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ABSTRACT 

 

Combustion ignition study is important due to the combustion process becoming more 

lean and efficient. This paper studied the recirculation zone and ignition location for the 

bluff-body non-premixed MILD burner with biogas used as fuel. The location of the 

ignition was critical to ensure that the spark energy supply during the ignition process 

can successfully ignite the mixture of air and fuel. The numerical calculations were 

done using the commercial code ANSYS-Fluent to simulate the furnace with a bluff-

body burner to determine the recirculation zone. The turbulence model used was the 

realizable k-ε model. The inner recirculation zone between the air and fuel nozzle is the 

best location for the ignition point, since the low velocity of air and fuel mixing will 

assist the ignition process. This is because the ignition energy will have time to ignite 

the mixture in the low speed turbulent swirl flow. The most suitable location with the 

highest possibility of ignition is the center of the recirculation zone. 

 

Keywords: Computational fluid dynamics; bluff-body MILD burner; recirculation zone; 

biogas; spark ignition. 

 

INTRODUCTION 

 

Economic development and the increase of the population are leading to increased 

energy demand. Currently, the overall energy demand is highly dependent on the 

combustion of fossil fuel, which is projected to fulfill about 80% of these energy 

requirements (IEA, 2009; Maczulak, 2010). With the current consumption rate, the 

fossil fuel will be depleted by 2042 (Shafiee & Topal, 2009). Improvement of the 

combustion process is crucial and will significantly impact the efficiency of energy 

generation (Aziz, Firmansyah, & Shahzad, 2010). One technique to improve thermal 

efficiency and reduce NOx is Moderate or Intense Low-oxygen Dilution (MILD) 

combustion (Dally, Karpetis, & Barlow, 2002: Dally, Riesmeier, & Peters, 2004; 

Cavaliere & de Joannon, 2004; Cavaliere, de Joannon, & Ragucci, 2008; Wandel, Noor, 

& Yusaf, 2012). This technique is also known as Flameless Oxidation (FLOX) by 

Wünning (1991, 1996), High-Temperature Air Combustion (HiTAC) by Katsuki and 

Hasegawa (1998) and Tsuji et al. (2003) and Colourless Distributed Combustion (CDC) 

by Arghode and Gupta (2010, 2011). The main characteristics of MILD combustion are 

an elevated temperature of reactants and low temperature increase in the combustion 

process. To increase the reactant temperature, the exhaust gas recirculation (EGR) 

concept and input air preheat is normally implemented. The hot exhaust gases are 

utilized to heat and dilute the oxygen in the injected fresh air.  
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In normal combustion systems, greater attention is given to the fully burning 

state, like combustion efficiency, heat release rates, flame stability, pollutant emission 

or flame extinction. Combustion research has also focused on these aspects 

(Mastorakos, 2009; Mohanamurugan, & Sendilvelan, 2011; Ghobadian, Najafi, & 

Nayebi, 2013). Ignition process research receives less attention, especially spark 

ignition of non-premixed flames. In the experimental work by Birch, Brown, and 

Dodson (1981), the probability of successful ignition was correlated with the probability 

of finding a mixture within the flammability limits. Mastorakos (2009) studied the 

ignition of non-premixed flames and the effect of turbulence models on the fuel and 

oxidizer mixing process. This turbulent mixing process later affects the probability of 

ignition. The spark ignition has been studied experimentally and numerically by a few 

researchers (Birch et al., 1981; Ahmed et al., 2007; Marchione, Ahmed, & Mastorakos, 

2009; Mastorakos, 2009; Oldenhof et al., 2010, 2011) and still needs more attention. A 

tungsten electrode was used by Ahmed et al. (2006, 2007) as an ignition rod for the 

spark ignition because it can withstand up to 3200 K. They studied electrode diameters 

of 1.0 mm, 0.7 mm, and 0.5 mm for ignition probability and found that the ignition 

probability was increased with the decrease of the electrode diameter and increase in 

spark energy. Ahmed (2006) also concluded that the ignition probability is nearly 

always decreased with increasing flow velocity. This is in line with the result of later 

studies (Ahmed et al., 2007) that the ignition probability consistently decreased with 

increasing bulk velocity. The ignition location should be in the recirculation zone where 

the velocity is very low so that the energy supply by the spark ignition rod will be 

utilized to ignite the mixture and not flushed away by the high velocity of air or fuel or 

both reactants.  

This paper examines the location and shape of the recirculation zone for a MILD 

combustion bluff-body burner. The purpose of the recirculation zone study in this paper 

is to determine the best location for the spark ignition rod installation for the 

experimental MILD burner. The experimental test rig for the MILD burner is developed 

to carry out the experimental study on MILD combustion for open furnace. The ignition 

used in the experimental study is a spark ignition type, which needs accurate location to 

ensure that the mixture will properly ignite to start the flame. 

 

BIOGAS AND ENERGY BALANCE 
 

Biogas is a low heating value gas also known as low calorific value (LCV) gas. Biogas 

consists of a mixture of 50–75% methane and 25–50% carbon dioxide. The lower the 

methane content, the lower the heating value for the biogas. Table 1 shows a 

comparison of the energy balance for biogas with 60% methane and 40% carbon 

dioxide and natural gas with 97% methane. The summary was made for a furnace that 

operates in flameless mode with biogas and natural gas, and the conventional mode with 

natural gas. The supply of thermal energy was constant at about 21 kW for all 

combustion modes. The energy calculated includes all the input to the combustion 

chambers, which are fuel, air through the cooling tubes and air that will be preheated by 

the regenerative honeycombs. The efficiency of combustion with the conventional mode 

is only 41.4%, whereas for biogas and natural gas in MILD mode it is 68% and 70% 

respectively. Comparison of the efficiency of the flameless mode for biogas and natural 

gas shows that biogas is only 2% lower than natural gas. This is not a big issue 

compared to the benefit of biogas to global warming and the greenhouse gas effect. 
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Table 1. Biogas and natural gas energy balance (Colorado et al., 2010). 

 

Combustion mode (fuel) 

Flameless 

mode  

(biogas) 

Flameless 

mode  

(natural gas) 

Conventional 

mode  

(natural gas) 

Energy input (including fuel 

+ combustion air + 

cooling air) (kW) 

21.13 21.31 21.02 

Energy losses through the 

wall (kW) 

3.00 3.07 3.20 

Energy removed by the 

cooling tubes (kW) 

14.39 14.99 8.71 

Energy output through the 

chimney (kW) 

2.72 1.39 8.25 

Energy of the combustion 

products after the 

regenerative system (kW) 

1.01 1.36 0 

Efficiency (%) 68.0 70.0 41.4 

 

In order to recover the energy losses through the exhaust gas, the EGR concept 

was applied to the combustion system. EGR behaves differently to heat regenerators 

and it works by recirculating a portion of the flue gas back to the combustion chamber 

through the EGR pipe. Lloyd and Weinberg (1974), Weinberg (1996) and Choi and 

Katsuki (2001, 2002) used the concept of heat recirculation combustion. Weinberg 

(1996) demonstrated it in his famous Swiss-roll burner by transferring the heat from 

burned products to the unburned fresh mixture. He used double walls that separated the 

products and the mixture and acted as a heat regenerator. EGR was also used as a 

solution to avoid NOx and soot formation. EGR with MILD combustion was used by 

Wünning and Wünning (1997), Katsuki and Hasegawa (1998), and many other 

researchers have utilised EGR in their experiments and numerical studies (Tsuji et al., 

2003; Cavaliere et al., 2004, 2008; Colorado, Herrera, & Amell, 2010; Noor, Wandel, & 

Yusaf, 2012a, 2012b, 2012c and Abtahizadeh, Oijen, & Goey, 2012). The EGR volume 

ratio is: 
 

            
                           

                        
                                   (1) 

 

EGR will dilute the oxygen and increase the intake air temperature to the 

combustion chamber. The volume of hot exhaust gas to flow back into the combustion 

chamber depends on the level of oxygen dilution and air pre-heating needed. EGR will 

reduce NOx emissions of the oxygenated fuels by more than 55% since it reduces both 

the pressure (Raj & Sendilvelan, 2010) and the maximum combustion temperature.  

 

CFD MODELING 
 

Prior to this century, experimental work has been an effective method for testing and 

optimization due to the limited capacity to do huge data calculation. Modern technology 

means computational modeling of complex problems is now feasible and preferable to 
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expensive, comprehensive experimental studies (Chandrasekharan, 2013). Building 

computational models gives researchers deeper insights into problems than building an 

experimental setup. Despite the benefits of computational methods, however, the 

experiment method is still an important step to compare and validate the computational 

result.  This feedback can be used to improve the computational method. Computational 

Fluid Dynamics (CFD) offers a cost-effective method especially at the beginning of the 

combustor design and parameter setting stage. It was therefore used here to study the 

recirculation zone and optimize the ignition location. The first CFD modeling work for 

MILD combustion was started by the Japanese heating industry where a few researchers 

(Ishii, Zhang, & Sugiyama, 1997; Zhang, Ishii, & Sugiyama, 1997; Hino, Zhang, & 

Ishii, 1998) carried out simulations of a continuous slab reheating furnace with 

emphasis on NOx formation. The simulation work was successful and continued with an 

experimental technique. In the current work, the biogas configuration of 60% methane 

and 40% carbon dioxide (molar base) was used. This ratio of biogas was also used by a 

few other researchers (Pomeroy, 2008; Colorado et al., 2010; Scholz & Ellner, 2011; 

Salunkhe, Rai, & Borker, 2012; Noor et al., 2012a, 2012b, 2012c; Keramiotis & Founti, 

2013). Table 2 shows the CFD setup and typical data for the combustion chamber. 
 

Table 2. Typical data for furnace and combustion chamber. 

 

Item Data 

Fuel  60% methane mixed with 40% carbon dioxide 

Oxidizer Atmospheric air and syntactic air at room temperature 

Fuel inlet 1 x 78.5 mm
2
 

Air inlet 4 x 78.5 mm
2
 

Chamber size Diameter 600mm, height 860mm 

EGR 4 EGR with 1962.5 mm
2
 each inlet 

Mesh method 
Tetrahedrons (patch conforming method) with 111,975 

nodes and 501,831elements 

Radiation model 
Discrete ordinate (DO) model.  Absorption coefficient: 

Weighted sum of gray gas (WSGGM) model. 
 

The combustion chamber consists of four EGR pipes each with an inner 

diameter of 1962.5 mm
2
. The MILD combustion simulation involved the solution of the 

chemical reactions, turbulent flows, heat transfer and species transport. In this work, the 

Reynolds-Averaged Navier–Stokes (RANS) equations together with a realizable k-ε 

turbulence model (Shih et al., 1995) [developed based on the standard k-ε turbulence 

model (Launder & Spalding, 1974)] are solved using commercial CFD software 

ANSYS Fluent 14.0 (Fluent, 2011). The discrete ordinate (DO) radiation model (Chui 

& Raithby, 1993) and absorption coefficient of weighted sum of gray gas (WSGGM) 

model is used in this work. Figure 1 shows the early stage of the combustion process 

about 15 seconds after the ignition started. Figure 2 indicates that when MILD is 

achieved, the temperature inside the combustion chambers will be homogeneous.  

 

RECIRCULATION ZONE 

 

Figure 3 shows the flame re-circulation zone on the schematic bluff-body burner 

diagram for a 3.0 mm fuel nozzle and 10.0 mm annulus air nozzle as co-flow; this 

nozzle angle is 22
o
. The fuel velocity at exit is 75 m/s and air is at 5 m/s. The 

recirculation zone was formed and the center of the recirculation zone was detected at 
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x/D = 0.25 and r/D = 0.25. Figure 5(a) shows that there are other two zones in the flame 

schematic diagram, the flame neck zone and flame jet zone. 

 

   
 

(a)                                                 (b) 

 

Figure 1. Early stage of the combustion process in open furnace, prior to MILD 

combustion state: (a) 3D image; (b) 2D image. 

 
 

     
 

(a)                                                        (b) 

 

Figure 2. MILD combustion state achieved: (a) furnace wall temperature at 1273 K; (b) 

inside chamber temperature 1040 K. 
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Figure 3. Contour of total velocity magnitude (0 to 5.0 m/s) 

  
 

    
 

        (a)                                                           (b) 

 

Figure 4. Contour of Y velocity, (a) 0 to 3.0 m/s, (b) -3.0 to 0 m/s. 

 

The inner recirculation zone was formed as two circles, a big and small circle of 

the recirculation zone. Analysis of Figures 3, 4(a) and 4(b) shows that the recirculation 

zone can be divided into an inner and outer recirculation zone, as shown in Figure 5(b). 

Figure 5 shows that two types of recirculation zone are visualized in the swirl flow: the 

inner recirculation zone (IRZ) formed in between the air and fuel jet flow of the bluff-

body, and the outer recirculation zone (ORZ) formed outside the annulus air flow. The 

recirculation zones were formed due to the bluff-body of the burner creating a swirl 

flow around the air and fuel nozzle. The air velocity flow is 5 m/s and fuel is 70m/s, 

while the width and the height of the recirculation zone were about 1 and 1.5 bluff-body 

diameters respectively. The recirculation of the mixture of fuel and air was important 

because that process will create the turbulent flow of the mixture which will enhance the 

mixing process. The intensity of the IRZ is higher than the ORZ because the IRZ is the 
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recirculation formed in between the fuel and air jet flow. One cause of the higher 

intensity is the fuel jet velocity being much higher than the air jet velocity (Figure 3). In 

addition, the IRZ is contained in a small volume within the air jet and has two vortices 

due to jets on both sides (Figure 5(b)), while the ORZ occupies a bigger volume with a 

single vortex due to only one side being a jet.  

 

      
 

     (a)                                                      (b) 

 

Figure 5. Schematic diagrams for bluff-body burner: (a) flame flow field with central 

fuel jet and annulus air co-flow; (b) flame re-circulation zone. 

 

SPARK IGNITION LOCATION 

 

Triantafyllidis, Mastorakos, and Eggels (2009) and Neophytou, Richardson, and 

Mastorakos (2012) concluded that the best location for ignition was in the center of the 

inner recirculation zone where the recirculation velocity is almost zero. This is 

important to ensure that the spark energy supplied by the tungsten rod was not flushed 

away, thereby giving sufficient time for the spark energy to ignite the mixture of fuel 

and oxidant. Figure 6 shows the design of the ignition rod installation, using the values 

from the CFD study: x/D = 0.25 and r/D = 0.25 (vertically 10 mm from the nozzle base 

and horizontally 10 mm from center of the nozzle).  
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Figure 6. Schematic diagrams of combustion chamber: (a) ignition rod location;  

(b) location plan view; and (c) location side view of ignition location and installation. 

 

CONCLUSION 

 

A study on the recirculation zone and the ignition location for the non-premixed MILD 

combustion bluff-body burner was done using CFD. The recirculation zone was formed 

due to the bluff-body, increasing the turbulence of the flow of the fuel and air to make 

the mixture more homogeneous and mix better than the flow without turbulent flow. 

The center of the recirculation zone was the best location to install the spark ignition 

rod. From the analysis, the most suitable location with the highest possibility of ignition 

is the center of the recirculation zone. The center of the inner recirculation zone for the 

current design is x/D = 0.25 and r/D = 0.25.  
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