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Abstract: Nonlinear photovoltaic (PV) output is greatly affected by the nonuniform distribution of daily irradiance, preventing 

conventional protection devices from reliably detecting faults. Smart fault diagnosis and good maintenance systems are essential for 

optimizing the overall productivity of a PV system and improving its life cycle. Hence, a multiscale smart fault diagnosis model for 

improved PV system maintenance strategies is proposed. This study focuses on diagnosing permanent faults (open-circuit faults, 

ground faults, and line-line faults) and temporary faults (partial shading) in PV arrays, using the random forest algorithm to conduct 

time-series analysis of waveform length and autoregression (RF-WLAR) as the main features, with 10-fold cross-validation using 

Matlab/Simulink. The actual irradiance data at 5.86 °N and 102.03 °E were used as inputs to produce simulated data that closely 

matched the on-site PV output data. Fault data from the maintenance database of a 2 MW PV power plant in Pasir Mas Kelantan, 

Malaysia, were used for field testing to verify the developed model. The RF-WLAR model achieved an average fault-type 

classification accuracy of 98 %, with 100% accuracy in classifying partial shading and line-line faults. 
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PS 
Pmax 
PPVA 

PV 
RF 

Principal component analysis 
Partial shading 
Maximum power 
PV array output power 
Photovoltaic 
Random forest 

RF-WLAR
 
MSFD 
STC 
STD 

Random forest with waveform 
length and autoregressive features 
Multi-scale smart fault diagnosis 
Standard test condition 
Standard deviation 

SVM 
Vmp 

Support vector machine 
Voltage at maximum power 

Voc 
WL 

Open-circuit voltage 
Waveform length 

1  Introduction 

Solar photovoltaic (PV) systems have undergone 
extensive growth, contributing to global power 
generation [1]. PV output characteristics are nonlinear, 
which has caused difficulties for conventional 
protection devices, such as fuses and circuit breakers, 
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in accurately detecting and isolating faulty circuits. 
Therefore, smart PV fault detection and diagnosis 
techniques are required [2-3]. In general, potential faults 
on the DC and AC sides of a PV system can be 
classified based on their temporal characteristics, as 
permanent, intermittent, or incipient [4]; some 
examples are provided in Fig. 1. Once they have 
occurred, permanent faults such as line-line, 
open-circuit, and ground faults, will persist until 
rectified. In contrast, intermittent faults are temporary 
and include shading due to leaves, bird droppings, and 
environmental effects such as dust pollution and snow 
accumulation. Finally, incipient faults can occur 
through PV cell degradation and corrosion. This type 
of fault leads to permanent faults if left untreated. 

 

Fig. 1  Main categories of potential faults in PV systems 

Recently, several studies have using machine 
learning (ML) techniques to detect and diagnose faults 
in PV systems. ML has become the most favorable 
approach, exploiting artificial intelligence (AI) with 
three main types of algorithms: unsupervised, 
semi-supervised, and supervised. Unsupervised ML 
algorithms are trained on unlabeled datasets. They are 
primarily used for clustering and prediction tasks, such 

as those conducted by Dhimish et al. [5], wherein PV 
fault-detection algorithms were developed based on a 
radial basis function and fuzzy logic (FL). The 
proposed algorithm was verified using fault data from 
a small-scale 1.1 kWp PV system. The results showed 
a maximum accuracy of 92% for detecting partial 
shading and faulty module(s). A study by Ref. [6] used 
FL to compare the threshold method for classifying 
partial shading, bypass diodes, short circuits, and 
open-circuit conditions in PV arrays. The simulation 
results demonstrate that the FL algorithm can perform 
classification more efficiently than the thresholding 
method. 

In contrast, the semi-supervised ML algorithm uses 
both labelled and unlabeled data for training and 
testing. Very few studies have applied this algorithm to 
online PV fault diagnosis; the algorithm learns from 
decision-making mistakes, as demonstrated by Ref. [7], 
in which a PV fault-identification technique was 
developed with a semi-supervised ML graph model 
and a simple calculation, achieving moderate accuracy. 
Finally, the supervised ML algorithm is trained and 
tested on fully labelled data. Supervised ML 
algorithms are more widely used than semi-supervised 
and unsupervised ML algorithms in developing 
methods/models for PV fault detection and diagnosis. 
K-nearest neighbor (KNN), support vector machine 
(SVM), and random forest (RF) algorithms are 
examples of supervised ML algorithms that are 
commonly used for regression and classification [8]. 

KNN is a simple supervised ML algorithm. Among 
the example studies, Ref. [9] proposed a PV fault 
diagnosis model based on the KNN algorithm at the 
string level. They validated their results using 
experimental data and obtained classification results 
for line-line, partial shading, and open-circuit faults 
with a high accuracy of 98.70%. Ref. [10] established 
a fault diagnosis model based on an improved KNN 
algorithm to detect open-circuit, shading, and 
short-circuit conditions in PV strings, for further 
investigation. An appropriate K value and distance 
function were selected to improve the KNN algorithm. 
The proposed model was then validated using 
measured data from a PV power station and was found 
to outperform the traditional KNN algorithm in terms 
of classification accuracy and speed. 
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SVM is a widely used supervised ML algorithm. 
Ref. [11] developed a fault diagnosis method to detect 
short-circuit, open-circuit, and lack-of-irradiation 
faults in PV arrays. Fault data were generated using a 
small-scale PV array model. For comparison, the 
proposed algorithms were trained and tested using a 
BP neural network algorithm. The SVM outperformed 
the BP neural network in terms of fault diagnosis 
accuracy and generalization capability. Furthermore, 
Ref. [12] applied SVM to detect abnormal conditions 
in a PV system using a regression model. For 
validation, the study used real data from a PV system 
and could successfully distinguish between normal and 
abnormal conditions in that PV system. 

Moreover, the RF algorithm is the most popular and 
frequently used algorithm in the examined studies. 
Ref. [13] developed a model to detect and classify 
open-circuit faults, line-line faults, degradation, and 
partial shading. The developed model uses a simple 
calculation system suitable for real-time applications. 
Simulations were performed using Matlab/Simulink. A 
2 kW small-scale grid-connected PV system was built 
to generate data and highly accurate fault detection 
and diagnosis was achieved. In addition, the 
researchers used real publicly available data for 
validation and achieved high accuracy with low 
computation time. However, owing to the relative 
daily changes in solar irradiance, which is affected by 
varying meteorological conditions and varies over 
time, the PV output exhibits nonlinear characteristics. 
The presence of significant noise in real data can also 
reduce diagnostic accuracy. Thus, an appropriate 
time-series feature extraction method must be chosen. 

Previous studies have investigated feature extraction 
based on time-series analyses. Ref. [14] presented a 
novel technique involving two feature extraction 
methods using the electromyography (EMG) signal for 
biomedical applications. They created an enhanced 
waveform length (WL), enhanced mean absolute value, 
modified version of the WL, and mean absolute value. 
The obtained results featured improved prediction 
accuracy for EMG signal classification. The EMG 
signal is a biomedical motion that measures the 
electrical current generated in a muscle during 
contraction. The EMG signal shares similar waveform 
characteristics with the output generated by the PV 

system. The EMG signal has the similar waveforms 
characteristics as the PV output. Another interesting 
time-series analysis used the feature of autoregressive 
(AR) analysis models for financial and business 
applications [15]. The model was developed based on a 
statistical model. AR is commonly used in operations 
research to model simulation outputs, and in supply 
chain management to forecast demand. 

Recent studies compared the proposed algorithm 
with other benchmark algorithms. Ref. [16] developed 
a hybrid approach for monitoring the normal and 
faulty states of grid-connected PV systems, which 
feature complex time-correlated data. The proposed 
method combines kernel PCA ensemble learning 
techniques and data-driven methods enhanced by 
dataset size reduction, as was applied in experiments 
with PV emulators. The results were then compared 
with those obtained from SVM, KNN, and a decision 
tree, which proved that the ensemble ML paradigm is 
an effective and reliable model with higher accuracy 
than a single ML. Additionally, this method has been 
proven to reduce false alarms and missed detection 
rates. Another interesting study [17] developed an 
algorithm model and tested it on small-, medium-, and 
large-scale PV array models. The training and testing 
algorithm used KNN, SVM, and RF to identify the 
best algorithm. This study demonstrated that RF 
produced the most accurate fault detection and 
diagnosis. Nevertheless, a limitation of this study is 
that it did not verify the reliability of the proposed 
model using actual PV data. 

Maintenance can generally be classified into 
corrective, predictive, and preventive maintenance, 
which each have different roles and purposes. 
Corrective maintenance is a major maintenance task 
that is performed after a failure is detected. Predictive 
maintenance is conducted to reduce future failures. In 
contrast, preventative maintenance is performed for 
periodically at scheduled intervals [4, 18]. Although 
smart PV fault detection and diagnosis are essential to 
a PV system, a good maintenance scheme is also 
required to optimize overall productivity and improve 
the life cycle of the system. Hence, this paper proposes 
multiscale smart fault diagnosis (MSFD), which 
employs the RF-WLAR algorithm, for better PV 
system maintenance strategies. The RF-WLAR 
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algorithm was developed based on the RF-supervised 
ML algorithm and employs a time-series analysis 
using waveform length and autoregressive as the main 
features. 

The proposed MSFD model can serve as a reference 
for corrective maintenance work, by providing various 
combinations of instructions and corrective actions for 
permanent, intermittent, and incipient faults. This 
MSFD method can also detect hidden faults that 
conventional protection devices cannot detect, which 
is beneficial for preventive maintenance work and can 
reduce the likelihood of future failures, improving 
predictive maintenance work. Furthermore, this study 
focuses on diagnosing and classifying permanent and 
temporary faults on the DC side of a system. The main 
contributions of this study are as follows. 

(1) The developed PV array model is simple but 
feasible for application in PV systems of various 
scales. 

(2) The proposed model was developed using 
Matlab/Simulink based on a time-series analysis using 
waveform length and autoregressive features. Actual 
irradiance data were used as inputs to produce 
simulated data that closely matched the onsite PV 
output data.  

(3) Field testing was performed using fault data 
retrieved from the PV maintenance database for 
verification, which can benefit corrective, predictive, 
and preventive maintenance work. 

The remainder of this paper is organized as follows. 
Section 2 describes the methodology for the proposed 
multi-scale smart fault diagnosis (MSFD) model, 
including data preparation, training and testing, and 
field-testing procedure. Section 3 presents and 
discusses the results. In Section 4, the proposed 
RF-WLAR algorithm is compared with other ML 
algorithms for reliability verification. Finally, Section 
5 provides the conclusions, limitations, and 
recommendations for future work. 

2  Methodology of the MSFD model 

The proposed MSFD procedure consists of four main 
stages: ① Multi-scale PV array modeling (permanent 

and temporary fault models); ②  Data preparation 
(real irradiance, simulated and actual fault data);    
③ Training and testing of the proposed algorithm 
procedure; ④ Field testing procedure. 

2.1  Multi-scale PV array modeling 

2.1.1 Series and parallel configuration of PV array 
model 

A solar cell of the one-diode model (ODM) was 
chosen to develop the PV cell and subsequently 
form the PV array models in this study. The ODM is 
most commonly selected by researchers because of 
its good accuracy under steady-state conditions [19]. 
The ODM with five parameters was used in this 
study (Fig. 2).  

 

Fig. 2  A one-diode model with five parameters 

The output current I (A) of the PV cell is formulated 
using Kirchhoff’s law as given in Eq. (1), where LI  
represents the light-generated current, DI represents 
the diode current, and Ish represents the shunt 
resistance current. 

 L D shI I I I= − −  (1)  

In the PV array, PV panels/modules are connected 
in parallel, series, or a combination of parallel and 
series configurations to produce the desired output. 
This work used Matlab/Simulink to develop a scalable 
PV array model comprising an arrangement of PV 
modules ( )m n× . This configuration can be employed 
for various scales of PV systems. As shown in Fig. 3, 
each module in a string has the same current ( )I , 
where the n string in parallel will produce a larger 
short-circuit current ( )SCI when the value of 
the n string increases ( )SCn I× . Meanwhile, each string 
shares the same voltage ( )V when the modules are 
connected in series. A higher open circuit voltage 
( )OCV will be produced as the value of the m module 
increases ( )OCm V× . 

The power output ( )PVAP  is calculated using the 
following equation 
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 ( )
=1

m

PVA
i

P m n V I= × ×∑  (2) 

 

Fig. 3  PV array connected in ( )m n×  arrangement 

In this study, a small-scale 10 kW PV array model 
was developed as a base model using the input 
parameters from the PV module manufacturer’s 
datasheet, Panasonic VBMS250AE04 (Tab. 1). The 
10 kW PV array model was simulated and tested under 
standard test conditions (irradiance, G=1 000 W/m2 

and module temperature T=25 ˚C). 

Tab. 1  Panasonic VBMS250AE04 PV module parameters  

Parameter Value 

Maximum power Pmax/W 250 

Open circuit voltage Voc/V 37.4 

Voltage at maximum power Vmp/V 30.2 

Short circuit current Isc/A 8.86 

Current at maximum power Imp/A 8.30 

Diode saturation current Io/A 2.75×10−10  

Diode ideality factor N 1.013 6 

Shunt resistance Rsh inf. 

Series resistance Rs/Ω  0.15  

Solar cell number in series n 48 

2.1.2  Validation of the proposed PV array model 
The simulated results of the maximum power max( )P , 

OCV , and SCI were compared with the Panasonic 
VBMS250AE04 datasheet for model validation.  

Fig. 4 shows the I-V and P-V curves of data 
simulated for the 10 kW PV array. The simulated 
results matched the values of the Panasonic 
VBMS250AE04 datasheet, as shown in Tab. 2. 
Therefore, it can be concluded that the PV array model 

developed in this study is sufficiently accurate to allow 
its performance under normal and faulty conditions to 
be predicted.  

 

Fig. 4  I-V and P-V curves of 10-kW PV array model 

Tab. 2  Comparison of simulated results with values from 

PV module datasheet 

Parameters
Panasonic VBMS250AE04 Simulated data of PV 

array model 
Value of 

one module
Total of  
(4×10) 10 kW (4×10)  

Pmax/kW 0.250 10 10 

Voc/V 37.4 374 374 

Isc/A 8.86 35.44 35.44 

2.2  Data preparation 

2.2.1  Simulated data 
The simulated data for the PV array fault models 
(Fig. 5) were produced using Matlab/Simulink, 
modified from a previous study [20] as follows. 
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(1) Permanent fault model. A line-line fault (LLF) 
was developed and simulated by short-circuiting two 
potential points in the PV array string. An open-circuit 
fault (OCF) was developed and simulated by adding 
series resistance to a PV string and setting it to infinity. 
A ground fault (GF) was developed and simulated by 
extending the LLF model and connecting it to the 
ground to generate a fault current. 

(2) Temporary fault model. Mismatch/Partial 
shading was developed and simulated by connecting 
the PS Gain(s) to the PV module(s) and setting them to 
less than 1 to reduce the irradiance value received by 
the module(s). 

Subsequently, using Eq. (2), 2 MW PV array models 
(PS, OCF, GF, and LLF) were developed. The actual 
irradiance data at the coordinates (5.86 °N, 102.03 °E) 
were fed as the input, and 300 simulated data points 
were generated. Through an exploratory data analysis 
process, 80% of the data was used for training and 
20% for testing. 

 

Fig. 5  Brief description of simulated ( )m n× configuration PV 

array faults model 

2.2.2  Actual data 
The actual data (irradiance and PV power output) used 
in this study were obtained from the KMSB Solar PV 
plant, located in Pasir Mas Kelantan, Malaysia, 
between 5.86° North and 102.03° East, as shown in 
Fig. 6. Irradiance data between 7 am to 4 pm for the 
sunny months of April to August were obtained from 
the National Solar Radiation Data Base (NSRDB), a 
trusted website of the National Renewable Energy 
Laboratory (NREL) [21]. 

 

Fig. 6  Map of the KMSB solar PV plant site location  

within Malaysia 

Faulty PV array output power (PPVA) data samples 
were retrieved from the KMSB maintenance database. 
Fig. 7 compares the normal and faulty PPVA data. 

 

Fig. 7  Comparison of normal and faulty data 

2.3  Algorithm training and testing procedure 

RF ML has been used in several studies such as 
Refs. [13, 17, 22]. RF ML builds decision trees on 
different samples and takes the majority votes for 
classification. In addition, it can handle datasets 
containing continuous and categorical variables, such 
as PV output data. In this study, an MSFD model using 
RF-WLAR was developed, which is an RF ML that 
works with 10-fold cross-validation and extracted 
main-feature including waveform length, and 
autoregression. In the 10-fold cross-validation, the 
data were divided equally into ten folds, where each 
fold was used for successive tests, and the remaining 
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nine folds were used to train the classifier. Finally, the 
mean accuracy obtained from 10 folds was recorded.  

Feature extraction is an important element of 
algorithm training and testing, to ensure that the 
proposed RF-WLAR algorithm performs well and 
produces good results. The waveform length is the 
most frequently used feature in EMG signals [14]. PV 
output has nonlinear characteristics owing to varying 
meteorological conditions and changing solar 
irradiance; therefore, the waveform length was utilized 
in the training and testing of the algorithm in this study. 
Waveform length (WL) can be defined as [14]  

 [ ]1

n

i i
i

WL x x −= −∑  (3) 

where ix is the value of the PPVA, and n is the total of 
the PPVA. 

The autoregressive model was investigated in a 
previous study which involved a time-series 
analysis [15]. Because the input data of the RF-WLAR 
algorithm are time-series irradiance data, the 
autoregressive feature was employed in the algorithm 
training and testing process of this study. 
Autoregression (AR) can be expressed as [15] 

 + ε
n

i t i t
i

AR Xϕ −= ∑  (4)  

where tX is the value of the PPVA, n is the total of the 
PPVA, 1... nφ φ  are parameters of the model, and tε is 
white noise. 

The power maximum max( ),P  mean (M), and 
standard deviation (STD) were also used in this study, 
as indicators of the accuracy of PV system fault 
detection and diagnosis [23-25]. The mathematical 
formulations of M and STD are expressed in Eqs. (5) 
and (6).  

 

n

i
i

x
M

n
=

∑  (5) 

  ( )2

1

n

i
i

x x
STD

n

−
=

−

∑  (6)  

where ix is the value of the PPVA, and n is the total of 
the PPVA. 

The main steps and architecture of MSFD using the 
RF-WLAR algorithm are listed in Tab. 3 and Fig. 8, 
respectively. 

Tab. 3  Main steps of the MSFD model procedure 

Input:  

1. PV array modelling: Temporary fault model (PS) and permanent 

fault models (OCF, LLF, GF). 

2. Simulated data production from PV array models with 

scalable ( )m n× configuration via Matlab/Simulink. 

Training and testing algorithm via Matlab/Simulink: 

1. Features max(WL AR P M STD+ + + + ) . 

2. K-fold cross-validation, K=10. 

3. Data split: Testing 20%, training 80%. 

4. Diagnose and classify the type of fault using the RF-WLAR 

algorithm. 

5. Determine fault diagnosis results (Fault type, accuracy, and 

processing time). 

Field testing procedure (fault type prediction): 

1. Real fault data samples from solar PV plant were used as input. 

2. EDA: Data labelling according to day/month/year. 

3. Features max(WL AR P M STD+ + + + ) .  

4. Diagnose and classify the type of fault using the RF-WLAR 

algorithm. 

5. Determine the fault prediction results (fault type and classification).

 

 

Fig. 8  Architecture of MSFD using RF-WLAR algorithm 
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2.4  Field testing procedure 

This field-testing work focused on predicting the fault 
type in data samples from the KMSB 2 MW solar PV 
plant. Generally, PV plants feature an intelligent 
energy management system (PVEMS) to monitor and 
integrate energy-efficient PV power generation. The 
PVEMS provides information such as real-time PV 
power and energy generated, daily and cumulative 
yield, and related environmental benefits such as the 
amount of CO2 avoided.  

In Malaysia, sunrise and sunset do not vary 
significantly throughout the year because of Malaysia’s 
proximity to the equator. Sunlight was received by the 
KMSB from 7 am to 7 pm, as shown by the PVEMS. 
During the operation of the solar PV plant from 7 am to 
7 pm every day, the PVEMS monitors and shows 
whether the PV plant is operating normally or is 
experiencing faulty conditions, such as those shown in 
Fig. 9 which shows a faulty state beginning at 10 am on 
November 2, 2022. Hence, the MSFD is required to 
diagnose faults and facilitate fast corrective work and 
return the PV plant to normal operation.  

 

 

Fig. 9  Operating status of solar PV energy management system 

Five samples of fault data were taken each month 
(April to August), yielding a total of 25 datapoints, and 
were labelled day/month/year. These fault data were 
used in this field-testing process. The architecture of 
the MSFD using the RF-WLAR algorithm for the 
field-testing procedure is shown in Fig. 10. 

 

Fig. 10  MSFD procedure using RF-WLAR algorithm  

for field testing 

3  Result and discussion 

3.1  Training and testing of RF-WLAR algorithm 

This section presents the fault type classification 
accuracy for the training and testing of the RF-WLAR 
algorithm using the combined feature set 

max(WL AR P M STD+ + + + ). Fig. 11 shows a 
confusion matrix for the results of the RF-WLAR 
algorithm testing, where the main diagonal box 
indicates the number of correctly classified faults. The 
training and testing set contained 300 of fault 
datapoints, and each type was represented by 75 fault 
datapoints.  

The confusion matrix in Fig. 11 shows that of the 
OCF faults, two were incorrectly classified as GF and 
LLF. Four of the GF-type faults were incorrectly 
classified; three were classified as LLF, and one as 
OCF. All LLF and PS faults were correctly classified. 
The accuracy of each fault type classification was 
calculated as the ratio of the leading diagonal box to 
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the total number of faults (75). The detailed 
classification accuracies for the training and testing of 
the algorithm are presented in Tab. 4. 

 

Fig. 11  Confusion matrix of RF-WLAR with combined 

features set max(WL AR P M STD+ + + + )  

Tab. 4  Fault classification accuracies using  

RF-WLAR algorithm 

RF-WLAR 
algorithm  

Fault classification accuracy(%) 

GF LLF OCF PS 

Training 100.00 100.00 100.00 100.00 

Testing 94.67 100.00 97.33 100.00 

Tab. 4 shows that the training algorithm achieved 
100% accuracy in classifying permanent faults (GF, 
LLF, and OCF) and temporary faults (PS), whereas the 

testing algorithm achieved an average accuracy of 
98%, with 100% accuracy for LLF and PS, and 
94.67% and 97.33% accuracy for GF and OCF, 
respectively. 

3.2  Field testing using RF-WLAR algorithm 

The results of fault-type prediction using the 
RF-WLAR algorithm are presented in Tab. 5, for 25 
faulty datapoints resulting from field testing work. 
These results are summarized as follows. 

(1) All the faults occurred in April were predicted as PS, 
which is a temporary fault caused by cloudiness, shadows 
(no repair work is required), or dust/snow accumulation, 
which requires cleaning (maintenance work). 

(2) Faults occurred in May 5, 2022, were predicted 
as GF, those on May 12, 2022, were predicted as LLF, 
and the rest of the faults were predicted as PS. 

(3) Two OFCs were predicted occurred in June 1, 
2022, and June 12, 2022. The remaining predicted 
faults were attributed to PS. 

(4) Only OCF was predicted to occur in July and 
August on July 14, 2022, and August 9, 2022. The 
remaining faults were predicted to be caused by PS. 

The results of field-testing show that most predicted 
faults were attributed to temporary faults (PS), which 
are less severe than permanent faults. The ability of 
the MSFD model to predict the fault type is useful for 
informing corrective maintenance. 

Tab. 5  Fault type prediction (output) using RF-WLAR algorithm 

April May June July August 

Actual 
fault data 

(date) 

Output 
(GF/PS/ 

OCF/ 
LLF) 

Actual 
faulty data 

(date) 

Output 
(GF/PS/ 

OCF/ 
LLF) 

Actual 
fault data 

(date) 

Output 
(GF/PS/

OCF/ 
LLF) 

Actual 
fault data 

(date) 

Output 
(GF/PS/ 

OCF/ 
LLF) 

Actual 
fault data 

(date) 

Output 
(GF/PS/

OCF/ 
LLF) 

2-Apr-2022 PS 1-May-2022 PS 1-Jun-2022 OCF 10-Jul-2022 PS 5-Aug-2022 PS 

10-Apr-2022 PS 5-May-2022 GF 4-Jun-2022 PS 14-Jul-2022 OCF 9-Aug-2022 PS 

14-Apr-2022 PS 12-May-2022 LLF 7-Jun-2022 PS 18-Jul-2022 PS 19-Aug-2022 PS 

17-Apr-2022 PS 17-May-2022 PS 12-Jun-2022 OCF 24-Jul-2022 PS 22-Aug-2022 OCF 

23-Apr-2022 PS 28-May-2022 PS 24-Jun-2022 PS 30-Jul-2022 PS 28-Aug-2022 PS 

 

4  Comparison with other ML algorithms 

Performing the training and testing using the KNN and 
SVM algorithms to compare and verify the reliability 
of the proposed RF-WLAR algorithm. The same 
extracted features max(WL AR P M STD+ + + + )  were 

used with actual irradiance data. Tab. 6 presents the 
classification accuracies of RF-WLAR, KNN, and 
SVM. The RF-WLAR algorithm achieved the highest 
average fault classification accuracy of 98%, followed 
by KNN and SVM with 93.67% and 93.33%, 
respectively. 
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Tab. 6  Comparison of fault type classification accuracies 

ML 
algorithm  

Fault classification accuracy (%) Average 
accuracy 

(%) GF LLF OCF PS 

RF-WLAR 94.67 100.00 97.33 100.00 98.00 

KNN 84.00 98.67 94.67 97.33 93.67 

SVM 89.33 90.67 96.00 97.33 93.33 

Fig. 12 shows a detailed graph comparison of the 
classification accuracy for each fault type, where 
RF-WLAR achieved the highest accuracy in 
classifying all fault types. In contrast, KNN produced 
the second-best accuracy in classifying LLF and PS. 
Finally, SVM obtained a better accuracy (96%) than 
KNN (94.67%) for classifying OCFs. These results 
verify that the RF-WLAR can be used to diagnose and 
classify faults in PV systems more effectively. 

 

Fig. 12  Graph of fault classification accuracy detail comparison 

The processing times (s) taken for training and testing 
the algorithms were also recorded, as shown in Tab. 7.  

Tab. 7  Comparison of processing time 

Algorithm RF-WLAR KNN SVM 

Processing 
time/s 4.01 0.08 0.51 

Although the processing time for RF-WLAR was 
longer than that required to process KNN and SVM in 
diagnosing PV faults, it was nevertheless a short 
period with a duration of less than 10 s. 

5  Conclusions 

Multi-scale smart fault diagnosis (MSFD) is essential 
for detecting and diagnosing PV faults, as PV outputs 
are nonlinear due to the non-uniform distribution of 
daily irradiance. Thus, conventional protection devices 
cannot accurately detect faults in PV systems. An 
effective MSFD should be implementable at various 

PV scales. Although the MSFD is important, a good 
PV maintenance system is necessary for improving the 
productivity and overall life cycle of a PV system. 
Furthermore, the quality of feature extraction is an 
important factor that significantly affects the accuracy 
of PV fault diagnosis and classification. Hence, this 
study proposes a multiscale smart fault diagnosis 
model based on the RF-WLAR algorithm and 10-fold 
cross-validation. RF-WLAR is a supervised machine 
learning RF algorithm that employs waveform length 
(WL) and autoregressive (AR) as the main extracted 
features, together with the features of power maximum 
(Pmax), mean (M), and standard deviation (STD). 

This study developed models for temporary faults 
(partial shading) and permanent faults (open-circuit 
fault, ground fault, and line-line fault) in PV arrays with 
multiscale feasibility. Actual irradiance data were then 
used to produce simulated data that closely matched the 
actual onsite data. In addition, to verify the reliability of 
the RF-WLAR algorithm, the MSFD model was trained 
and tested using two other supervised algorithms, KNN 
and SVM, with same combination of extracted features 

max(WL AR P M STD+ + + + ) . The results demonstrated 
that although RF-WLAR required the longest 
processing time (<10 s), it also achieved the highest 
accuracy, with an average fault-type classification 
accuracy of 98% and 100% accuracy in classifying PS 
and LLF, while achieving 94.67% accuracy for GF and 
97.33% for OCF.  

Finally, the RF-WLAR algorithm was verified through 
field testing using actual faulty data samples obtained 
from the maintenance database of the KMSB Solar PV 
plant located in Pasir Mas, Kelantan, Malaysia. The field 
test results successfully predicted the type fault. These 
results achieved the study’s objective of developing an 
MSFD that can be used for various PV scales and is 
beneficial for corrective, preventive, and predictive 
maintenance. Nevertheless, this study has some 
limitations. First, not all potential PV faults were covered, 
such as degradation and arc faults. However, PS, OCF, 
LLF, and GF are common faults in PV systems. Finally, 
the scope of this study is limited to the diagnosis and 
classification of fault types. Thus, the identification of the 
fault location, which is crucial for large-scale PV systems, 
should be examined in future studies. 
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