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Several studies discussed the predictive model­
ing of deep learning in different applications such 
as classifying tissue features from microstructu­
ral data, Crude Oil Prices, mechanical constitutive 
behavior of materials, microbiome data, and mine­
ral prospectively. Commercial navigation includes 
a wealth of trip-related data, including distance, 
expected journey time, and tolls that may be encoun­
tered along the way. Using a classification algo­
rithm, it is possible to extract drop-off and pickup 
locations from taxi trip data and estimate if the tour 
would incur tolls. In this work, let’s use the classifi­
cation learner to create classification models, com­
pare their performance, and export the findings for 
additional study. The workflow for the classification 
learner is the same as for the regression learner. The 
purpose is to make predictions based on fresh data 
in order to see how well the model performs with new 
data. To train the model, it’s critical to separate the 
data set. The combined training and validation data 
is next pre-processed, which involves tasks such as 
cleaning and developing new features skills. Once 
the data has been prepared, it’s time to begin the 
supervised machine learning process and test a num­
ber of ways to identify the best model, such as the 
type of model that should be used, the important fea­
tures, and the best parameters of the model to find 
the best fit for the considered data. The results of 
analyzing different predictive multiclass classifica­
tion models with taxi trip tolls show that it is possible 
to use a machine learning-based model when we like 
to avoid road tolls depending on historical data on 
taxi trip tolls. The outcome of this study can help to 
expect road tolls from the drop-off and pickup loca­
tions of a taxi data
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1. Introduction

Deep learning is utilized in a wide range of applications, 
from identifying disease risk factors to developing superior 
automotive safety systems. The purpose of supervised deep 
learning is to create a predictive model from data that in-
cludes a collection of attributes as well as the known response 
for each observation as shown in Fig. 1.

Several studies discussed the predictive modeling of deep 
learning in different application such as classifying tissue fea-
tures from microstructural data [1], Crude Oil Price [2], me-
chanical constitutive behavior of materials [3], microbiome 
data [4], Brain Tumor [5], mineral prospectively[6], analyze 
cardiac electrophysiology data [7], forecast the potential of 
patients from the electronic health measurements [8], medical 
records (EHR) [9, 10], tensile strength prediction in fused 

deposition modeling [11], and bridge vortex-induced vibra-
tions from field monitoring [12]. Metal deformation has been 
studied using traditional simulations based on the crystal 
plasticity finite element approach. The deep learning-based 
methods were proposed also for predicting macroscopic attri-
butes based on microstructure features with low human bias. 
The model can anticipate property against a given structure in 
the dual phase, isotropic elastic-plastic regime [13]. Machine 
learning techniques are increasingly being used to identify 
patterns and insights from the growing stream of geospatial 
data, however they may not be appropriate when system be-
havior is influenced by geographical or temporal context [14]. 
For these approaches to be useful, they must have extremely 
high accuracy and low false-negative rates. One example of  
a Google map showing the estimated travel time, trip dis-
tance, and tolls that might meet on routes is shown in Fig. 2.
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Deep learning may have a revolutionary impact on how 
let’s simulate the constitutive features of soft biological tis-
sues, according to this finding [1]. Therefore, the importance 
of such a study can help to expect if the journey will include  
a toll from drop-off and the pickup locations of taxi data us-
ing binary or multi-classification models.

2. Literature review and problem statement

The study [1] proposed a model for predicting mechanical 
properties of vascular tissue features from microstructural 
data by developing a hybrid modeling framework that blends 
advanced theoretical notions with deep learning. This hybrid 
modeling system is only trained with data from 27 tissue 
samples. Although this study obtains a median coefficient of 
determination of 0.97, it was limited to tissue samples with me-
chanical properties in the range usually observed. The paper [2] 
presented modules of outlier detection, recurrence analysis, 
data preprocessing, predictive modeling, and feature selection 
based on deep learning with the goal of obtaining probabilistic 
and deterministic predictions to model the nonlinear dynamics 
in crude oil price. However, the presented model can make 
only accurate probabilistic and deterministic predictions with  
a narrow application range and feasibility. Predictive data- 
driven constitutive modeling by deep learning was proposed 
by [3] for mechanical constitutive behavior of materials where 
no stress-strain data are available, but this study fails to com-
pare the model with other prior studies. In microbiome data 

application, the study [4] built a prediction model for 
clinical outcomes based on microbiome data that can 
predict both binary and continuous outcomes. The 
presented model has been applied in both binary and re-
gression classification but with a complex and training 
time-consuming network structure. The transfer learn-
ing-based predictive model of paper [5] was applied 
to detect the growth of malignant tissue by looking at  
a patient’s brain magnetic resonance imaging (MRI) 
data using three pre-trained models. Although the 
results were compared to one another, the study didn’t 
show and compare with more models. This issue is 
explored by [6] when presented data-driven predictive 
models including a series of machine learning approa
ches were discussed but with limited input datasets of 
only 118 known occurrences derived from long-term 
exploration of this brownfield area. According to the 
modeling findings, the CNN model obtains the best clas-
sification performance with a 92.38 percent accuracy, 
followed by the RF model (87.62 percent). However, 
this model can be satisfied in other applications. The 
paper [8] offered a unique unsupervised deep feature 
learning technique for generating a general-purpose pa-
tient representation from electronic health records data. 
Although this study used data of around 700,000 pa-
tients and improved clinical predictions, the offered 
system was not accurate enough for other applications.

According to the studies mentioned above, data- 
driven-based machine learning is a promising techno
logy for various classification, especially in predictive 
modeling. Therefore, this motivates to development of 
a predictive model to estimate taxi trip tolls accurately 
with an appropriate classification algorithm, which is 
not addressed as an application in the prior studies.

3. The aim and objectives of the study

The main aim of the study is to develop predictive model-
ing and deep learning classification of taxi trip tolls.

The following aim have been set to achieve the objectives:
– to analyze different predictive multiclass classification 

models with taxi trip tolls;
– to obtain the best accurate predictive binary classifica-

tion model for the same data.

4. Materials and methods 

The data that is considered in this work is the taxi data, 
which is commercial navigation data that offer several infor-
mation concerning the trip distance, tolls that may meet on 
routes, and estimated travel time. The considered workflow to 
evaluate regression and classification models is shown in Fig. 3.

The initial step is to explore and import the data whether 
the data is enough before beginning to develop a deep learn-
ing model. The purpose is to make predictions based on fresh 
data in order to see how well the model performs with new 
data. It is essential to divide the dataset to train the model. 
This dataset contains training and validation data, the re-
maining data are referred to as test data, in which the new 
observations (has never been seen) are used to be simulated 
in the final model. Let’s locate the assessment dataset to the 
side until the final model is obtained.
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Fig. 1. Types of machine learning

 
Fig. 2. One example of Google map showing the estimated travel 

time, trip distance, and tolls that might meet on routes [15]
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Next, pre-processing the validation data and combined 
training, which contains generating new features and clean-
ing skills. Once the data is prepared, the procedure of su-
pervised deep learning is started and trying to find the best 
model by trying a range of methods including the important 
features, the kind of model need to use, the method to find 
the parameters of the optimal model to obtain 
the best fit for the considered data. The final step  
is to use the test data to obtain the model to pre-
dict results.

Commercial navigation includes a wealth of 
trip-related data, including distance, expected 
journey time, and tolls that may be encountered 
along the way. Using a binary classification algo-
rithm, it is possible to extract drop-off and pickup 
locations from taxi trip data and estimate if the 
tour would incur tolls. MATLAB-based classifi-
cation learner is employed to follow for achieving  
the objectives.

According to the above, let’s first import and 
prepare the data into the proposed model, the data 
in this study is the January taxi data [16].

Let’s consider only three columns from the 
dataset that has a (76518*3) dimension. The re-
sponse variable is the third column represented by 
the total tool paid.

5. Results of predictive modeling with deep 
learning of taxi trip tolls

5. 1. Multiclass classification models
The scatter plot showing the distribution of the 

data pickup and drop off locations and grouped ac-
cording to the toll paid variable is shown in Fig. 4.

The blue dots point out that zero tolls were paid. 
Initially, a classification type of Fine Tree model was 
used to train the data, and it has over (74 %) accu-
racy. In order to provide more clearance on the data, 
a confusion matrix is shown in Fig. 5.

In order to show the minimum classification 
error over 30 iterations, a plot of this error along 
with the number of iterations is shown in Fig. 6.

Because of the imbalance in class sizes, only 
approximately ten of the actual tolls are correctly 
predicted by the model. Out of the over 76518 jour-
neys, fewer than 7000 had a toll. Because tolls are 
used on just around 36 % of trips, a model that 
always forecasts no toll would have 74 % accuracy. 
It would simply be ineffective. Models like logis-
tic regression and SVM have a hard time dealing 

with datasets that have an uneven distribution of classes as 
described in Fig. 7.

Several attempted models have been conducted that 
potentially obtain more accuracy than the Fine Tree classi-
fication model. It is found that some models have to scatter 
plots with significantly fewer visible x’s as listed in Table 1.
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Fig. 3. Supervised deep learning workflow

 
Fig. 4. The scatter plot shows the distribution of the data pick-up and 

drop-off locations along with the toll paid variable

 
Fig. 5. The confusion matrix shows four classes 	

when the Fine Tree classification model was used
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Fig. 6. The minimum classification error over 30 iterations 	
for Tree classification models

 
Fig. 7. Distribution of the taxi trips data

Table 1
Classification models with their key parameters for evaluation

Model Type:
Accuracy  

(Validation) (%)
Total cost  

(Validation)
Prediction speed 

(obs/sec)
Training time 

(sec)
Maximum number 

of splits

Fine Tree 74.4 3728 ~460000 7.7861 100

Medium Tree 73.6 3849 ~230000 1.7407 20

Coarse Tree 73.4 3877 ~1300000 0.86175 4

Linear Discriminant 73.4 3877 ~550000 1.5393 NA

Gaussian Naive Bayes 73.4 3877 ~570000 1.3596 NA

Kernel Naive Bayes 73.4 3877 ~1100 42.186 NA

Cubic SVM 26.2 10770 ~37000 531.8 NA

Fine Gaussian SVM 73.4 3877 ~4100 23.58 NA

Medium Gaussian SVM 73.4 3877 ~6700 13.648 NA

Coarse Gaussian SVM 73.4 3877 ~7200 12.265 NA

Fine KNN 94.1 854 ~300000 1.3836 1

Medium KNN 75.5 3569 ~73000 1.7005 10

Coarse KNN 73.4 3877 ~41000 1.8231 100

Cosine KNN 73.9 3814 ~12000 4.4402 10

Cubic KNN 75.5 3572 ~79000 1.5247 10

Weighted KNN 94.4 824 ~190000 0.90813 10

Boosted Trees 73.5 3862 ~65000 3.2712 20

Bagged Trees 94.0 873 ~36000 4.3785 NA

Subspace Discriminant 73.4 3877 ~60000 2.2534 NA

Subspace KNN 72.1 4066 ~16000 4.746 NA

RUSBoosted Trees 40.3 8704 ~92000 2.0928 20

Narrow Neural Network 73.4 NA ~830000 16.34 NA

Medium Neural Network 73.4 NA ~490000 18.433 NA

Wide Neural Network 73.4 NA ~620000 43.32 NA

Bilayered Neural Network 73.4 NA ~1100000 18.947 NA

Trilayered Neural Network 73.4 NA ~740000 21.269 NA
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The models with accuracy more than 90 % look promising.  
It is found that the KNN models could be a good selection 
for such forecast.

5. 2. Binary classification models
In order to inspect the feasibility of using classification 

models to split between taxi trips with and without toll pay-
ment, a binary classification models are used. Therefore the 
data has been categorized logically and can be shown in Fig. 8.

Here let’s show only the best scatter plot in terms of ac-
curacy showing the distribution of the data pickup and drop 
off locations and grouped according to the toll paid variable. 
This is shown in Fig. 9.

The blue dots refer to zero tolls that were paid during the 
tour. A classification type of Weighted KNN model was used 
and consumed about 1.2835 sec to train the data with (94.4 %) 
accuracy. The group scatters plot employs markers to show 
where the model accurately anticipated that a toll will be 
paid. Dots represent right predictions, whereas (x’s) rep-
resent wrong predictions. The total cost (Validation) was 
813 with a prediction speed of ~130000 Observation/sec).  

In order to provide more clearance on the data, a confusion 
matrix is shown in Fig. 10. 

 
Fig. 8. The binary distribution of the taxi trips data according 

to the toll paid

The minimum classification error over 30 iterations for 
KNN binary classification model is shown in Fig. 11.

 
Fig. 9. The scatter plot showing the distribution of the data pickup and drop off locations and grouped according 	

to the toll paid a variable for binary classification

 
Fig. 10. The confusion matrix showing four classes when Fine Tree classification model 	

was used for binary classification
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Fig. 11 shows about 0.052 of minimum classification error 
has been obtained using Weighted KNN binary classification 
model with the considered Green taxi trips data.

6. Discussion of the results of the developed predictive 
model of taxi trip tolls

Referring to Fig. 4, the total cost (Validation) was 3728 
with a prediction speed of (~460000 Observation/sec).  
The training time with this model was (7.7861 sec) with  
a maximum number of splits of 100. More particularly 
blue (x’s) specify wherever there was no toll paid but the 
model estimated a toll, and orange (x’s) indicate where  
a toll is paid but the model didn’t predict it, which is also 
shown in Fig. 9.

Fig. 5 provided the confusion matrix to show a more 
good indication of the modeled data distribution. This 
graph displays how often a model gets each class correct 
and which class is chosen when a data point is misclassified. 
The rows represent the data set’s value of (tool paid). The 
top row of the matrix depicts travels without a toll, while 
the below rows depict trips with a toll ranging from a little 
to a big paid sum. The model predictions are shown by 
the columns. The earliest column shows travels for which 
the model projected there would be no tool, while the last 
column shows trips for which the model anticipated there 
would be a tool. The trips where the model properly pre-
dicted the reaction, either true negatives where there was 
no toll and the model projected no toll or directed to true 
positives where there was a tool and the model predicted  
a tool, are the primary diagonal elements. The off-diagonal 
entries indicate where the model predicted incorrectly.  
The same concept is applied in Fig. 10. 

Fig. 11. The minimum classification error over 30 iterations for Optimizable KNN model

For the confusion matrix of the Weighted KNN bina-
ry classification model (Fig. 10), it is possible to see that 
10682 observations have been classified as no toll (zero tolls) 
correctly. 784 (with paid toll) classes have been wrongly 
classified as (zero tolls) and 29 (zero tolls) classes have been 
wrongly classified as (with paid toll). 3093 (with paid toll) 
classes have been correctly classified as (with paid toll).

In this case, a false positive could be a good surprise for 
individuals who expected a toll but did not have to pay one, 
but a false negative would mean a surprising toll, which 
would be bothersome if there were too many of them.

Limitations of such a model as getting an accuracy of 
less than 100 % is being when representing for example  
a disease data, a false positive could be frightening and result 
in additional testing, while a false negative could result in  
a serious condition staying undiscovered, delaying treatment 
options. When it comes to judging when false positives 
and false negatives are acceptable, your domain knowledge 
will help you. It’s possible that minimizing one or the other  
is crucial. We’ll need more performance metrics to figure out 
how good we are.

7. Conclusions

1. The results of analyzing different predictive multi-
class classification models with taxi trip tolls show that it 
is possible to use a machine learning-based model when 
we like to avoid road tolls depending on historical data 
on taxi trip tolls. The tree model was used to train the 
data, and it has over (74 %) accuracy. The models with 
an accuracy of more than 90 % look promising. It is found 
that the KNN models could be a good selection for such  
a forecast.
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2. The Weighted KNN model is the best accurate predic-
tive model in both binary and multiclass classification for the 
same data. 

A classification type of Weighted KNN model was 
used and consumed about 1.2835 sec to train the data  
with (94.4 %) accuracy.
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