,” Neurocomputing, Dec. 2021, doi:

10.1016/J.NEUCOM.2021.11.106.

[3] I. O. Olayode, L. K. Tartibu, M. O. Okwu, and U. F. Uchechi, “Intelligent

transportation systems, un-signalized road intersections and traffic congestion in

Johannesburg: a systematic review,” Procedia CIRP, vol. 91, pp. 844–850, Jan.

2020, doi: 10.1016/J.PROCIR.2020.04.137.

[4] J. Zhao, H. Xu, Y. Tian, and H. Liu, “Towards application of light detection and

ranging sensor to traffic detection: an investigation of its built-in features and

installation techniques,” Journal of Intelligent Transportation Systems, Feb. 2022,

doi: 10.1080/15472450.2020.1807346.

[5] L. Parisi, R. Ma, N. RaviChandran, and M. Lanzillotta, “hyper-sinh: An accurate

and reliable function from shallow to deep learning in TensorFlow and Keras,”

Machine Learning with Applications, vol. 6, p. 100112, Dec. 2021, doi:

10.1016/J.MLWA.2021.100112.

[6] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm

Developments,” Procedia Computer Science, vol. 199, pp. 1066–1073, Jan. 2022,

doi: 10.1016/J.PROCS.2022.01.135.

[7] H. Izadkhah, “An introduction of Python ecosystem for deep learning,” Deep

Learning in Bioinformatics, pp. 31–66, Jan. 2022, doi: 10.1016/B978-0-12-

823822-6.00010-X.

36

[8] P. Mccaffrey, “Packages, interactive computing, and analytical documents,” An

Introduction to Healthcare Informatics, pp. 159–174, Jan. 2020, doi:

10.1016/B978-0-12-814915-7.00012-0.

[9] B. Berisha, “Alleviating Traffic Congestion in Prishtina.” [Online]. Available:

http://scholarworks.rit.edu/theses

[10] S. Jan-Evert Nilsson Eric Markus Author Wenjie Zhang, “Managing Traffic

Congestion-Case study of Hangzhou,” 2010.

[11] J. Wang and J. Sun, “Research on Traffic Congestion of Urban Main Road under

Accident Conditions.”

[12] A. Saha, B. Ahmed, M. Rahman, T. Tasnim Nahar, A. K. Saha, and T. T. Nahar,

“Analysis of Traffic Congestion and Remedial Measures at Traffic Mor in Pabna

City, Bangladesh International Journal of Recent Development in Engineering and

Technology Website: www Analysis of Traffic Congestion and Remedial

Measures at Traffic Mor in Pabna City, Bangladesh,” 2013. [Online]. Available:

www.ijrdet.com

[13] M. Oplenskedal, P. Herrmann, and A. Taherkordi, “DeepMatch2: A

comprehensive deep learning-based approach for in-vehicle presence detection,”

Information Systems, p. 101927, Oct. 2021, doi: 10.1016/J.IS.2021.101927.

[14] S. Paul, A. Norkin, and A. C. Bovik, “On visual masking estimation for adaptive

quantization using steerable filters,” Signal Processing: Image Communication,

vol. 96, p. 116290, Aug. 2021, doi: 10.1016/J.IMAGE.2021.116290.

37

APPENDIX

Project source code.

import os

comment out below line to enable tensorflow logging outputs

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import time

import tensorflow as tf

physical_devices = tf.config.experimental.list_physical_devices('GPU')

if len(physical_devices) > 0:

 tf.config.experimental.set_memory_growth(physical_devices[0], True)

from absl import app, flags, logging

from absl.flags import FLAGS

import core.utils as utils

from core.yolov4 import filter_boxes

from tensorflow.python.saved_model import tag_constants

from core.config import cfg

38

from PIL import Image

import cv2

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.compat.v1 import ConfigProto

from tensorflow.compat.v1 import InteractiveSession

deep sort imports

from deep_sort import preprocessing, nn_matching

from deep_sort.detection import Detection

from deep_sort.tracker import Tracker

from tools import generate_detections as gdet

flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt')

flags.DEFINE_string('weights', './checkpoints/yolov4-416',

 'path to weights file')

flags.DEFINE_integer('size', 416, 'resize images to')

flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny')

39

flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')

flags.DEFINE_string('video', './data/video/test.mp4', 'path to input video or set to 0 for

webcam')

flags.DEFINE_string('output', None, 'path to output video')

flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving

video to file')

flags.DEFINE_float('iou', 0.45, 'iou threshold')

flags.DEFINE_float('score', 0.50, 'score threshold')

flags.DEFINE_boolean('dont_show', False, 'dont show video output')

flags.DEFINE_boolean('info', False, 'show detailed info of tracked objects')

flags.DEFINE_boolean('count', False, 'count objects being tracked on screen')

def main(_argv):

 # Definition of the parameters

 max_cosine_distance = 0.4

 nn_budget = None

 nms_max_overlap = 1.0

 # initialize deep sort

40

 model_filename = 'model_data/mars-small128.pb'

 encoder = gdet.create_box_encoder(model_filename, batch_size=1)

 # calculate cosine distance metric

 metric = nn_matching.NearestNeighborDistanceMetric("cosine",

max_cosine_distance, nn_budget)

 # initialize tracker

 tracker = Tracker(metric)

 # load configuration for object detector

 config = ConfigProto()

 config.gpu_options.allow_growth = True

 session = InteractiveSession(config=config)

 STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)

 input_size = FLAGS.size

 video_path = FLAGS.video

 # load tflite model if flag is set

 if FLAGS.framework == 'tflite':

41

 interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)

 interpreter.allocate_tensors()

 input_details = interpreter.get_input_details()

 output_details = interpreter.get_output_details()

 print(input_details)

 print(output_details)

 # otherwise load standard tensorflow saved model

 else:

 saved_model_loaded = tf.saved_model.load(FLAGS.weights,

tags=[tag_constants.SERVING])

 infer = saved_model_loaded.signatures['serving_default']

 # begin video capture

 try:

 vid = cv2.VideoCapture(int(video_path))

 except:

 vid = cv2.VideoCapture(video_path)

42

 out = None

 # get video ready to save locally if flag is set

 if FLAGS.output:

 # by default VideoCapture returns float instead of int

 width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))

 height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))

 fps = int(vid.get(cv2.CAP_PROP_FPS))

 codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)

 out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height))

 ##

 vid_fps = int(vid.get(cv2.CAP_PROP_FPS))

 mask = cv2.imread('C:/Thesis/yolov4-deepsort/data/video/mask1.jpg')

 frame_num = 0

 ref_bbox = np.array([], dtype = np.int32)

 # while video is running

43

 while True:

 return_value, frame = vid.read()

 center = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)/2)

 if return_value:

 pframe = cv2.bitwise_and(src1 = frame, src2 = mask)

 pframe = cv2.cvtColor(pframe, cv2.COLOR_BGR2RGB)

 image = Image.fromarray(frame)

 else:

 print('Video has ended or failed, try a different video format!')

 break

 frame_num +=1

 print('Frame #: ', frame_num)

 frame_size = pframe.shape[:2]

 image_data = cv2.resize(frame, (input_size, input_size))

 image_data = image_data / 255.

 image_data = image_data[np.newaxis, ...].astype(np.float32)

44

 start_time = time.time()

 # run detections on tflite if flag is set

 if FLAGS.framework == 'tflite':

 interpreter.set_tensor(input_details[0]['index'], image_data)

 interpreter.invoke()

 pred = [interpreter.get_tensor(output_details[i]['index']) for i in

range(len(output_details))]

 # run detections using yolov3 if flag is set

 if FLAGS.model == 'yolov3' and FLAGS.tiny == True:

 boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,

 input_shape=tf.constant([input_size, input_size]))

 else:

 boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,

 input_shape=tf.constant([input_size, input_size]))

 else:

 batch_data = tf.constant(image_data)

45

 pred_bbox = infer(batch_data)

 for key, value in pred_bbox.items():

 boxes = value[:, :, 0:4]

 pred_conf = value[:, :, 4:]

 boxes, scores, classes, valid_detections =

tf.image.combined_non_max_suppression(

 boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),

 scores=tf.reshape(

 pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),

 max_output_size_per_class=50,

 max_total_size=50,

 iou_threshold=FLAGS.iou,

 score_threshold=FLAGS.score

)

 # convert data to numpy arrays and slice out unused elements

46

 num_objects = valid_detections.numpy()[0]

 bboxes = boxes.numpy()[0]

 bboxes = bboxes[0:int(num_objects)]

 scores = scores.numpy()[0]

 scores = scores[0:int(num_objects)]

 classes = classes.numpy()[0]

 classes = classes[0:int(num_objects)]

 # format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin,

ymin, width, height

 original_h, original_w, _ = pframe.shape

 bboxes = utils.format_boxes(bboxes, original_h, original_w)

 # store all predictions in one parameter for simplicity when calling functions

 pred_bbox = [bboxes, scores, classes, num_objects]

 # read in all class names from config

 class_names = utils.read_class_names(cfg.YOLO.CLASSES)

 # by default allow all classes in .names file

47

 # allowed_classes = list(class_names.values())

 # custom allowed classes (uncomment line below to customize tracker for only

people)

 allowed_classes = ['motorcycle', 'car', 'bus', 'truck']

 # loop through objects and use class index to get class name, allow only classes in

allowed_classes list

 names = []

 deleted_indx = []

 for i in range(num_objects):

 class_indx = int(classes[i])

 class_name = class_names[class_indx]

 # if np.all(mask[int((bboxes[i][1] + bboxes[i][3])/2), int((bboxes[i][0] +

bboxes[i][2])/2)] == 0):

 if np.all(mask[int(bboxes[i][1]), int(bboxes[i][0])] == 0):

 deleted_indx.append(i)

48

 if class_name not in allowed_classes:

 deleted_indx.append(i)

 else:

 names.append(class_name)

 names = np.array(names)

 count = len(names)

 bboxes = np.delete(bboxes, deleted_indx, axis=0)

 scores = np.delete(scores, deleted_indx, axis=0)

 # print(bboxes[1])

 # encode yolo detections and feed to tracker

 features = encoder(frame, bboxes)

 detections = [Detection(bbox, score, class_name, feature) for bbox, score,

class_name, feature in zip(bboxes, scores, names, features)]

 #initialize color map

 cmap = plt.get_cmap('tab20b')

49

 colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]

 # run non-maxima supression

 boxs = np.array([d.tlwh for d in detections])

 scores = np.array([d.confidence for d in detections])

 classes = np.array([d.class_name for d in detections])

 indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap,

scores)

 detections = [detections[i] for i in indices]

 cv2.putText(frame, "Left", (250, 25),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, "Right", (500, 25),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, "Car", (10, 60), cv2.FONT_HERSHEY_COMPLEX_SMALL,

1.5, (0, 255, 0), 2)

 cv2.putText(frame, "Truck", (10, 90),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, "Bus", (10, 120),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, "MotorBike", (10, 150),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

50

 cv2.putText(frame, "Congestion", (10, 180),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 unique_classes = np.unique(classes).tolist()

 # print(unique_classes, type(unique_classes))

 classes_list = classes.tolist()

 classes_count = {i : classes_list.count(i) for i in unique_classes}

 # Call the tracker

 tracker.predict()

 tracker.update(detections)

 #############

 left_veh = 0

 right_veh = 0

 car = [0, 0]

 truck = [0, 0]

51

 bus = [0, 0]

 motorbike = [0, 0]

 congestion = ['', '']

 speed = 0.0

 dist = 0

 mpp = 1/10 # meter per pixel

 ############

 # update tracks

 for track in tracker.tracks:

 if not track.is_confirmed() or track.time_since_update > 1:

 continue

 bbox = track.to_tlbr()

 class_name = track.get_class()

 if bbox[0] < center:

 left_veh += 1

 if class_name == "car":

52

 car[0] += 1

 elif class_name == "truck":

 truck[0] += 1

 elif class_name == "bus":

 bus[0] += 1

 elif class_name == "motorbike":

 motorbike[0] += 1

 else:

 right_veh += 1

 if class_name == "car":

 car[1] += 1

 elif class_name == "truck":

 truck[1] += 1

 elif class_name == "bus":

 bus[1] += 1

 elif class_name == "motorbike":

53

 motorbike[1] += 1

 if ref_bbox.size == 0 :

 temp = np.concatenate((np.array(int(track.track_id), dtype = np.int32), bbox),

axis = None).reshape(1, -1)

 # temp = int(temp)

 ref_bbox = np.append(ref_bbox, temp.astype(int)).reshape(-1, 5)

 # print('Ref_BBox size was zero. ', ref_bbox, ref_bbox.shape)

 elif int(track.track_id) not in ref_bbox[:, 0]:

 temp = np.concatenate((np.array(int(track.track_id), dtype = np.int32), bbox),

axis = None).reshape(1, -1)

 ref_bbox = np.concatenate((ref_bbox, temp.astype(int)), axis = 0)

 # print('Ref_BBox size was greater. ', ref_bbox, ref_bbox.shape,

type(ref_bbox[0,0]))

 ind = np.where(int(track.track_id) == ref_bbox[:, 0])[0]

 ind = int(ind)

54

 pix_diff = abs(bbox[1] - ref_bbox[ind, 2]) + abs(bbox[3] - ref_bbox[ind, 4])

 # dist = (pix_diff * mpp) / 1000

 # time_hours = 1 / (60 * 60)

 # speed = dist/time_hours

 dist = pix_diff * mpp

 time_sec = 1 / vid_fps

 speed = dist / time_sec

 # Draw Box on Screen and print("Speed for tracking ID {} is {}

KPH.".format(str(int(track.track_id)), str(speed)))

 color = colors[int(track.track_id) % len(colors)]

 color = [i * 255 for i in color]

 cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),

color, 2)

 cv2.putText(frame, "{:.1f}".format(speed) ,(int(bbox[0]), int(bbox[1] - 10)),0,

0.6, (255,255,255),2)

 # Updating the bounding box co-ordinates

 ref_bbox[ind, 1 :] = bbox

55

 # if enable info flag then print details about each track

 if FLAGS.info:

 print("Tracker ID: {}, Class: {}, BBox Coords (xmin, ymin, xmax, ymax):

{} Pixel Difference: {}".format(str(track.track_id), class_name, (int(bbox[0]),

int(bbox[1]), int(bbox[2]), int(bbox[3])), str(pix_diff)))

 if (car[0] + truck[0] + bus[0] + motorbike[0]) < 5:

 congestion[0] = "Low"

 elif (car[0] + truck[0] + bus[0] + motorbike[0]) >= 5 and (car[0] + truck[0] +

bus[0] + motorbike[0]) < 10:

 congestion[0] = "Medium"

 else:

 congestion[0] = "High"

 if (car[1] + truck[1] + bus[1] + motorbike[1]) < 5:

 congestion[1] = "Low"

 elif (car[1] + truck[1] + bus[1] + motorbike[1]) >= 5 and (car[1] + truck[1] +

bus[1] + motorbike[1]) < 10:

56

 congestion[1] = "Medium"

 else:

 congestion[1] = "High"

 cv2.putText(frame, str(car[0]), (270, 60),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(truck[0]), (270, 90),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(bus[0]), (270, 120),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(motorbike[0]), (270, 150),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(congestion[0]), (270, 180),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(car[1]), (520, 60),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(truck[1]), (520, 90),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(bus[1]), (520, 120),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 cv2.putText(frame, str(motorbike[1]), (520, 150),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

57

 cv2.putText(frame, str(congestion[1]), (520, 180),

cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 0), 2)

 # calculate frames per second of running detections

 fps = 1.0 / (time.time() - start_time)

 print("FPS: %.2f" % fps)

 result = np.asarray(frame)

 # result = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

 if not FLAGS.dont_show:

 cv2.imshow("Output Video", result)

 # if output flag is set, save video file

 if FLAGS.output:

 out.write(result)

 if cv2.waitKey(1) & 0xFF == ord('q'): break

 cv2.destroyAllWindows()

if __name__ == '__main__':

 try:

58

 app.run(main)

 except SystemExit:

 pass

