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ABSTRACT 

Over the last century, industrial robots have gained an immense amount of 
popularity in replacing the human workers due to their highly repetitive nature. It was a 
twist to the industries when the concept of cooperative robots, known as cobots, has been 
innovated. Sharing space between the cobots and human workers has considered as the 
most effective way of utilizing the cobots. Keeping in mind that the safety of the human 
workers is always the top priority of the cobot applications in the industries, many time 
and efforts have been invested to improve the safeness of the cobots deployments. Yet, 
the utilization of deep learning technologies is rarely found in accordance with human 
detection in the field of research, especially the transfer learning approach, providing that 
the visual perception has shown to be a unique sense that still cannot be replaced by other. 
Hence, this thesis aimed to leverage the transfer learning approach to fine-tune the deep 
learning-based object detection models in the human detection task. In relation to this 
main goal, the objectives of the study were as follows: establish an image dataset for 
cobot environment from the surveillance cameras in TT Vision Holdings Berhad, 
formulate deep learning-based object detection models by using the transfer learning 
approach, and evaluate the performance of various transfer learning models in detecting 
the presence of human workers with relevant evaluation metrics. Image dataset has 
acquired from the surveillance system of TT Vision Holdings Berhad and annotated 
accordingly. The variations of the dataset have been considered thoroughly to ensure the 
models can be well-trained on the distinct features of the human workers. TensorFlow 
Object Detection API was used in the study to perform the fine-tuning of the one-stage 
object detectors. Among all the transfer learning strategies, fine-tuning has chosen since 
it suits the study well after the interpretation on the size-similarity matrix. A total of four 
EfficientDet models, two SSD models, three RetinaNet models, and four CenterNet 
models were deployed in the present work. As a result, SSD-MobileNetV2-FPN model 
has achieved 81.1% AP with 32.82 FPS, which is proposed as the best well-balanced 
fine-tuned model between accuracy and speed. In other case where the consideration is 
taken solely on either accuracy or inference speed, SSD_MobileNetV1-FPN model has 
attained 87.2% AP with 28.28 FPS and CenterNet-ResNet50-V1-FPN has achieved  
78.0% AP with 46.52 FPS, which is proposed to be the model with best accuracy and 
inference speed, respectively. As a whole, it could be deduced that the transfer learning 
models can handle the human detection task well via the fine-tuning on the COCO-
pretrained weights.  
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ABSTRAK 

Sepanjang abad yang lalu, robot industri telah mendapat populariti yang besar 
dalam menggantikan pekerja manusia kerana sifatnya yang sangat berulang. Ia 
merupakan titik perubahan bagi industri apabila konsep robot kolaboratif, atau kobot, 
telah diinovasikan. Kongsi ruang antara kobot dan pekerja manusia dianggap sebagai cara 
yang paling berkesan dalam penggunaan kobot. Dengan mengingati behawa keselamatan 
pekerja manusia hendaklah sentiasa diutamakan bagi aplikasi kobot dalam industri, 
banyak masa and usaha telah dilaburkan dalam meningkatkan keselamatan penggunaan 
kobot. Namun, dalam bidang penyelidikan, penggunaan teknik pembelajaran mendalam 
jarang intermui dengan pengesanan manusia, terutamanya kaedah pemindahan 
pembelajaran, memandangkan persepsi visual merupakan satu persepsi unik yang susah 
digantikan oleh persepsi-persepsi yang lain. Oleh itu, tesis ini bertujuan untuk 
menggunakan kaedah pembelajaran pemindahan untuk memperhalusi model pengesanan 
objek berasaskan pembelajaran mendalam dalam tugas pengesanan manusia. 
Sehubungan dengan matlamat utama ini, objektif kajian adalah seperti berikut: 
mewujudkan set data imej persekitaran robot daripada kamera pengawasan TT Vision 
Holdings Berhad, merumus model pengesanan objek berasaskan pembelajaran 
mendalam dengan menggunakan pendekatan pembelajaran pemindahan, dan menilai 
prestasi pelbagai model pembelajaran pemindahan dalam mengesan kewujudan pekerja 
manusia. Dataset imej telah diperoleh daripada sistem pengawasan TT Vision Holdings 
Berhad dan diannotasikan. Variasi set data telah dipertimbangkan dengan teliti untuk 
memastikan model boleh belajar ciri-ciri pekerja manusia dengan baik. API pengesanan 
objek TensorFlow telah digunakan dalam kajian untuk melakukan penalasan halus bagi 
model berperingkat satu. Di antara semua strategi pembelajaran pemindahan, penalaan 
halus telah dipilih kerana ia sesuai dengan kajian ini dengan baik selepas mentafsir 
daripada matriks keserupaan dan saiz. Sebanyak empat model EfficientDet, dua model 
SSD, tiga model RetinaNet dan empat model CenterNet telah digunakan dalam kajian ini. 
Sebagai akibatnya, model SSD-MobileNetV2-FPN telah mencapai 81.1% AP dengan 
32.82 bingkai per saat, dicadangkan sebagai model penalaan halus yang mempunyai 
keseimbangan baik antara ketepatan dan kelajuan inferens. Dalam kes lain di mana hanya 
ketepatan atau kelajuan inferens dipertimbangkan, model SSD_MobileNetV2-FPN telah 
mencapai 87.2% AP dengan 28.28 bingkai per saat dan CenterNet-ResNet50-V1-FPN 
telah mencapai 78.0% dengan 46.52 bingkai per saat, masing-masing dicadangkan 
sebagai model yang mempunyai ketepatan dan kelajuan inferens yang terbaik. Secara 
keseluruhannya, model pembelajaran pemindahan boleh mengendalikan tugas 
pengesanan menusia dengan baik melalui penalaan halus pada pemberat pra-latih oleh 
dataset COCO. 
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