
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2023, 2023:106

https://doi.org/10.28919/cmbn/8185

ISSN: 2052-2541

MATHEMATICAL MODELLING THAT CHARACTERIZES THE QUALITATIVE
BEHAVIOR OF THE INTERACTIONS OF APHIDS AND LADYBUGS AS

INSECTIVOROUS ANIMALS

DANI SUANDI1,∗, DIPO ALDILA2, VISKA NOVIANTRI3, ENCENG SOBARI4, NADIRAH BINTI MOHD

NASIR5

1Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta 11480,

Indonesia

2Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia

3Mathematics Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

4Department of Agroindustry, State Polytechnics of Subang, Indonesia

5Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang

Al-Sultan Abdullah, 26300, Pahang, Malaysia

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The significance of the agricultural industry is primarily driven by the growth of the human population

and the imperative for sustainable food production. Within this sector, the presence of insect pests, such as aphids,

demands particular attention, as they exert a detrimental influence on agricultural practices. To devise effective

approaches, it is essential to possess a thorough comprehension of aphid control. Thus, this study presents a

mathematical model that captures the qualitative dynamics of interactions between aphids and ladybugs. The model

is composed of a system of non-linear differential equations, encompassing the interplay between the two species,

the impact of insecticides on aphids, and the hibernation stages of ladybugs. The analytical approach is employed

to ascertain the criteria for the existence and stability of the equilibrium derived from the constructed model. The

study focused on stability and sensitivity analysis to understand the behavior of the model and develop effective
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strategies for managing aphid populations. Both the findings from the analytical and numerical investigations

offer valuable insight that augmenting insectivorous populations, such as the ladybug populations, may serve

as an alternative method for aphid control, reducing the reliance on insecticides. Nevertheless, the application

of insecticides continues to be a viable approach for aphid control. Further investigation into controlling the

aphid population involves an in-depth study of optimal control problems. The study examined different scenarios

involving the utilization of insecticides. Our numerical experiments show a potential of insecticide to control the

population of aphids effectively. The change in the population of aphids do not give a big disturbance in ladybug

population as long as there is an alternative resource for ladybugs. From the cost analysis, we find that a larger

intervention needed when the initial population of aphids relatively small. Therefore, insecticide interventions need

to consider various factors, not only the biological behavior of ladybugs and aphids but also the initial population

of ladybugs and aphids.

Keywords: aphid control; stability analysis; optimal control problem; sensitivity analysis.

2020 AMS Subject Classification: 34C60, 34A34, 34D20, 90C31, 92B05, 93C15.

1. INTRODUCTION

The agricultural industry is crucial to current global civilization and growth, driven by the

growing human population and their ongoing need for food. This sector is a vital component of

economic development and a significant source of income for nations. Despite advancements

in technology, the significance of agriculture remains unchanged [1]. However, any disruption

or decline in agricultural production can negatively impact economic growth. One factor con-

tributing to a decrease in crop yields is the presence of pest insects, such as aphids. Aphids

can harm plants in various ways and impact the agricultural sector. They feed on the phloem

tissue of the plant and alter its nutrient flow, leading to stunted growth and decreased reproduc-

tion. Additionally, the saliva they inject while feeding can be toxic to the plant. Aphids are

also vectors for many viruses, with nearly 50% of all viruses transmitted by insects. Of the 45

main insect pests that attack the top 6 food crops (corn, wheat, potatoes, sweet potatoes, wheat,

and tomatoes), 26% are caused by aphids, resulting in yearly direct losses [2]. This leads to

the growth of a black filamentous saprophytic ascomycetes fungus, which frequently hinders

photosynthetic activity, an essential aspect in nourishing the plants [3]. Aphids are a significant

concern as they can spread plant viruses, transmitting almost 30% of all plant virus species.
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They have a sucking mouthpart structure, composed primarily of a stylet bundle, which can

spread disease [4, 5].

Ladybugs (Harmonia axyridis) are a natural predator of aphids on agricultural crops as they

feed on aphids [6]. They also feed on other hemipterans like Adelgidae, Psyllidae, and Aleyro-

didae [7]. The adult ladybug has the ability to consume 15-65 aphids per day, and the larvae have

the potential to eat 90-370 aphids during their development stage. This makes them effective

biological control agents for insect pests in agriculture [8]. The hunting behavior of ladybugs

is triggered by chemical signals released by damaged plants due to aphid infestation. These

signals, along with the honeydew excreted by aphids and alarm pheromones, act as additional

chemical clues that help the ladybugs pinpoint their prey [9]. Ladybugs are also considered ef-

fective biological control agents against other invasive pests due to their emission of odors that

serve as self-defense. When they are disturbed by a pheromone response, they reflexively re-

lease noxious compounds as a defense mechanism [10]. The smell produced by the compound

is potent and has a unique odor, reminiscent of freshly sliced green bell peppers or green beans

[11, 12]. Ladybugs belong to the family of insects known as Coccinellidae, which includes

various species that contain alkaloid toxins (such as adaline, coccinelline, exochomine, and

hippodamine) that serve as defensive mechanisms. Additionally, some adult ladybugs exhibit

aposematic coloration, which acts as a warning signal to predators. Consequently, the ladybugs

are usually not preyed upon by predators due to their toxic and unpalatable nature [13, 7].

Aside from utilizing natural predators, a variety of insecticides are commonly employed for

aphid management. This approach is evident among smallholder farmers in Limpopo Province

who heavily depend on synthetic insecticides to manage insect pests on their vegetables [14].

Due to their prolonged efficacy, positive impact on crop yield, and marginal rate of return, cyper-

methrin and acetamiprid insecticides are recommended for aphid control. The South African

government’s Department of Agriculture, Forestry and Fisheries (DAFF) has stated that more

than 3000 pesticide products, which are synthetic in nature, have been authorized for the pur-

pose of managing insect pests by local farmers [15]. The utilization of pesticides in China has

risen from 733 million kg in 1990 to 1.806 billion kg in 2012, and over 2.2 billion kg of pesti-

cides are presently manufactured in China, a significant proportion of which is exported. China
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has around 2000 pesticide manufacturers [16]. Smallholder farmers’ frequent reliance on syn-

thetic insecticides has resulted in several issues, including the contamination of the environment,

the emergence of pest resistance, and human health problems [17]. A thorough examination of

122 studies that were published after the year 2000 indicated that certain groups, particularly

farmers and pesticide applicators, had a considerably higher likelihood of experiencing certain

types of cancer, dementia, and respiratory symptoms [18]. Athukorala et al. [19] found that

in Sri Lanka, Costa Rica, and Nicaragua, 4%− 7% of agricultural workers experience health

problems caused by pesticides every year. The accessibility and price of synthetic insecticides

are still significant obstacles, particularly in distant rural regions where agriculture is the pri-

mary source of livelihood and food supply [20]. Furthermore, numerous studies have indicated

that the utilization of insecticides can lead to a resistance issue [21, 22], leading to elevated ex-

penses associated with their future usage. Nonetheless, the utilization of insecticides persists as

a viable choice due to their efficacy in managing aphids. This was validated through a field ex-

periment carried out by the Agricultural Research Institute-Tarnab Peshawar, which yielded the

finding that the application of synthetic insecticides led to a significant reduction in the aphid

population when compared to natural insecticides [23].

Many mathematicians have examined the interaction behavior between aphids and ladybugs

by constructing mathematical models in an effort to comprehend it better. The study in [24]

utilized a mathematical model to investigate the dynamics between planthopper pests as prey

and Menochilus sexmaculatus and mirid ladybug as two predators, with the control of the prey

being maintained through the application of pesticides. The proposed singular system model

of aphid ecosystems takes into account the impact on aphid populations due to changes in the

parameter related to their natural enemy population, within the context of the fold catastrophe

manifold [25]. The soybean aphids can influence the physiology of soybean mainly through

two means, by promoting feeding and overcoming resistance, which results in further coloniza-

tion by its own species. A differential equation population model with non-local features was

established in [26] to examine the impact of virulent and avirulent aphids on soybean plants and

the dynamics of the biological processes involved. In [27], a new mathematical model consist-

ing of differential equations is presented to study the seasonal population dynamics of aphids,
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ladybugs, and ants. The model was initially presented in continuous time, then transformed

into a discrete-time representation using the Nonstandard Finite Difference scheme (NSFD)

method. It features four non-hyperbolic steady states. The study conducted by Anjos et al.,[28]

established a Bayesion framework to analyze aphid-ladybeetle interaction and dynamics by ana-

lyzing six ordinary differential equations that include three phenomenological models and three

data-driven models.

In this study, we construct a mathematical model to investigate the interactions between aphid

and ladybug populations, taking into account the utilization of insecticides. Furthermore, we

conducted a detailed examination of ladybug population growth as insectivores, incorporating

hibernation stages. While our model remains straightforward, the conducted studies encompass

a comprehensive range, including equilibrium stability analysis, sensitivity analysis, and explo-

ration of the optimal control problem. Derived from this analysis, our research will add to the

current body of literature concerning the growth dynamics of aphid populations, specifically

focusing on the impacts of insecticides and insectivores on these populations.

2. MATHEMATICAL FORMULATION

A mathematical model that describes the interaction between predators and prey is used in

studying aphid control using insectivores, in this case, the ladybug population. Suppose X(t) is

the population of aphids and Y (t) is the population of ladybugs at time t. The logistic function

is believed to control the growth rates of both populations as a result of internal competition

within each population. Due to the use of insecticides, the aphids population will decrease by

uX where u is the control parameter which represents the proportion of deaths due to insecticide

exposure. The ladybug population is thought to be unharmed by the insecticide being used

in this particular case. Biologically, the ladybug population is an insectivore for the aphids

population. The relationship can be described as a predator-prey interaction, with ladybugs

taking on the role of predator and aphids serving as the prey. However, the aphids population

is very sensitive to stink carried by the ladybug population. Consequently, aphids are able to

rapidly escape when a ladybug population approaches them. This condition is very reasonable if

represented by a response function of Holling type II for aphids when interacting with ladybug

populations. Mathematically, the rate of the aphids population will decrease by (mXY )/(η +
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ξ X) where m is the death rate due to interaction with the ladybug population and the ability of

the aphids to escape from the ladybugs is represented by parameter ξ . Meanwhile, the ladybug

population received (εmXY )/(η + ξ X) biomass due to interactions with aphids. In addition,

this model also captures conditions where the ladybug population hibernates. Let Z(t) represent

the hibernating ladybug population at time t. The rate of the ladybug population decreases by

αY and increases by γZ due to the hibernation factor where α is the transition rate to the

hibernating ladybug population and γ is the reverse transition rate. As a result, the rate of the

hibernating ladybug population increases by αY and decreases by γZ. Mathematically, the

model is represented by equation (1) as follows:

dX
dt

= rX
(

1− X
K

)
−uX− mXY

η +ξ X
(1)

dY
dt

= βY
(

1− Y
A

)
+

εmXY
η +ξ X

−αY + γZ

dZ
dt

= αY − γZ

Table 1 displays the parameters for the system (1).

TABLE 1. Description of the parameters and their values.

Par Description unit

r growth rate of aphids population time−1

u death rate due to use of insecticides time−1

m death rate due to ladybug predations time−1

α hibernating ladybug transition rate time−1

γ transition rate of hibernating ladybugs time−1

K carrying capacity of aphids populations number

A carrying capacity of ladybug populations number

ξ the proportion of aphids that can escape ladybugs non-dimensional

β growth rate of ladybug populations time−1

η half-saturation constant number

ε coefficient of energy conversion for ladybug from predation activity non-dimensional
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Before analyzing model (1), normalization of the model is carried out first to simplify the

observation interval. The model is normalized to the carrying capacity of each population.

Let, x =
X
K
,y =

Y
A
, and z =

Z
A

. After the normalization process, model (1) becomes the

following model (2)

dx
dt

= rx(1− x)−ux− µxy
1+ cx

(2)

dy
dt

= βy(1− y)+
bµxy
1+ cx

−αy+ γz

dz
dt

= αy− γz,

where µ =
m
η

A,c =
ξ

η
K and b =

K
A

ε .

3. MATHEMATICAL ANALYSIS

3.1. Equilibrium and their stability. We have four equilibria, three equilibria in bounded-

ness and one interior equilibrium.

E0 = (0,0,0), represents the extinction of all population

E1 =

(
0,1,

α

γ

)
, represents the extinction of aphids

E2 =

(
r−u

r
,0,0

)
, represents the extinction of the ladybug population

To investigate the stability of the three equilibria, the Jacobian matrix of system (1) is evaluated

one by one at each equilibrium. From the Jacobian matrix evaluated at equilibrium E0 yield the

polynomial characteristics,

p0(λ ) := (λ − r+u)
(

λ
2− (−α +β − γ)λ −β γ

)
= 0.(3)

The first term of the polynomial equation (3) reveals that an eigenvalue will be negative

when r < u. However, achieving stability at the equilibrium point E0 is not possible due to the

second term of the polynomial (3), which results in two eigenvalues with different signs. This

discrepancy is evident from the negative sign of the polynomial constant. Consequently, based

on this analysis, it can be concluded that the equilibrium point E0 is unstable regardless of the

conditions.
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Furthermore, the stability of the equilibrium E1 is determined by the following characteristic

polynomial equation obtained from the Jacobian matrix which has been evaluated at equilibrium

E1,

(4) p1(λ ) :=
(

λ
2 +(α +β + γ)λ +βγ

)
︸ ︷︷ ︸

:=A

(λ +µ +u− r)︸ ︷︷ ︸
:=B

= 0.

Part A of the polynomial p1 produces two eigenvalues which are negative because all the coef-

ficients of the polynomial are positive. Therefore, the stability of the equilibrium E1 is deter-

mined by the equation of part B from the polynomial p1. Part B of the polynomial p1 produces

an eigenvalue λ = −µ +(r− u) which is negative if (r− u) < µ which correspond to the sta-

bility of the equilibrium E1 and positive if (r− u) > µ which correspond to the instability of

the equilibrium E1. The stability from the equilibrium E1 is preserved when u = 0 if the condi-

tion r < µ is satisfied. Meanwhile, from the Jacobian matrix evaluated at equilibrium E2, three

eigenvalues are obtained. One explicit eigenvalue, namely λ = −(r− u) which in itself is al-

ways negative because of the conditions that must be met for the existence of an equilibrium E2,

and the other two eigenvalues are the roots of the following characteristic polynomial equation,

p2(λ ) :=−
(
c(r−u)+ r

)
λ

2 +
(
(r−u)

(
c(β −α− γ)+bµ

)
+ r(β −α− γ)

)
λ + γ (r−u)(cβ +bµ)

= 0.

It can be obviously verified that the roots of the polynomial p2 have different signs because

the coefficient of the second degree is always negative while the constant of the polynomial is

positive. Therefore, under its conditions of existence, the equilibrium E2 is always unstable.

Furthermore, the existence of an interior equilibrium that represents the coexistence between

aphids and ladybug populations will be explored. The existence of an interior equilibrium

is determined by the third-degree polynomial equation in (5) which is the remainder of the

elimination results from the system (1) for the variable x, where

y∗ =

(
(1− x∗)r−u

)
(1+ cx∗)

µ
, z∗ =

α

γ
y∗,

and x∗ is determined by the polynomial

(5) βc2r︸︷︷︸
:=A3

x3 +βc
(
2r− (r−u)c

)︸ ︷︷ ︸
:=A2

x2 +
(
(−2(r−u)+µ)βc+β r+bµ

2
)

︸ ︷︷ ︸
:=A1

x− (r−u−µ)β︸ ︷︷ ︸
:=A0

= 0.
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From y∗ we can know that x∗ is in the interval 0 < x∗< 1−u/r provided that r > u. If r < u then

the existence of x∗ is on the negative axis and that is impossible from a biological perspective.

Under r > u+µ we have that A2 and A1 are positive, but A0 is negative. This situation indicates

that the change in the sign of the coefficients of the polynomial (5) occurs once. According to

Descartes’ rule of signs [29], polynomials have one positive root x∗. The requirements for exis-

tence typically correspond to the conditions ensuring equilibrium stability. In this instance, we

will verify the stability through numerical methods simulation. The outcomes of this analysis

enable us to visualize the parameter range that characterizes both the existence and stability of

the equilibrium, as depicted in Figure 1.

r

µ

u

r = µr = µ +u

I

II

III

FIGURE 1. Parameter space indicating the region of existence and equilibrium stability

Region I represents a stable domain for the E1 equilibrium, indicating that when the aphids

growth rate is lower than the death rate resulting from interactions with ladybugs, the aphid

populations will eventually perish. Aphid populations can sustain only if their growth rate sur-

passes the death rate, whether through insecticide exposure, interactions with ladybugs, or a

combination of both. This scenario is referred to as having the “rate in” more significant than

the “rate out”. Region II represents a shift resulting from insecticide usage, revealing that such

application can reduce the coexistence area (Region III). The extent of insecticide use corre-

lates with the contraction of the interior equilibrium stability region. Additionally, insecticide
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application expands the size of the E1 equilibrium stability region, signifying a decline in aphid

populations. These findings align with the earlier interpretation.

Region III represents an area where the interior equilibrium point E3 is stable while the E1

equilibrium is unstable. This implies that coexistence becomes possible with reduced insecti-

cide usage. However, if the objective is to eradicate aphids, the analysis results in the diagram

indicate that both the death rate due to insecticide application and the predation by ladybugs

must be intensified. Specifically, this involves either using higher doses or increasing the fre-

quency of insecticide application for the former. As for the latter, enhancing mortality through

interactions with ladybugs can be achieved by augmenting the population of ladybugs in agri-

cultural regions.

4. NUMERICAL SIMULATION AND BIOLOGICAL INTERPRETATION

4.1. Orbit solution. The numerical solution of system (2) will be accomplished using the

Runge-Kutta method to validate the analysis outcomes. In this section, we will verify the sta-

bility of two equilibrium points: firstly, the extinction point of the aphid population, E1, and

secondly, the stability of the interior equilibrium E3, which was implicitly demonstrated in the

analysis. The simulation results for both stability conditions are depicted in Figure 2.

In the preceding analysis, it was established that the condition where the “rate in” exceeds

the “rate out” in the aphid population (r > u+ µ) ensures the presence of an interior equilib-

rium. The numerical findings further validate the existence of a stable interior equilibrium, as

illustrated in Figures 2(a) and 2(b). Figure 2 (a) represents the scenario when u 6= 0, while Fig-

ure 2 (b) portrays the situation when u = 0. Observing the change in the equilibrium position

from Figure 2(a) to Figure 2(b), a shift to the right on the x-axis becomes evident. Biologically,

it is asserted that the aphid population will increase if insecticides are not used. Notably, the

ladybug population exhibits a coexistence scenario with the aphids due to the “rate in” being

greater than the ”rate out.” However, when the “rate out” surpasses the “rate in” in the aphid

population, the interior equilibrium E3 vanishes, leading to a stable E1 equilibrium and signi-

fying the extinction of the aphid population. This understanding provides valuable insights for

controlling aphids as plant pests. Before delving into the ladybug population control strategy, it
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FIGURE 2. The phase portrait of the system solution 2 for the x,y compartments

along the plane of the slice, where z = 0,75 and fixed parameter c = 0.1,β =

0.7,b = 0.1,α = 0.35,γ = 0.4 (a) the interior equilibrium is stable where r =

0.8,µ = 0.1 and u = 0.3; (b) the interior equilibrium is stable where r = 0.8,µ =

0.1 and u = 0; (c) E1 equilibrium is stable where r = 0.3,µ = 0.5 and u = 0.2;

(d) E1 equilibrium is stable where r = 0.3,µ = 0.5 and u = 0.

is essential to examine the effects of altering each parameter on the compartments. Hence, the

following section will address the sensitivity of parameter changes.
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4.2. Sensitivity analysis. In this section, the sensitivity of the parameters to changes in the

behavior of the solution of system (2) will be investigated. The approach employed for this

purpose resembles the methodology utilized in various articles, as demonstrated in [30, 22, 31].

Interesting parameters to observe for sensitivity include parameters r,u,µ,c,β , and α . Suppose

a vector of variables is V = (x,y,z), a vector of parameters is Φ = {α,β ,r,u,c,µ}, and a vector

of the right-hand side of the system (2) is F . Define sensitivity is S =
∂V
∂Φ

. By total differential,

we have:

(6)
dS
dt

= J(V )S+
∂F
∂Φ

,

where J(V ) is the 3×3 Jacobian matrix of the system (2), S and
∂F
∂Φ

are 3×6 matrix, where

(7) S =


∂x
∂α

∂x
∂β

· · · ∂x
∂ µ

∂y
∂α

∂y
∂β

· · · ∂y
∂ µ

∂ z
∂α

∂ z
∂β

· · · ∂ z
∂ µ

 ,

and

(8)
∂F
∂Φ

=



0 0 x(1− x) −x
µ x2y

(cx+1)2 − xy
cx+1

−y y(1− y) 0 0 − bµ x2y

(cx+1)2
bxy

cx+1

y 0 0 0 0 0


.

The numerical simulation results using the Runge-Kutta method for the system of differential

equations (6) which are calculated based on the parameter data when the interior equilibrium is

stable are shown in Figure 3.
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FIGURE 3. Local sensitivity analysis over time for compartments x,y and z

around the interior equilibrium is stable where fixed parameter c = 0.1,β =

0.7,b = 0.1,α = 0.35,γ = 0.4 ,r = 0.8,µ = 0.1 and u = 0.3.

Figure 3 is organized into two rows and three columns, where each column visually repre-

sents the sensitivity level of the parameters investigated for the variable. In the situation of

equilibrium, the parameters u and µ have the most significant impact on the alterations in com-

partment x for which the effect of their modification is inversely proportional to the changes in

the compartment (Figure 3 (a)). This implies that higher dosages result in a decreased aphid

population. Similarly, an increase in the number of ladybug populations or a rise in their aggres-

siveness will result in a decline in the aphid population. Meanwhile, the parameters that exhibit

the highest sensitivity to changes in the solution variable y are the parameters u and r (Figure

3 (e)). While insecticide exposure does not directly impact the aphid population, it still leads

to a decrease in the ladybug population. Additionally, the growth rate of aphids, represented by

parameter r, also influences the growth rate of the ladybug population (Figure 3 (e)). This com-

prehensive description outlines the complete model. Although the birth rate of ladybugs indeed
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positively impacts their population, its visibility is not significant under equilibrium conditions

(Figure 3 (b)). Similarly, the hibernation rate negatively affects variable y, but its influence is

not prominently evident in equilibrium conditions (Figure 3 (b)). Instead, the hibernating lady-

bug population is primarily influenced by the hibernation transition rate itself, which crucially

determines the population size during hibernation (Figure 3 (c)). A higher rate results in a larger

hibernating ladybug population. Moreover, the impact of insecticide exposure on hibernating

ladybug populations is still observed, albeit at half the magnitude compared to non-hibernating

ladybug populations (Figure 3 (f)).

4.3. Characterization of the optimal control problem. Here, we aim to reduce the aphid

population by presenting multiple scenarios in this model. The main idea of the interventions is

to reduce the population of aphid as much as possible, but with as low as possible of intervention

of insecticides. Hence, we threat u as a time-dependent parameter u(t). To achieve this, we

establish the objective function of the optimal control problem as described in equation (9).

(9) J = min
u

∫ T f

0
ρx(t)+

1
2

ζ u2(t)dt,

where ζ is the weight parameter of u(t). This ζ parameter should balance each term of the

function that we want to minimize, or in the other hand ζ should satisfy
2x(t)

ζ
≈ u2(t).

For the sake of written simplification, we write u(t) as u, and other variables also. To char-

acterize the optimal control problem, lets define the Hamiltonian function of our problem as

follows:

H = ρx+
1
2

ζ u2 +λ1
dx
dt

+λ2
dy
dt

+λ3
dz
dt

,(10)

= ρx+
1
2

ζ u2 +λ1

[
rx(1− x)−ux− µxy

1+ cx

]
+ λ2

[
βy(1− y)+

bµxy
1+ cx

−αy+ γz
]
+λ3 [αy− γz] .

Using the Pontryagin Minimum Principle [32, 33, 34], we taking the negative partial deriva-

tive of H with respect to each state variables yield:
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dλ1

dt
=−ρ−λ1

(
(1− x)− rx−u− µ y

cx+1
+

µ xyc

(cx+1)2

)
−λ2

(
bµ y

cx+1
− bµ xyc

(cx+1)2

)
(11)

dλ2

dt
=

λ1µ x
cx+1

−λ2

(
β (1− y)−β y+

bµ x
cx+1

−α

)
−λ3α

dλ3

dt
=−λ2γ +λ3γ

where the transversality condition λi(Tf ) = 0 for i = 1..3. The optimal control for using insec-

ticide effect u is obtained by solving
dH

du
= 0 respect to u, which gives us:

u? =
λ1x
ζ

With a specific upper and lower bound of u, we have the optimal value of u is given by

(12) uopt = max

{
umin,min

{
umax,

λ1x
ζ

}}

4.4. Optimal control simulation. In this section, we conduct numerical simulations for the

optimal control problem. To solve our optimal control problem, we have a state system de-

scribed by the model in system (2), with non-negative initial conditions given, an adjoint sys-

tem in (11) with given transversality conditions, and the optimal control dynamics given by uopt

in (12). To solve this problem, we use a forward-backward sweep method [35, 36]. This method

has been widely used by many authors [37, 38, 39, 40, 41].

We start by providing an initial guess of u(t), let’s call it u0, which remains constant for t ∈

[0,Tf ]. Hence, we can solve the model in (2) forward in time to determine x(t),y(t), and z(t) for

all t ∈ [0,Tf ]. Next, we solve the adjoint system in (11) backward in time, with a transversality

condition λi(Tf ) = 0 for i = 1,2,3. Consequently, we can update u(t) using the formula in (12).

We repeat this procedure until the convergence criterion is achieved (||J i+1−J i|| < 10−5,

with i being the i-th iteration), or it reaches the maximum iteration limit (n = 100).

4.4.1. Scenario 1: Different energy conversion parameter from predation. The first simu-

lation was conducted for three different values of the non-dimensional version of the energy

conversion parameter from predation, denoted by b. The parameters and initial conditions used
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are given in Figure 4. Without any intervention (u(t) = 0), system (2) always tends to the co-

existence equilibrium, i.e., (0.39,1.02,1.02) for b = 0.05, (0.38,1.04,1.04) for b = 0.1, and

(0.36,1.07,1.07) for b = 0.2.
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FIGURE 4. Simulation for the optimal trajectories of x(t),y(t),z(t) and u(t) for

three different value of b, while the other parameters are r = 0.5,µ = 0.3,c =

0.01,β = 0.3,α = 0.1,γ = 0.1,ρ = 10−6, and ζ = 10−3. Initial conditions are

[0.5,0.5,0.2].

It is clear to see that the intervention of insecticides successfully reduces the proportion of

aphids, ladybugs, and hibernating ladybugs. The dynamics of controls start increasing at the

beginning of the simulation time to reduce the outbreak of x. After t = 15, the intensity of

control starts to decrease and reaches zero at the final time of the simulation. Although insecti-

cides succeed in significantly reducing x(t), the dynamics of y(t) and z(t) do not show a huge

impact, which indicates that the population of ladybugs is relatively stable and persistent due to

the disturbance in the population of aphids. This phenomenon occurs because the recruitment

of the ladybug population is not solely dependent on predation to aphids but also relies on other

resources described by the logistic equation for the recruitment of the ladybug population. To
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describe our claim, we run an optimal control simulation where ladybug only depend on preda-

tion to aphids to survive. The results is given in Figure 5 where β = 0, while other parameters

remain the same as in Figure 4.
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FIGURE 5. Simulation for the optimal trajectories of x(t),y(t),z(t) and u(t) for

three different value of b, while the other parameters are r = 0.5,µ = 0.3,c =

0.01,β = 0,α = 0.1,γ = 0.1,ρ = 10−6, and ζ = 10−3. Initial conditions are

[0.5,0.5,0.2].

4.4.2. Scenario 2: Effect of different initial population of aphids. In the next simulation, we

perform numerical experiments with three different initial conditions of aphids, i.e., x(0), while

keeping the other parameters constant. The results are shown in Figure 6. It can be observed that

without intervention of insecticides, the population of aphids increases rapidly at the beginning

of the simulation period. Smaller initial conditions of aphids at t = 0 require more intense

fumigation to prevent a high outbreak in the early period of the simulation. Consequently, the

cost function for x(0) = 0.1 is more expensive than the other scenarios, i.e., J (x(0) = 0.1) =

0.0054, while for x(0) = 0.2,0.3,0.4, and 0.5, the costs are 0.0041, 0.0036, 0.0034, and 0.0032,

respectively.

Conversely, when we use five different initial conditions for the ladybug population, as shown

in Figure 7, fewer ladybugs at t = 0 require less intensity of insecticide to be effective. Hence,
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the cost function when y(0) = 0.1 is the cheapest compared to when y(0) is larger than 0.1. The

cost functions for the cases with y(0) equal to 0.1, 0.2, 0.3, 0.4, and 0.5 are 0.0045, 0.0041,

0.0036, 0.0030, and 0.0022, respectively.
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FIGURE 6. Simulation for the optimal trajectories of x(t),y(t),z(t) and u(t) for

three different initial conditions of x(0), i.e 0.1, 0.2, 0.3, 0.4, and 0.5 for blue,

magenta, cyan, green, and black, respectively. The initial condition for y(0) and

z(0) is 0.3 and 0.2, respectively. Parameter values used are r = 0.5,µ = 0.3,c =

0.01,β = 0.3,α = 0.1,γ = 0.1,b = 0.2,ρ = 10−6, and ζ = 10−3
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FIGURE 7. Simulation for the optimal trajectories of x(t),y(t),z(t) and u(t) for

three different initial conditions of y(0), i.e 0.1, 0.2, 0.3, 0.4, and 0.5 for blue,

magenta, cyan, green, and black, respectively. The initial condition for y(0) and

z(0) is 0.3 and 0.2, respectively. Parameter values used are r = 0.5,µ = 0.3,c =

0.01,β = 0.3,α = 0.1,γ = 0.1,b = 0.2,ρ = 10−6, and ζ = 10−3

5. CONCLUSION

A mathematical model was developed to depict the interplay between aphids and ladybugs,

incorporating the usage of insecticides. Explicitly, the model generates three equilibria, signify-

ing the extinction of all populations, the extinction of aphids, and the extinction of the ladybugs

population. Among these explicit equilibria, only one is stable, specifically the equilibrium cor-

responding to the extinction of aphids. In the meantime, the presence of the interior equilibrium

is deduced indirectly by analytically determining its conditions for existence. Subsequently,

its stability is verified through numerical assessment, utilizing parameter values that fulfill the

conditions for existence. Optimal control simulations are conducted to find the best solutions

in various possible scenarios. From the simulation of the energy conversion factor’s impact,

it is found that the presence of active ladybugs in predating aphids can assist the success of

insecticides in controlling the aphids population. Furthermore, it is also discovered that high
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insecticide interventions are necessary if the initial aphids population is relatively small, espe-

cially when it is far from its carrying capacity.
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