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ABSTRAK 

Iklim Malaysia boleh digambarkan sebagai panas dan lembap sepanjang tahun. Oleh 

kerana penggunaan penghawa dingin secara meluas untuk mengatasi pemanasan 

melampau, yang menyumbang kepada pemanasan global, penggunaan tenaga di 

bangunan kediaman telah menjadi kebimbangan utama. Kaedah alternatif, seperti 

penyejukan pasif, telah diterokai sebagai penyelesaian kepada isu ini. Penggunaan 

lapisan rumah berganda (DSF) sebagai ciri canggih yang boleh mengurangkan 

penggunaan tenaga dan meningkatkan keselesaan terma. Untuk menentukan 

keberkesanannya dalam menurunkan suhu, tiga parameter telah dipertimbangkan. Dalam 

DSF, bilangan salur masuk, bilangan jurang dan jenis aliran telah disiasat di bumbung, 

dinding dan lantai. Eksperimen dijalankan di dalam (persekitaran terkawal) dan kawasan 

luar. Eksperimen dalaman dijalankan di bahagian ujian di mana suhu ambien dikawal. 

Semua model rumah diletakkan di dalam bahagian ujian untuk menganalisis kadar 

pemindahan haba dan suhu di dalam rumah untuk mod pemanasan dan penyejukan. 

Bahagian ujian telah ditebat dengan menggunakan papan polistirena dan buih semburan. 

Satu sensor diletakkan di dalam setiap rumah dan 10 sensor dipasang untuk bahagian 

ujian. Dua pemanas digunakan untuk memanaskan suhu melebihi 50 ℃. Kipas telah 

dihidupkan semasa mod penyejukan untuk mendorong aliran. Seterusnya eksperimen 

dijalankan di kawasan luar yang luas dengan menggunakan cuaca sebenar terutamanya 

di Pekan, Pahang. Bacaan suhu, halaju, kelembapan direkodkan pada jam 10:00 pagi 

hingga 3:00 petang. Kemudian, kepentingan parameter dianalisis dengan menggunakan 

Reka Bentuk Eksperimen. Kaedah satu faktor pada masa digunakan untuk menilai 

kepentingan jenis parameter aliran. Seterusnya tiga parameter utama, bilangan masuk, 

bilangan jurang dan jenis aliran telah mengesahkan kepentingannya dengan 

menggunakan reka bentuk faktorial 2 peringkat berdasarkan analisis varians dan carta 

pareto. Kadar pemindahan haba dianalisis menggunakan nombor Fourier dan suhu tidak 

berdimensi untuk menentukan mod pemanasan dan penyejukan reka bentuk terbaik. 

Menurut keputusan menunjukkan bahawa DSF membawa kepada pengurangan suhu 

dalaman. Rumah dengan 0 salur masuk dan 3 jurang mempunyai kadar pemindahan haba 

yang paling rendah. Pengaliran dalam mod pemanasan menyaksikan peningkatan suhu 

yang perlahan. Reka bentuk optimum untuk melepaskan haba dan menyejukkan rumah 

secara perolakan termasuk rumah dengan 3 salur masuk dan 3 celah. Rumah dengan 3 

salur masuk dan 3 jurang adalah parameter utama. Kadar penyejukan maksimum ialah 

15.12 ℃/j yang menyumbang kepada perbezaan suhu melebihi 10 ℃ dengan halaju udara 

minimum 2m/s. Perbezaan kelembapan yang diperlukan untuk menyokong perbezaan 

suhu adalah dalam julat 14% hingga 20%. Adalah sangat disyorkan untuk mereka bentuk 

rumah eko yang menggunakan teknik penyejukan pasif kepada separa aktif untuk 

mengurangkan suhu di bangunan kediaman. DSF merupakan salah satu teknik pasif dan 

semi aktif yang mempunyai keupayaan menurunkan suhu tanpa menggunakan sistem 

penghawa dingin. 
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ABSTRACT 

Malaysia's climate can be described as hot and humid throughout the year. Because of 

the extensive use of air conditioners to counter overheating, which contributes to global 

warming, energy consumption in residential buildings has become a major concern. 

Alternative methods, such as passive cooling, were explored as a solution to this issue. 

The usage of a double skin façade (DSF) as advanced feature that can reduce energy 

consumption and increase thermal comfort. To determine their effectiveness in lowering 

temperature, three parameters were considered. Within DSF, the number of inlets, 

number of gaps, and types of flow were investigated at the roof, wall, and floor. The 

experiment were conducted in indoor (controlled environment) and outdoor area. The 

indoor experiment was conducted in a test section where the ambient temperature was 

controlled. All model of house were placed inside the test section to analyze heat transfer 

rate and temperature in the house for heating and cooling mode. The test section was 

insulated by using polystyrene board and spray foam. One sensor was placed inside each 

of the house and 10 sensor were installed for test section. Two heater were used to heated 

up temperature above 50℃. A fan was turned on during cooling mode to induce flow. 

Next the experiment was conducted in spacious outdoor area by using actual weather 

mainly in Pekan, Pahang. The reading of temperature, velocity, humidity were recorded 

10:00 am until 3:00 pm. Then, the significance of parameters was analyze by using 

Design of Experiment. One factor at time method was used to evaluate significance of 

parameter types of flow. Next three main parameter, number of inlet, number of gap and 

types of flow were validate their significance by using 2 level factorial design based on 

analysis of variance and pareto chart. Heat transfer rate was analyze using Fourier number 

and dimensionless temperature to determine best design heating and cooling mode. 

According to results show that the DSF leads to a reduction in indoor temperature. The 

house with 0 inlet and 3 gap had the lowest rate of heat transfer. Conduction in the heating 

mode was moderate increase in temperature. The optimum design for releasing heat and 

cooling the house  by convection included house with 3 inlets and 3 gaps. The house with 

3 inlets and 3 gaps was a major parameters. Maximum cooling rate was 15.12 ℃/h that 

contributed to the temperature difference over 10 ℃ with a minimum air velocity of 2m/s. 

Humidity difference that required to support the temperature difference was in range 14% 

to 20%. It was highly recommended that to design an eco house that apply passive to 

semi active cooling technique to reduce temperature in residential building. DSF was one 

of passive and semi active technique that have the ability of reduce temperature without 

using air conditioning system. 
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