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Abstract: The use of microalgae for wastewater remediation and nutrient recovery answers the call
for a circular bioeconomy, which involves waste resource utilization and ecosystem protection. The
integration of microalgae cultivation and wastewater treatment has been proposed as a promising
strategy to tackle the issues of water and energy source depletions. Specifically, microalgae-enabled
wastewater treatment offers an opportunity to simultaneously implement wastewater remediation
and valuable biomass production. As a versatile technology, membrane-based processes have been
increasingly explored for the integration of microalgae-based wastewater remediation. This review
provides a literature survey and discussion of recent progressions and achievements made in the
development of membrane photobioreactors (MPBRs) for wastewater treatment and nutrient recovery.
The opportunities of using microalgae-based wastewater treatment as an interesting option to manage
effluents that contain high levels of nutrients are explored. The innovations made in the design of
membrane photobioreactors and their performances are evaluated. The achievements pave a way for
the effective and practical implementation of membrane technology in large-scale microalgae-enabled
wastewater remediation and nutrient recovery processes.

Keywords: microalgae; membrane photobioreactor; wastewater treatment; nutrient recovery;
bioremediation

1. Introduction

With the exponential growth of the human population along with urbanization, in-
dustrialization, and agricultural activities, maintaining fresh water supplies to meet the
increasing demands has become a difficult proposition [1]. The distressing circumstances
have awakened the interest in considering the possibility of reclaiming existing wastewater
for reuse [2,3]. On the other hand, the concerns regarding freshwater resource and environ-
mental pollution have constantly urged for the upgrading of existing wastewater treatment
processes. In an era where a waste-derived economy is highlighted as the method to attain
environmental sustainability, the establishment of efficient technologies that cater to both

Membranes 2022, 12, 1094. https://doi.org/10.3390/membranes12111094 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes12111094
https://doi.org/10.3390/membranes12111094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0002-9141-9688
https://orcid.org/0000-0003-0158-8822
https://orcid.org/0000-0002-0292-4376
https://orcid.org/0000-0002-6166-8018
https://doi.org/10.3390/membranes12111094
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes12111094?type=check_update&version=1


Membranes 2022, 12, 1094 2 of 25

wastewater treatment and useful resource recovery is in high demand [4–6]. The removal of
contaminants such as dissolved and suspended substances from municipal wastewater or
industry wastewater can be performed through various technologies, which can be further
classified into physical, chemical, and biological means [7,8]. Regardless of the mecha-
nisms involved, the primary goal of these wastewater treatment technologies is to remove
pollutants such as organic matters, heavy metals, pharmaceutically active products, and
nutrients in order to achieve the standards that fit the intended application of the treated
wastewater. The hybridization of these technologies has become more prevailing and has
been actively studied owing to its effectiveness in handling a wide range of contaminants
present in different wastewater sources [9–11].

Microalgae, which have been referred to as a ‘green gold’ conferred by nature, can
be widely applied as environmentally sustainable resources. The use of microalgae as
an alternative energy source has been explored since more than five decades ago, when
algae-based biodiesel started to take off [12]. Besides serving as sustainable feedstocks
for the production of biofuels [13], microalgae have been crowned as a versatile tool for
bioremediation due to their potential for adsorbing carbon dioxide through photosynthesis.
This mechanism can be used as an alternative method to reduce the emission of greenhouse
gas from various anthropogenic sources and activities, including power plants. As a
consolidated solution to tackle environmental challenges, the harvested algae biomass can
serve as a resource to produce biogas and biofuel along with many other types of energy
carriers. More recently, microalgae have also been exploited for wastewater treatment [14].
Compared with the typically used physical, chemical, and biological treatment approaches,
wastewater remediation using microalgae is advantageous for many reasons. In addition
to the known high growth rate of microalgae, the integration of microalgae in wastewater
treatment also confers other environmental-related benefits, such as sustainable biomass
production and carbon dioxide fixation [15–17]. Apart from these merits, microalgae-
enabled wastewater treatment also offers an economical advantage in terms of the reduction
of energy consumption relative to conventional treatment methods [18]. Microalgae-
enabled treatment systems have been attempted for the removal of heavy metals [19],
synthetic dyes [20], endocrine-disrupting chemicals [21], pharmaceuticals, and personal
care products [22].

The increasing scientific attention for integrating microalgae with the wastewater
system also lies in the abundant occurrence of organic substances and nutrients in many
industrial wastewaters [23,24]. As the cultivation of microalgae requires considerable
inputs of nitrogen and phosphorous, the up-taking of nutrients from wastewater culturing
medium allows for the recovery of nutrients from various wastewater streams. Owing to
their fast growth rates and high productivity, microalgae can efficiently obtain nutrients and
use organic carbon that is present in wastewater [25]. Considering the cost of producing
vital nutrients such as nitrogen and the decline in global reserves of some nutrients such as
phosphorus, circulating nutrients from sewage streams through microalgae cultivation is
an alternative for alleviating the bottlenecks in such scenarios by reducing the overall cost
of biomass production. By closing the nutrient loop, the integration of microalgae can be
used as a tool to bring circularity to the entire waste management and reutilization systems.
The mechanisms of nutrient removal have been previously discussed [26]. The metabolic
pathways of algal cells can be broadly distinguished by the four major elements, namely
carbon, nitrogen, phosphorus, and sulfur. Nevertheless, primary attention is usually
focused on nitrogen and phosphorus. The development and application of microalgae
photobioreactors (PBRs) for wastewater treatment have been widely studied. The critical
factors have been investigated to improve the wastewater treatment efficiencies, including:
PBR modelling, design, and configurations; biomass generation and yield; and operating
parameters and wastewater characteristics [27].

Membrane technology has been widely used for wastewater treatment, desalination,
and resource recovery [28]. The integration of membrane technology and microalgae has
been explored. Membranes are used for microalgae dewatering to allow for the conversion
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of the microalgal suspension into a thick slurry for harvesting [29]. Membrane-based
separation techniques used for microalgae harvesting and by-product separation tech-
niques based on the integration of various types of pressure-driven and osmotically driven
membrane processes have been widely discussed [30]. The membrane technology’s high
efficiency and low shear force features are interesting for force-sensitive algae as the process
induces less disruption to the microalgae cells [31]. With the increasing awareness of
waste reutilization, more efforts are delving into the development of membrane photo-
bioreactors (MPBRs), a hybrid system consisting of microalgae and membrane filtration for
simultaneous wastewater treatment and nutrient recovery. Compared with conventional
large-scale microalgae-based wastewater treatment, i.e., open ponds and PBRs, MPBRs
can significantly reduce the nutrient level in the wastewater culture medium and produce
highly concentrated biomass. However, due to the integration of biological and physical
treatment units, which impose greater complexities for their operation, the implementation
of MPBR systems is confronted by several challenges [32]. The ongoing MPBR research
efforts have been focused on optimizing the operating conditions and improving the per-
formance of the membrane. Luo et al. discussed the important operating parameters of a
submerged MPBR for microalgae cultivation and wastewater treatment. The parameters
affecting the growth of microalgae and wastewater treatment efficiencies were evaluated,
including the hydraulic retention time (HRT), solids retention time (SRT), aeration, and
lighting [32]. Ye et al. reviewed the applications of several membrane integrated biological
processes including an MPBR for nutrient recovery from wastewater, reject water, and
sludge dewatering filtrate [33]. The coupling of membrane processes with a conventional
photoreactor has been identified as an attractive strategy for overcoming the limitations of
the traditionally used PBRs and ponds.

The concept of integrating membrane technology and microalgae for wastewater reme-
diation has been established for quite some time, and many studies have been performed to
assess the feasibility of the integration; nevertheless, the overview of research activities on
this topic is still lacking. Particularly, recent innovations in MPBRs and membrane designs
aimed at improving nutrient recovery and membrane fouling control have not been dis-
cussed. Given the current knowledge gaps, this review is set to provide an insight into the
current development of membranes and membrane systems tailored for integration with
microalgae-enabled wastewater treatment. The current challenges in implementing MPBR
are identified, and the relevant recommendations are made to provide future research
directions in a more practical and effective way.

2. Wastewater as a Source of Nutrients for Microalgae

Wastewater is a complex matrix that contains pollutants and also a range of reusable
substances such as water, organic compounds, nutrients, and biosolids, which exist in dis-
solved or suspended forms. Nutrients found in wastewater, which are mostly compounds
of carbon, nitrogen, and phosphorus, have been increasingly understood as an important
constituent of wastewater [34,35]. Agricultural activities have considerably contributed
to the surging amount of nitrogen and phosphorus in the receiving water bodies. Due
to the extensive use of fertilizer in agricultural lands, majority of the reactive nitrogen
compounds present in the fertilizers introduced are lost to the water bodies [33]. The
removal of nitrogen and phosphorus during the wastewater treatment process is crucial, as
the excessive amount of these nutrients can cause eutrophication, groundwater contamina-
tion, and deterioration of aquatic ecosystems [36]. Besides affecting the water quality and
ecosystem balance, excessive consumption of nitrate and phosphorus has been associated
with negative impacts on human health. For instance, nitrate is also known as a potential
source of risk to human health [37]. Methemoglobinemia, thyroid difficulties, and diabetes
are the commonly observed health hazards caused by excessive consumption of nitrate
or nitrite compounds. The effective recovery of nutrients from the potential sources not
only reduces the risk of exposure to the potential hazards but also provides an alternative
for preventing the depletion of resources [38]. Nutrients such as nitrogen-containing com-
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pounds recovered from wastewater can be directly used as a fertilizer or can be further
processed to form other commercially attractive products [39,40].

Anaerobic digestion has been widely used for the degradation of a range of organic
wastes including agricultural and agro-food waste, wastewater sludge, municipal solid
waste, and animal waste. Anaerobically treated effluents contain nutrient solutions with
high concentrations of ammonium, nitrogen, and orthophosphate [41]. However, the
removal of nitrogen from this effluent through a conventional wastewater plant is normally
ineffective due to the low carbon/nitrogen ratio upon the consumption of organic carbon
for the production of biogas and microbial biomass. Although the innovative bacterial
nitrogen removal pathways involving nitrification/denitrification can be effectively used to
remove nitrogen in a carbon-deficient condition, the process does not facilitate the recovery
of nitrogen or other nutrients as new resources [42]. The nutrient-containing effluent
is generally known as hygienically safe and odor-free, which means it can be directly
used as a source of liquid fertilizer; despite this, the storage and transportation of a huge
liquid volume has become the major constraint of their application in suburban-located
agricultural fields.

Microalgae are self-sustained cells that hold vast potential for biomass production.
They are also extensively explored for their therapeutic properties, which are beneficial
for pharmaceutical applications. Microalgae obtain nutrients through a mixotrophy mode
and can flexibly survive under extreme environmental conditions. These properties make
microalgae a suitable candidate to efficiently uptake nitrogen and phosphorus and re-
move pollutants from a wide range of wastewater [43,44]. Furthermore, the organic
compounds present in most wastewaters, such as carbohydrate and organic acids, can
serve as a cheap source for microalgae growth [45]. The cultivation using microalgae
such as Chlorella [46,47], Scenedesmus [48,49], and Phormidium to treat domestic and
industrial wastewater have been widely reported. Particularly, Chlorella vulgaris has been
extensively used for this purpose, owing to its high growth rate in diverse environments
as well as its high adaptability towards high temperatures, wide pH ranges, and high
salinities [50–52]. Through the interesting phycoremediation approach [53], microalgae can
effectively treat organic pollutants that are known to be the major contaminants present
in various waterways, hence reducing the chemical oxygen demand (COD) in wastewa-
ter [54,55]. While consuming the organic matters, the photosynthesis of microalgae also
reduces carbon dioxide and increases dissolved oxygen. Unlike a conventional wastewater
treatment plant, which mainly aims to reduce pollutants in wastewater to comply with
the standard so that the treated water can be released into the environment without im-
posing significant adverse effects to the receiving waters, the integration of microalgae
into wastewater plant offers additional advantages [56]. The cultivation of microalgae in
nutrient-rich wastewater allows for the direct reutilization of nutrients from the medium.
The integration of microalgae technology in wastewater treatment for nutrient recovery is
also competitive over conventionally used anaerobic digestion and precipitation in terms
of its carbon footprint and energy demands [57]. Figure 1 summarizes the merits and
challenges of microalgae-enabled wastewater treatment [58–62].

The efficiency of nutrient recovery depends on both the process conditions and nu-
trients themselves. The load, concentration, and chemical compounds of the nutrients
must be taken into consideration when evaluating the nutrient potential of a wastewater
stream [63]. Many commonly produced wastewaters, such as wastewater from municipal
sources, dairy manure, and swine wastewater contain nitrogen to phosphorus molar ratios
that are suitable for the growth of microalgae [64]. Typical sewage and agricultural wastew-
ater contain 15–90 mg/L of nitrogen and 4–20 mg/L of phosphorus, which can sufficiently
serve as a cultivation medium to support algal growth [60,65]. The biomass of microalgae
is a crucial factor in algae-based wastewater remediation and nutrient recovery, where the
higher the biomass, the higher the removal efficiency. In general, microalgae can consume
nutrients through various mechanisms to generate biomass. Nitrification is the major route
of nitrogen acquisition by green microalgae, where the ammonium compounds are used to
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react with oxygen to form NO2
− and NO3

−. On the other hand, biomass adsorption and
precipitation are the two main phosphorus removal mechanisms in microalgal systems [66].
The removal of phosphorus in a microalgae-PBR is mainly through the precipitation of
calcium phosphate, which is facilitated by the microalgae [67]. Different species of algae
exhibit different abilities and capacities in removing nutrients [68]. In addition, the nutrient
removal efficiency is also governed by external factors such as operating and seasonal
conditions [69,70]. The pH of the suspension and surface charge of the biomass consid-
erably affect the nutrient removal efficiency; the extent of the efficiency depends on the
type of nutrients present and their removal efficiency [71]. In an alkaline solution, the
predominant forms of phosphate ions, HPO4

2− and PO4
3−, encounter strong electrostatic

repulsions that interfere with the adsorption of these ions on the highly charged microalgae
surface [72]. Therefore, maintaining a low pH would be beneficial for the adsorption
of orthophosphates by the microalgae and for the enhancement of phosphorus removal
through the formation and precipitation of complex salts in the wastewater. In the high pH
condition, the transformation of NH4

+ to NH3 would be promoted, which increases the
stripping of nitrogen into atmosphere.
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The main challenges in algae-based wastewater remediation are the fluctuating compo-
sition and unbalanced ratio of major nutrients, including carbon, nitrogen, and phosphorus;
the presence of some compounds that can disrupt the biomass production and cause inef-
ficient nutrient removal in wastewater treatments is also a challenge [73]. The nutrients
present in varied chemical forms in wastewater are utilized by microalgae to different
extents. The consumption of ammoniacal nitrogen (NH4

+-N) by microalgae requires less
energy, as NH4

+-N can be directly absorbed to produce amino acids [74,75]. Nitrate (NO3
−-

N) can only be assimilated after several cycles of reductions and hence is less favorable.
External parameters such as light conditions, additional carbon dioxide supply, or extended
HRT are necessary for boosting the photosynthetic process, thus enhancing the NO3

—N re-
moval [76]. However, the high uptake of NH4

+-N does not necessarily promote cell growth;
this has been indicated in some studies where Scenedesmus bijugatus and Monoraphidium
sp. were observed to produce greater biomass when fed in a NO3

−-N -rich medium [77,78].
In addition to the growth rate and biomass amount, the removal of nitrogen can also be as-
sociated with the uptake of phosphorus, which has been considered to be a growth-limiting
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substrate in wastewater treatment applications. Phosphorous deficiency due to the loss
of phosphorus via precipitation would impose a negative effect on nitrogen removal [79].
Several approaches have also been established to facilitate the acclimation of microalgae in
wastewater, which include the selection of wastewater-tolerant species, mixed cultivation
of two or more microalgae [80], mixing of wastewater and synthetic culture medium, or
using different types of wastewater [81,82].

The high-rate algal pond, an integrated system that treats wastewater in low en-
ergy conditions, has been widely used for providing secondary and partial tertiary-level
treatments in large volumes [83]. Despite incorporating many attractive features over
conventional treatment plants, high-rate algal ponds require shallow depths for sunlight
harvesting and relatively long HRTs for efficient treatment. Therefore, the system has
been associated with the major disadvantage of a large areal footprint [84]. On the other
hand, biological nutrient removal processes have been conventionally implemented for
the removal of total nitrogen and/or total phosphorus. While exhibiting high efficiency
in nutrient removal to meet the discharge standard, biological nutrient removal processes
have been unfavorably associated with some limitations, specifically in terms of process
complexity and cost. With the increasing demands for utilizing microalgae or co-cultivated
microalgae-bacteria for nutrient recovery, the MPBR has been developed as a potential
candidate for delivering the desired outcome without compromising the technical issues of
footprint, cost, and complexity in upscaling and retrofitting. The nutrient removal efficiency
in the system is mainly caused by the nutrient uptake via microalgae instead of through
membrane filtration.

3. Microalgae Membrane Photobioreactor

Microalgae can be cultured in open and closed systems [85]. The combination of
microalgae cultivation and membrane technology in a closed system forms an MPBR
system, which demonstrates several advantages in treating wastewater compared with
conventional MBRs. In addition to addressing the issue of conventional algae ponds
commonly suffering from low efficiency due to insufficient light penetration and low
biomass generation, MPBRs offer smaller bioreactor footprints and can be continuously
operated at low HRTs. The SRT and HRT can be independently controlled in an MPBR
system to increase the nutrient load without requiring a large land area for the cultivation
of microalgae [86]. The decoupling of HRT and SRT by membrane filtration could result
in a doubled biomass productivity and several-fold higher recovery rate for nitrogen and
phosphorus in MPBRs compared with conventional PBRs [87]. Biomass washout, a major
technical issue associated with microalgae cultivation during continuous operation, can
be overcome in MPBRs [88]. Due to the issue of maintaining slow algal growth with short
HRTs in conventional reactors, it is required to increase the biomass concentration or reactor
volume to achieve the desired level of nutrient removal. With the presence of a membrane
for solid–liquid separation in the MBR, it is possible to achieve a short HRT bound to a
long SRT so that the biomass concentration can be increased. As the filtration mechanisms
rendered by membrane enables MPBRs to operate with higher supply rates, the biomass
yield and nutrient recovery efficiency are significantly higher in MPBRs compared with
PBRs [89].

Progress has been made in the development of MPBRs in terms of their construction
and operations. The membrane process has been known as a versatile technique for treating
a wide range of wastewater, but it is difficult to identify a single membrane process that fits
all purposes. The integration between membrane technologies and microalgae cultivation
enables the reclamation of essential resources including water, nitrogen, and phosphorus
from wastewater. When integrated in a microalgae photoreactor system, membranes can be
configured into crossflow, dynamic, submerged, and forward osmosis (FO) modes [90]. The
appropriateness of an identified membrane process relies on the nature of wastewater and
setup of the photoreactor. These configurations demonstrate the advantages and limitations,
which in turn dictate the efficiency of the membrane processes in dealing with wastewater
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treatment and nutrient recovery. Similar to how the species of microalgae can considerably
affect the growth rate and yield, the selection of a compatible membrane process is crucial
in determining the overall performance of the MBPR [91]. The membranes in MPBRs play
an important role in separating biopolymers such as proteins and carbohydrates from the
permeate; however, the removal efficiency is strongly governed by the molecular weight
cut-off of the membranes. Each type of membrane process exhibits unique characteristics
in wastewater remediation but is also coupled with their own merits and flaws. The
classical type of MPBR consists of a membrane submerged into the reactor [92]. Carbon
dioxide and illumination are supplied to sustain the growth of microalgae. Aeration is
also required to scour the membrane surface for fouling control. The membranes typically
used in MPBR are microfiltration and ultrafiltration that are arranged in flat sheet or
hollow fiber configurations. Different light sources can be applied for the cultivation of
microalgae in MPBRs. While outdoor direct sunlight illumination represents the most
realistic condition, the supply is inconsistent, and the intensity fluctuates throughout
the day. Therefore, most lab settings are equipped with artificial light sources, such as
fluorescent and multi-LED lights.

Despite the capability and reliability of producing high-quality product water, pressure-
driven processes are known as energy-intensive processes that would impede the attain-
ment of economic advantage. Therefore, there has been increasing attention in developing
membrane processes that are osmotically driven to reduce the energy requirement [93].
Akin to natural osmosis, FO has been promoted as an energy-advantageous alternative to
reverse osmosis (RO). Driven by the osmotic pressure difference between the feed water
and the draw solution, water can be transported across the FO membrane from the feed
water with a lower osmotic pressure to the draw solution with a higher osmotic pressure.
FO is a promising candidate for treating complex wastewater without the requirement
of sophisticated pre-treatment on account of their low fouling propensity [94]. Similar
to typical pressure-driven membrane processes, FO can be configured into several ways
depending on the type of wastewater to be treated [95]. An MPBR that operates with an FO
membrane, also known as an osmotic membrane photobioreactor (OMPBR) exhibits high
solute rejection, low fouling tendency, and high durability when dealing with complex
wastewater [96,97]. The promising performances of osmotic membrane bioreactors (OM-
BRs) have been witnessed in a wide range of biological wastewater treatment applications
and are evident in the nutrient recoveries obtained from wastewater [98–100].

Many key components must be considered when implementing the newly established
system, especially for a full commercial scale. One of the most cost-effective methods
for increasing wastewater treatment efficiency while achieving high biomass productivity
is through the manipulation of operating conditions [101,102]. Similar to an MBR, the
efficiency of an MPBR is largely governed by the SRT and HRT. The former is a critical
factor that controls biomass concentration and productivity as well as nutrient uptake by
the microalgae. Compared with heterotrophic bacteria with high metabolic rates, a longer
retention time is required for the microalgal biomass to effectively absorb nutrients. The
regulation of SRT, HRT, and SRT/HRT ratio is necessary to maximize algal productivity
and nutrient uptake by the microalgae cultured in wastewater. However, the SRT and
HRT required to achieve the highest biomass yield and the highest nutrient removal
efficiency are commonly not in coincidence. Therefore, most studies have adopted a
moderate SRT and HRT for the operation of MPBRs [70,103]. An MPBR operating with
a long SRT is not favorable for nitrogen removal, as the long SRT results in less biomass
waste [67]. The STR also influences the removal efficiency of phosphorus, as the change in
the microalgal biomass concentration would affect the algae-assisted chemical precipitation
of phosphorus. In any bioreactor, the HRT controls the nutrient loading and treatment
capacity. The HRT affects the biomass concentration and solid–liquid separation efficiency
in MPBRs. In addition to the SRT and HRT, the organic strength of the wastewater and
initial concentration of the microalgae also play critical roles in determining the treatment
efficiency.
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4. Performances of Microalgae-MPBR for Wastewater Treatment and
Nutrient Recovery

The wastewater treatment and nutrient removal efficiency of MPBRs have been eval-
uated as a function of the key operating parameters. By using the mixed microalgae of
Chaetophora sp. and Navicula sp. cultured in a synthetic secondary treatment effluent, Sol-
maz and Işık investigated the effect of the HRT on nutrient removal rate while maintaining
an SRT of 3 days [104]. With an HRT of 24 h, the removal rates of total nitrogen and PO4–P
were reported as 5.55 mgL−1day−1 and 0.40 mgL−1day−1, respectively, where the highest
biomass production rate was obtained. As shown in Figure 2a, the prolonged HRT was
beneficial for a better nutrient removal performance due to better nutrient assimilation
by the microalgae. Zou et al. evaluated the feasibility of an MPBR system for municipal
wastewater treatment under long-term operation with a high SRT of 50 days [105]. The
decaying of microalgae on the 23rd day implied that the MPBR system could not sustain the
performance due to the trade-off between the biomass concentration and light penetration.
Before the occurrence of microalgae decay, the MPBR achieved nitrogen and phosphorus
removal efficiencies of 76.7% and 66.2%, respectively. However, as shown in Figure 2b, the
decay of microalgae resulted in a dramatic increase in the concentration of total nitrogen
and phosphorus due to the release of cytoplasms from microalgae decomposition.

An outdoor pilot-scale MPBR which coupled a hollow fiber ultrafiltration membrane
system with Scenedesmus sp. was developed by Viruela et al. to treat effluents from an
anaerobic MBR sewage treatment [106]. With an SRT of 4.5 days, the MPBR achieved
PO4

3−-P and NH4-N removal rates of 1.17 mg/L.day and 7.68 mg/L.day, respectively.
Although it was expected that the nitrogen to phosphorus influent ratio could affect the
nutrient uptake by the microalgae, the statistical correlations for long-term operation have
yet to be established. By manipulating the outdoor environment and operating condition, it
was observed that high biomass concentration, reduced solar irradiance, and temperature
higher than 25 ◦C had negative effects on the nutrient uptake efficiency and biomass
productivity. It was also revealed that the pumping and recirculation modes can be further
optimized to reduce the energy demands and footprints while maintaining the nutrient
recovery rate and biomass productivity. The optimization of the HRT had insignificant
effects on the photosynthetic efficiency and nutrient recovery rates [107]. However, a
prolonged SRT of up to 9 days dramatically increased the membrane fouling rate due to
the high biomass concentration. The intensity and path distance of light directly affect the
photosynthetic efficiency of microalgae. By varying the light path distance, an improvement
in the photosynthetic efficiency of mixed microalgae culture of Chlorella vulgaris and
Scenedesmus was observed. Using the same outdoor pilot-scale MPBR, González-Camejo
et al. reported an increase in the nitrogen and phosphorus recovery rates by 150% and
103% respectively; microalgae biomass productivity increased by 194% and photosynthetic
efficiency by 67% when the light path distance was reduced from 25 to 10 cm due to a better
sunlight harvesting [108].

Preveen and Loh operated an OMPBR for 162 days for a tertiary wastewater treatment
and nutrient recovery scenario using Chlorella vulgaris [109]; Removal efficiencies of 93%
53% and 89% were achieved for NH4

+-N, NO3
−-N, and PO4

3−-P at an HRT of 3 days. A
high tendency of microalgae aggregation and attachment to the bioreactor and membrane
surfaces was observed, resulting in the accumulated total biomass in the OMPBR being over
5 g/L. By changing the composition of the wastewater, it was noted that the OMPBR when
operated at high nitrogen and phosphorus concentrations resulted in a high accumulation
of nutrients during the transient stage, where the biomass and nutrient assimilation was
still low. Such an observation suggested that an OMPBR would be more sustainable for
tertiary wastewater treatment with low nitrogen and phosphorus contents. The efficiencies
of microfiltration and FO in an MPBR operated with Chlorella vulgaris for continuous
tertiary wastewater treatment have been compared [110]. While both photoreactors ex-
hibited a comparable biomass accumulation of >2 g/L, the OMPBR consistently achieved
higher nutrient removal efficiencies regardless of the operating conditions, on account of
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the higher solute retention properties of the FO membrane. The concentrations of NH4
+-N,

NO3
–-N, and PO4

3–-P were significantly reduced due to the uptake by microalgae. As
shown in Figure 2c, the OMBPR achieved higher removal efficiencies of up to 99% and 100%
for nitrogen and phosphorus, respectively, compared with the MPBR efficiencies of 97%
and 46%, respectively. Nevertheless, due to the fundamental differences in microfiltration
and FO—in which draw solution cost and its regeneration cost must be considered for
the latter case—the OMPBR displayed a higher operating cost and overall filtration cost
relative to the MPBR. However, FO may stand a better chance to energetically outper-
form the conventional MPBR if the photoreactor was operated at a higher flux and for a
longer operating duration, where the transmembrane pressure and fouling become more
significant in MPBR.
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(d) Illustrations of (i) sidestream and (ii) submerged FO modules in the OMPBR [111] (Reprinted
with permission).

The effects of sidestream and submerged FO module configurations on nutrient removal
efficiency and microalgal growth have been evaluated, as illustrated in Figure 2d [111]. A
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higher algae biomass was obtained in the submerged OMPBR, hence leading to a higher
nutrient removal efficiency of 100% for NO3

–-N and 92.9% for PO4
3–-P compared with the

sidestream counterpart, which had a removal efficiency of 96% for NO3
–-N and 82% for

PO4
3–-P. Due to the higher initial water flux in the sidestream OMPBR, severe flux loss and

greater foulant deposition were observed. However, because a more convenient hydraulic
flushing could be performed on the sidestream module relative to the submerged one,
the former is more favorable when dealing with complex wastewater that imposes a high
fouling tendency in the OMPBR.

5. Membrane Fouling in Microalgae–Wastewater Medium

While the efficiencies and simplicity of membrane-based processes for wastewater
treatment have been well-proven, the process is confronted by membrane fouling, a process
whereby soluble and particulate materials attach onto the membrane surface or adhere to
the membrane’s pores. As the efficiency of membrane filtration deteriorates over time due
to membrane fouling, this phenomenon has been identified as the main contributor of the
total operational cost in MPBRs. For a membrane system operated under low hydraulic
pressure, polysaccharides and other biopolymers are known as the major foulants that
contribute to membrane fouling. The main contributors of fouling in the MPBR are organic
substances and microalgal biomass, while the fouling mechanisms are similar to that of
the conventional MBR [112]. When integrated into the wastewater treatment system, the
fouling of the membrane, which has been known to be the impediment of any membrane-
based separation process, is not only caused by the microalgal suspension, algal organic
matters (AOM), and cellular debris, but also other fractions derived from the effluents, such
as organic substances and microorganisms [113]. The AOM released by microalgae are
characterized by different molecular weights and chemical compositions, which depends
on the algae species and their respective growth phase as well as the nutrient availability.
Specifically, external organic matters (EOM) and internal organic matters (IOM) are the
terms used to differentiate the AOM produced from the metabolic activities and those
released from the cell rupture of microalgae cells, respectively.

Microalgal cultures have been identified as a major contributor of initial fouling;
however, the supernatant contents, including EOM and cellular debris, can consider-
ably change the fouling behaviors. The membrane fouling behaviors in the presence of
a microalgal solution are governed by many factors, including the driving force of the
membrane processes, the operational modes, and the interactions among the membrane
surface, microalgae, and other components surrounding them. The surface properties
of the membranes such as the surface hydrophilicity/hydrophobicity, surface roughness,
and surface charge dictate the interactions between the membrane surface and foulants
and hence the depositions of various foulants on the membrane structure. Fouling takes
place through different mechanisms and with different severity in various membrane pro-
cesses. It is generally agreed that membrane fouling in osmotically driven processes such
as FO is less severe and is normally reversible. It has also been observed that the carbohy-
drates and proteins of soluble microalgae products fouled an FO membrane to different
extents when operated in active layer facing feed solution and active layer facing draw
solution configurations [114]. The interaction between the soluble microalgae products and
calcium-containing draw solutions could further increase the severity of membrane fouling.
Figure 3 illustrates the intercorrelated fouling-contributing components during wastewater
treatment in microalgae-containing MPBRs.

Understanding of the fouling types, mechanisms, and governing factors during the
filtration process is important for mitigating the issue through the optimization of mem-
brane designs and operating conditions. Membrane microalgae fouling initiates with the
deposition and accumulation of microalgal organic matters, algal cells, and transparent
exopolymer particles (TEP). The process can be further elaborated as a multiple-stage
process, which involves pore-blocking, gel-layer formation, multicellular algal complex
cake layer formation, and the random distribution of foulants throughout the cake layer
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and membrane surface [115]. Complex fouling mechanisms take place during the filtration
of microalgae cultured in wastewater medium. Membrane pore blocking and cake layer
formation on the membrane surface are mainly caused by the microalgal cells and EOM
that are excreted as metabolism products or readily exist in the wastewater. EOM with
small molecular size can easily penetrate into membrane pores and form gel layers on the
membrane surface, whereas the microalgal cells tend to build up as a cake layer on the
membrane surface. While the deposition of EOM leads to an irreversible fouling resistance,
the fouling caused by the cake layer build-up is normally reversible and can be removed
by physical cleaning procedures such as online or intermittent backflushing. In addition to
physical cleaning, mechanical and chemical cleaning methods have also been adapted to
restore membrane performance [116]. Chemical cleaning, which involves the soaking of the
membrane in a cleaning chemical, has been commonly applied to address irreversible foul-
ing. Regardless of the approaches used, the efficiency of the membrane cleaning depends
on multiple factors, such as the fouling nature, extent of fouling, and cleaning frequency.
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Using model secondary effluent wastewater, Lee et al. observed that TEP played an
important role in the initial stage of biofilm formation and in the biofouling mechanisms
of the RO membranes [117]. The cake fouling potential of TEP significantly increased the
bacterial deposition on the biofouled membrane. Desmodesmus sp. and Coelastrella sp.
have been cultured in a submerged membrane-based filtration device using anaerobic
membrane bioreactor-treated secondary effluent as the culturing medium [118]. Based
on the different fractions of the microalgal suspension, it was observed that the fouling
mechanisms and fouling reversibility of the polyvinylidene fluoride (PVDF) ultrafiltration
membrane were strongly dependent on the stages of microalgal growth. Irreversible fouling
took place in the early stage of the filtration process; interestingly, however, the interactions
among the microalgae cells, cell debris, and EOM in the suspension altered the fouling
behaviors, and the effect of reversible fouling was decreased as the filtration duration
lapsed. Nevertheless, compared with the normal culture medium, the high organic load of
the anaerobic membrane bioreactor treated secondary effluent led to a very high fouling
propensity.

The rupture of microalgae cells and their bindings with polymeric substances could
change the surface chemistry and structure of the cells as well as their interaction with
membrane surface. As the organic carbon contents present in most wastewater are known
to be major foulants, the total organic content should be kept minimum. The elimination
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of organic carbon content from wastewater prior to its usage is beneficial for minimizing
membrane fouling in the integrated system. The control of the release of EOM during
microalgae cultivation by optimizing the environmental conditions such as the pH, temper-
ature, and culture stage can also suppress the fouling propensity [119]. The effective control
of TEP through pre-treatment is also essential for controlling the propagation of biofouling.
The microalgae concentration has a considerable effect on the severity of membrane fouling.
An increased viscosity in the bulk medium was observed to hamper the air scouring along
the membrane surface [120].

Using synthetic wastewater that was rich in nitrogen in the forms of NH4
+-N and

NO3
−-N, Luo et al. observed the effects of nitrogen chemical compositions on the biomass

growth rate and fouling propensity of submerged PVDF hollow fiber membranes [121].
The MPBR fed with NH4

+-N-rich wastewater produced a greater amount of extracellular
materials and had poorer dewaterability compared with the NO3

−-N-fed counterpart.
With NH4

+-N present as a preferable source of nutrient under the aerobic condition, the
growth and accumulation of bacteria were stimulated. At high transmembrane pressure
where the flux was above 25 L/m2·h1, the biomass cultured in NH4

+-N-rich wastewater
caused more rapid fouling than the NO3

−-N-fed counterpart due to the formation of a
high concentration of biopolymer. The production of biopolymers resulted in heterogeneity
and increased the biomass hydrophobicity, hence forming a more severe bio-cake on the
membrane surface. As such, it was recommended that the SRT should be shortened to
control the biomass heterogeneity when treating NH4-rich wastewater. The findings also
implied that the composition of nitrogen in the wastewater should be examined so that
the operating conditions can be tuned to mitigate fouling and reduce the harvesting cost.
Zhang et al. studied the membrane fouling behavior in an MPBR that treated a synthetic
anaerobic digestion effluent [122]. It was observed that the SRT significantly affected the
extent of membrane fouling, but in a nonlinear correlation. By determining the filtration
resistance, gel layer formation and pore clogging were identified as the main contributors
to the membrane fouling. At an SRT of 20 days in which the extracellular polymeric
substances (EPS) and soluble microbial contents were at their maximum level, the fouling
was further worsened.

For wastewater with highly concentrated organic loads, the growth of microalgal
cells and the subsequent biomass production are inhibited by the microalgae products,
which are mainly composed of carbohydrates and proteins. To counter this issue, the co-
cultivation of microalgae and microorganisms such as bacteria in algae-bacterial symbiotic
systems has become the prevailing method for improving the microalgae growth rate and
treatment efficiency of wastewaters. Being increasingly used in wastewater treatment,
the microalgal–bacterial consortium composed of activated sludge, algae, and bacteria
demonstrate symbiotic interactions that are beneficial for promoting higher nutrient re-
moval efficiency as compared to the single counterpart [123,124]. Amini et al. achieved
NH4

+-N and PO4
3−-P removal efficiencies of 94% and 80%, respectively, using microalgae

and activated sludge inoculum ratios of 5:1 in a semi-continuous MPBR [125]. With the
presence of microalgae in the MPBR, it has been reported that the mechanical aeration
required for floc agitation and membrane cleaning was reduced by 60% compared with a
conventional bioreactor with only activated sludge biomass. By controlling the mechanical
aeration, the stable growth of algae and bacteria can be achieved to increase nutrient re-
moval efficiency. Although it was predicted that the energy cost can be reduced by 36% by
reducing the mechanical aeration, the cost of energy required for the light supplied was
not considered in the study [126]. The formation of more porous and layered channels in
the fouling layer of the co-culture of algae and activated sludge has been observed, imply-
ing that the co-cultivation can reduce the severity of membrane fouling [127]. However,
using microalgal-activated sludge co-cultivation at the optimized ratio for raw wastewater
treatment, Chaleshtori et al. reported severe membrane fouling despite the high nutrient
removal efficiency due to the spike in carbohydrate and protein fractions in the soluble
microbial products and EPS, respectively [128].
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6. Innovations in Membranes and Reactor Design for MPBR

Several approaches have been accommodated in microalgae-based MPBRs to improve
nutrient recovery and wastewater treatment efficiency. In addition to maximizing the
performance of MPBRs, the mitigation of membrane fouling is always a primary task in
membrane research. The periodical membrane backwashing in the MPBR system has
been proven effective in achieving a high permeate flux recovery of >80% [129]. Designs
of an antifouling membrane and innovative reactor have also been made to suppress
the membrane fouling tendency in MPBRs. In situ mechanical cleaning of membrane
in the MPBR has been established to mitigate fouling during operation and reduce the
consumption of chemical agent. Azizi et al. developed a reciprocal MPBR that includes a
spongy blade for the cleaning of the cake layer formed on the membrane surface [130]. A
programmed PLC system was designed to enable the detection of transmembrane pressure
(TMP) of the MPBR membrane so that the spongy blade can be activated for cleaning.
The mechanical cleaning reduced the total hydraulic resistance by up to 83% without the
need for chemical cleaning or washing. As shown in Figure 4a, it was observed that the
dark–light operational periods affected the severity of the cake layer formation, time taken
to cause detectable change in TMP, and major foulants in the MPBR. Hosseini et al. installed
orifices with different diameters to alleviate the cake resistance and pore blocking resistance
in an MPBR containing spirulina [131]. Polyethylene granular particles with a diameter of
5mm were loaded into the MPBR. The granules penetrated through the boundary layer of
the membrane and removed the cake layer deposited on the membrane.

A nanocomposite membrane is a cutting-edge innovation in membrane development.
Enabled by the surface functionalities and structural advantage of nanomaterials, the re-
sultant nanocomposite membranes exhibit enhanced efficiency in wastewater treatment.
Chong et al. fabricated silver/graphene oxide (Ag/GO)-incorporated PVDF membranes
for the treatment of synthetic municipal wastewater [132]. In the presence of Chlorella
vulgaris, the nanocomposite membrane with increased surface hydrophilicity not only
increased the water permeability, but also contributed to a better anti-fouling propensity,
especially for long-period operation. The reactive oxygen species generated by the Ag/GO
nanohybrid rendered strong antimicrobial properties on the membrane surface, thus pre-
venting the attachment of E. coli, the commonly found microorganisms in typical municipal
wastewater. The negligible difference in the biomass cultivated using commercial PVDF
and Ag/GO incorporated PVDF implied that the nanomaterials have marginal effects on
the microalgal growth. However, it is worth mentioning that disruption of microalgal cells
by metal and metal oxide nanoparticles at high concentrations has been reported in some
studies [133,134], suggesting that the loading of nanomaterials is an important parameter
for the preparation of nanocomposite membranes.

The integration of electrochemical processes in PBRs has been proven to stimulate the
growth of microalgae [135], improve nitrogen and phosphorus removal efficiency [136],
and mitigate membrane fouling [137]. An MPBR incorporated with a low-voltage direct
current was developed for the treatment of synthetic municipal wastewater using Chlorella
vulgaris [138]. While achieving a biomass production that was comparable to the conven-
tional MPBR, the electrokinetic-assisted MPBR achieved a significantly higher phosphorous
removal, with an overall removal of 97.98% compared with the 41.81% achieved by the
conventional MPBR. In addition to the typical adsorption and precipitation mechanisms,
the electrochemical reactions taking place in the suspension and the ionic strength of the
solution also contributed to phosphorus removal. The reduced phosphate concentration in
the electrokinetic-assisted MPBR is advantageous for membrane fouling mitigation, as a
low concentration of phosphorus retards the growth of biofilm. Despite the advantage of
electrochemical reaction in stimulating phosphorus removal and subsequently controlling
biofilm formation, an overall lower nitrogen removal has been observed, which suggests
that the introduction of an electric field imposed an inhibitory effect on the removal effi-
ciency of total nitrogen. A contradictory observation was reported by Corpuz et al., who
treated synthetic municipal wastewater using Chlorella vulgaris-activated sludge [139].
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Using an electrically induced MPBR as schematically shown in Figure 4b, the system
not only achieved improved phosphorus removal by 65%, but also a 16.7% increase in
NH4

+-N removal as compared with the non-electro counterpart. The improvement in
nitrogen removal efficiency has been attributed to several reasons: an accelerated deni-
trification process that resulted from the anoxic conditions induced by the electric field;
and an electroreduction of the nitrate on the cathode and adsorption of nitrate into the
electrocoagulated aluminum hydroxide. The applied electric field also reduced the contents
of the membrane fouling precursor through several mechanisms. The negatively charged
polysaccharides present in the microalgal suspension were neutralized by aluminum ions,
meaning that their concentration as one of the major foulants in the bulk solution was
reduced. EPS was decomposed via electrochemical oxidation into substances with low
molecular weight and can be readily biodegraded. The inhibition of microalgae growth
has been observed upon prolonged electric field exposure. However, no agreement has
been made on the duration in which the retardation of microalgae starts to occur. As the
retardation is mainly caused by the electrochemical reactions that take place at the electrode,
the design of the rectors and the position of the electrodes can be further fine-tuned to
minimize the oxidation effects.
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Figure 4. (a) The appearance of membranes operated in various light/dark (L/D) conditions.
(b) Schematic illustration of conventional and electrically induced microalgae-activated sludge
MPBR [133]. (c) Annular MPBR equipped with ion exchange membrane to separate microalgae
cultivation and nutrient-containing wastewater [134] (Reprinted with permission).

An annular MPBR equipped with an ion exchange membrane has been developed
to control the effects of suspended solids, nutrients, and heavy metals in wastewater on
microalgal growth [140]. As shown in Figure 4b, the ion exchange membrane separates
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wastewater and microalgae into two chambers, hence preventing them from directly
contacting each other. Nitrate and phosphorus from the untreated tannery wastewater
were allowed to penetrate through the membrane into the microalgae culture, while the
undesired components in wastewater were retained. Particularly, the high turbidity of
wastewater, which reduces light penetration for the photosynthetic growth of microalgae
can be avoided in the microalgae culture medium. In addition to a better microalgal growth
in the ion exchange MPBR, higher nutrient recovery efficiencies have been observed for
nitrate and phosphorus, which were 8.95 and 2.31 mg/L.d, respectively, compared with
that of the conventional PBR, which had removal rates of 4.88 and 0.94 mg/L.d, respectively.
However, despite the improvement made, the transport mechanisms of nutrients across
the ion exchange membrane were not described in detail.

7. Challenges and Future Directions

While microalgae have been more popularly known as a feedstock for biofuel produc-
tion, current efforts have also been diverted to the application of microalgae for wastewater
treatment and nutrient recovery. Microalgae-enabled wastewater remediation processes
have demonstrated many benefits in meeting the new expectations for improved wastewa-
ter treatment, which also include bioremediation and nutrient recovery. As summarized in
Table 1, studies in support of this claim have been published to prove microalgae-enabled
MPBRs as a potential strategy for future wastewater treatment. The technical feasibility
in terms of wastewater treatment efficiency has been well-observed through various ex-
perimental studies. Nevertheless, this relatively innovative approach is still confronted
by many challenges, such as the adaptability of microalgae in complex wastewater as
well as the design and optimization of processes to improve treatment efficiencies with
a lower cost. In addition to these general challenges, the specific constraints can also be
related to the applications of the membranes in the photobioreactor or processes involving
microalgae-enabled wastewater treatment and nutrient recovery. Despite the efforts made
in this field, many uncertainties remain unresolved. This also calls for the need to expand
and deepen the research investigating the details of the influencing parameters. Due to the
multiple factors involved in the process, more investigations are required before the under-
lying reasons that contribute to the treatment and removal of nutrients in the system can be
pinpointed when compared with the conventional counterparts. Figure 5 summarizes the
current innovations and the way forward for the implementation of MPBRs for wastewater
treatment and nutrient recovery.

Table 1. Summary of the nutrient removal efficiencies of MPBRs.

System Membrane/
Configuration Microalgae Wastewater N Removal

Efficiency/Rate
P Removal/

Efficiency/Rate Ref

MPBR PVDF hollow fiber Chaetophora sp.,
Navicula sp.

Synthetic secondary
water 30.25% 40.58% [104]

MPBR Flat plate C. vulgaris Synthetic municipal
wastewater 76.7% 66.2% [105]

Pilot outdoor MPBR Hollow fiber C. vulgaris,
Scenedesmus sp. Anaerobic MBR effluent 7.68 mg/L.d 1.17 mg/L.d [106]

Pilot outdoor MPBR Hollow fiber Scenedesmus sp. Anaerobic MBR effluent 29.7 mg/L.d 3.8 mg/L.d [108]

OMPBR HTI TFC hollow
fiber C. vulgaris Synthetic tertiary

wastewater 93% 89% [109]

OMPBR Flat sheet TFC C. vulgaris Synthetic wastewater 100% 98.7% [111]

MPBR Ag/GO PVDF
membrane C. vulgaris Synthetic municipal

wastewater 92.3% 66.1% [132]

MPBR Cellulose ester
hollow fiber

C. vulgaris-activated
sludge

Raw treatment plant
wastewater 94.36% 88.37 [128]

MPBR PVDF flat sheet C. vulgaris-activated
sludge

Synthetic domestic
wastewater 92.7% 92.4% [126]

Electrokinetic-assisted
MPBR PVDF flat sheet C. vulgaris Synthetic municipal

wastewater 41.81% 97.98% [138]

Electrokinetic-assisted
MPBR PVDF hollow fiber C. vulgaris-activated

sludge
Synthetic municipal

wastewater >98% * >98% * [139]

Annular two-chamber
MPBR

Ion exchange
membranes C. vulgaris Dairy manure

wastewater 8.95 mg/L.d 2.31 mg/L.d [140]

* Value estimated from graphs.
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Figure 5. Summary of current innovations and the way forward for the implementation of MPBRs in
wastewater treatment and nutrient recovery applications.

As a complex physical and biological integrated system, the nutrient recovery and
wastewater treatment efficiency of MPBRs are subject to many factors as well as the
operating conditions. The presence of microalgae further complicates the operation of an
MBR that involves biological and physical treatment processes. Therefore, the quantification
and optimization of the process can be considered as an important area of research in this
field. Despite the investigations made in optimizing the operating parameters of MPBRs,
such as examining the effects of HRT, SRT, and initial biomass concentration, there is still
no consensus on the optimum operating conditions for MPBR operations. For instance, the
HRT for the optimum microalgae productivity has been reported in a wide range, from one
to several days. This indicates that the important operating parameters of the bioreactor,
such as the SRT and HRT, are also highly influenced by other factors, such as the type of
wastewater and microalgal species. The prediction of the behaviors of MPBRs in terms of
nutrient removal efficiency and fouling propensity can be helpful in decision-making to
improve the performance of the system. A systematic tool for optimization and prediction
is required for this purpose. Very recently, machine learning models have been applied
in predicting the nutrient removal efficiency of MBRs in treating sewage water, which
investigated different modelling scenarios in various operating conditions [141]. The same
efforts can be extended to MPBR applications to correlate the relationship between the
operating parameters and the wastewater treatment or nutrient recovery performances.
Similarly, artificial intelligence techniques, which can model real-time issues involving
details of perplexing conditions, can play an interesting role in determining the quality of
source water as well as in predicting the membrane filtration efficiency and membrane
fouling [142].

Despite the tremendous efforts made in fouling controls, the actual conditions and
parameters of the wastewater–microalgae–membrane-integrated system have not been
extensively studied. The long-term stability of the membranes in such a complex envi-
ronment has also been overlooked. Special attention should be paid to analyzing the
foulant interactions and fouling behavior by working on the filtration of microalgae-treated
effluents. Some of the adopted spectrometric or microscopic characterization tools only
reveal semi-quantitative information, where important details such as the chemical compo-
sitional change during the propagation of fouling remain as a black box. More powerful
tools and detection methods, which can also be feasibly utilized in real-scale membrane
practices, are desired to evaluate the fouling potential of various microalgal organic matters.
Furthermore, the prediction and assessment of the fouling behavior through some relevant
indication such as a cake fouling index also deserves more extensive research effort. Due to
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the uncertainty in determining the chemical composition of naturally occurring microalgal
organic matters, most microalgal biofouling studies were conducted using compounds that
mimic the properties of the identified microalgal organic matters.

It is crucial to choose the suitable algal strain for an identified wastewater. There are
multiple factors to consider, from the growth rate, nutrient consumption, and biomass
production to their flexibility to adapt to the harsh nature of most wastewater. Although a
good number of microalgae of different biochemical compositions has been proposed for
wastewater treatment, when MPBR is of concern, the interactions between the microalgal
cells and the membrane surface have not been thoroughly investigated. Other than the most
studied Chlorella vulgaris, many other important microalgae strains can be considered for
wastewater treatment [143]. Ensuring the presence of only a specific type of microalgae cul-
ture throughout the operation of PMBR is almost impossible. Therefore, studying the effect
of co-existing microalgae in the receiving wastewater on the performance of the MPBRs
is an interesting subject to achieve the targeted removal efficiency in practical conditions.
Studies should also be focused on using real wastewater from primary and secondary
effluents instead of synthetic wastewater. Real wastewater can provide a direct indication
of the growth behavior of microalgae and their effects on membrane fouling during the
bioremediation process. Co-cultivation of microalgae and bacteria is a promising strategy
for improving the overall efficiency of wastewater treatment and for achieving a complete
removal of many types of toxic compounds. Nevertheless, the efficiency of the symbiotic
system may be jeopardized when applied for the treatment of wastewater containing high
concentrations of toxic pollutants. For instance, although complete degradation of phenol
has been observed in a microalgae-activated sludge system, the concentration of phenol
was normally below 600 ppm. For influents that contain a high level of phenol such as that
produced in a coking plant, the active function of bacteria might be inhibited [144]. The
mechanism of membrane fouling mitigation in the microalgae-bacteria consortium still
needs further investigation. Furthermore, the control of the system stability is challenging
due to the complication of the interaction between the microalgae and bacteria, which in
turn affects the setup efficiency.

While several innovations have been reported, the approaches for fouling mitigation
in MPBRs still have room for improvements. The introduction of an electric field in
photobioreactors can suppress fouling, but the electric field applied raises the operating
cost of the system. Furthermore, the effects induced by the external electric field on the
nutrient removal pathway need to be verified through further electrochemical analyses of
the biomass. It is also necessary to assess the specific energy consumption of the system.
The combination of microalgae wastewater treatment with a UV-activated photocatalytic
process has been reported in a recent study [145]. The glass-supported TiO2 was used
as the post-treatment of the photobioreactor to achieve a better removal of COD and
organic compounds in highly loaded winery wastewater. While such a post-treatment
concept is beneficial for enhancing the overall wastewater treatment efficiency, the use of a
photocatalytic membrane provides an opportunity to directly integrate a photocatalytic
system into the photobioreactor, eliminating the need for an additional post-treatment
unit. The development of a photocatalytic membrane, a new generation of mixed matrix
membrane which combines membrane filtration and photocatalytic degradation in a single
entity, is becoming a prevailing method in membrane research due to its great potential in
wastewater treatment [146]. With the ability of the membrane-embedded photocatalysts
to photodegrade organic pollutants and hence mitigate the fouling issue, the integration
of such photocatalytic membranes is expected to expand the application of microalgae-
based MPBRs for more challenging complex wastewater treatments. The exploration of
photocatalytic membranes with solar light harvesting will be an important tool to promote
the economic feasibility of the integrated system.

The successful implementation of an innovative technology is not only judged based
on its ability to achieve the desired outcome to solve engineering issues but is also eval-
uated based on the cost effectiveness of the entire process. Furthermore, the wastewater
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pre-treatment costs involved must also be considered in the final economics. The economic
feasibility of the entire MPBR system has rarely been reported in the literature, and studies
focused on a detailed cost analysis of the entire wastewater treatment are still limited. In
addition to the economic concern, the operation of MPBRs in outdoor conditions is also
challenged by many technical issues. When operated outdoors, the efficiency of the system
is highly susceptible to environmental factors such as the surrounding temperature and
sunlight intensity. With the fluctuations in the environmental parameters, the nutrient
uptake by microalgae is expected to reduce when moving from the bench-scale MPBR to
an outdoor setting. It has been reported that the nutrient recovery efficiency and biomass
productivity was reduced by a factor of 1–3 and 10–13, respectively, under outdoor condi-
tions [147]. The current investigations on microalgae cultivation in MPBRs have not been
focused on optimizing these external parameters. The system and set up of this applica-
tion are in fact important for the assessment of the biomass yield and nutrient recovery
efficiency of microalgae. Therefore, more studies are required to elucidate the operational
issues so that the baselines for the future improvement of MPBRs can be established in a
more relevant environment, with respect to wastewater treatment and nutrient recovery in
microalgae. It is suggested that economic and environmental assessments be conducted in
different outdoor settings that account for fluctuating environmental conditions that could
affect biomass productivity and nutrient recovery efficiencies. As process optimization is
certainly required to attain higher nutrient removal efficiencies and biomass productivities,
the optimization performed under such realistic settings will be more representative for
practical references.

Energy consumption is another issue associated with the sustainability of membrane
processes for large-scale applications. Low-pressure membrane processes such as FO have
been increasingly used as an alternative to pressure-driven processes to minimize the energy
consumption and membrane fouling tendency. However, there are still doubts on the claims
pertaining to the overall energy consumption of OMBRs. The mitigation of inherent issues
of FO such as external concentration polarization and reverse solute migration are closely
related to the draw solution and energy input of the process. Despite the attractive features
demonstrated, FO can only outperform other pressure-driven counterparts if there is
no extensive energy requirement for the draw solution recovery. Although systematic
comparisons of the performances and energy efficiencies of conventional MBR and OMBR
systems operated with microalgae for wastewater treatment have been accomplished,
the challenges related to the draw solution recovery in microalgae osmotic bioreactor
systems have not been practically addressed. The fouling formation and mechanisms
become more complicated when cultivating microalgae in wastewater, as a huge variety
of microorganisms are present in wastewater. The implementation of a co-cultivation
of microalgae and bacteria is a double-edged sword; it may worsen the fouling of the
membrane when excessive EPS and soluble microbial products are produced as a result
of the environmental stress and competition between microalgae and bacteria. Therefore,
the growth and ratio of microalgae and bacteria in the consortium should be carefully
controlled. A better understanding of the effect of the microalgae–wastewater suspension
on the membrane fouling and establishment of effective membrane fouling mitigation are
of great importance.

Nutrient recovery using microalgae-based MPBRs should not be restricted to using
wastewater as a nutrient source. Urine has also been identified as a potential nutrient source
for microalgae cultivation due to its high load of nitrogen and phosphorus. Furthermore,
although the wastewater treatment and nutrient recovery efficiency of MPBRs have been
increasingly investigated, studies on algal lipid production in MPBRs are still scarce. It
has been reported that the nutrient concentration in secondary effluents is too inconsistent
to sufficiently support a satisfactory micro algal biomass production in a batch culture
mode [148]. To realize the utilization of the microalgae biomass as a renewable feedstock,
it is necessary to provide more insights into the microalgal lipid accumulation properties
during MPBR operation so that the production capacity of algal lipids can be improved. In
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addition, such a system should not be limited to the recovery of water and nutrients; carbon
dioxide and thermal energy can also be potentially recovered. A carbon dioxide-selective
membrane allows for the enrichment of carbon dioxide gas which can be directly fed into
the MPBR to sustain the growth of microalgae through photosynthesis.

8. Concluding Remarks

The implementation of innovative wastewater treatment systems is expected to take
place in line with the adoption of a circular economy, which enforces stringent regulations
for wastewater discharge. The increasing emphasis in water reclamation for reuse in many
industries further promotes this development. As wastewater has been increasingly re-
garded as a significant source of nutrient, water, and energy, the existing industrial and
municipal water treatment processes have shifted to a new paradigm where the target
of wastewater treatment is no longer has sole emphasis on pollutant removal but also
emphasizes adding value through nutrient recovery and energy production. This review
discusses the recent development of microalgae-MPBR to simultaneously realize wastewa-
ter treatment, nutrient recovery, and biomass production in a single step. Emphases have
been given on the innovations made in the design of photobioreactors and membranes and
on the optimization of parameters to counter the existing issues that hamper its applica-
tion. More laboratory trials and pilot-scale validations are required to fix the technological
glitches so that the microalgae-based MPBR can be truly known as an economically and
environmentally sustainable alternative for wastewater treatment. As a serious contender
to conventional wastewater treatment approaches, this approach will serve as a sustainable
and resilient component in water and wastewater treatment-related industries. Depending
upon the pace of innovations in this area, it is expected that the technology will become
more prevailing and mature in the next 5–10 years.
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