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ABSTRAK 

Thesis ini menerangkan penggunaan algoritma Moth Flame Optimization 

(MFO) untuk menyelesaikan aliran kuasa optimum sebagai masalah pengoptimuman 

objektif dalam pengendalian dan kawalan sistem kuasa. Memandangkan kesan 

pencemaran alam sekitar daripada loji kuasa bahan api fosil, aliran kuasa optimum yang 

meminimumkan hanya kos keseluruhan bahan api nampaknya tidak lagi relevan untuk 

dilihat sebagai kekangan objektif tunggal. Kaedah pengoptimuman, yang berdasarkan 

model statistik untuk menyelesaikan aliran kuasa optimum dan masalah, hendaklah 

ditakrifkan sebagai menyelesaikan masalah dengan satu fungsi objektif yang sama. 

Menggunakan persamaan yang berkaitan, yang tidak melanggar sistem api rama-rama 

yang telah dicipta sebagai asasnya, simulasi akan dijalankan untuk beberapa lelaran, 

dan selepas melengkapkan lelaran, simulasi akan mencetak keluaran yang paling 

optimum. hasil, dan simulasi ini mesti dijalankan beberapa kali untuk mencari output 

yang mantap untuk pengumpulan data. Kaedah ini telah digunakan pada tiga sistem 

penjanaan yang berbeza dengan keadaan beban yang berbeza-beza. Keputusan yang 

diperoleh menggunakan pendekatan yang dicadangkan adalah berkaitan dengan 

pendekatan lain yang dibincangkan dalam tinjauan literatur. Menjelang akhir 

penyelidikan ini, algoritma ini harus ditunjukkan sebagai salah satu sistem yang mudah 

digunakan dan mampu mencari penyelesaian optimum hampir global dengan 

penumpuan dan prestasi yang ketara jika dibandingkan dengan algoritma lain. 



iv 

ABSTRACT 

The use of the Moth Flame Optimization (MFO) algorithm to solve optimal 

power flow as an objective optimization problem in power system operation and control 

is described in this thesis. Given the environmental consequences of pollution from 

fossil-fueled power plants, the optimal power flow that minimises only the overall cost 

of fuel appears to be no longer relevant as a single objective constraint. The 

optimization method, which is based on statistical models to solve optimal power flow 

and problems, shall be defined as a method for solving problems with a single identical 

objective function. Using the relevant equation, which is not violating the moth flame's 

system that has been developed as their base, the testing will run for a number of 

iterations, and after achieving the iterations, the testing will print out the output which is 

at their best optimal outcome, and this testing must run for a number of times to find the 

steady output for data collection. This method was tested on three different generation 

systems under varying load conditions. The results obtained using the proposed 

approach are comparable to those obtained using the other approaches discussed in the 

literature review. By the end of this study, this algorithm should have been 

demonstrated to be a process that is simple to use and capable of searching for a near-

global optimal solution with significant convergence and effectiveness when compared 

to other algorithms. 

 



v 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF EQUATION x 

LIST OF ABBREVIATIONS xii 

CHAPTER 1 INTRODUCTION 1 

1.1 Project Background 1 

1.2 Problem Statement 2 

1.3 Objective Of Project 3 

1.4 Scope of project 3 

1.5 Thesis Organization 4 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Moth-Flame Optimization (MFO) 5 

2.2.1 The Biological Basis of the Moth-Flame Optimization Algorithm 5 

2.2.2 The Moth-Flame Optimization Algorithm's Basic Model 6 



vi 

2.3 Particle Swarm Optimization (PSO) 10 

2.4 Cuckoo Search Algorithm (CSA) 11 

2.5 Barnacles Mating Optimizer (BMO) 12 

2.6 Summary 14 

CHAPTER 3 METHODOLOGY 15 

3.1 Introduction 15 

3.2 Project flowchart 16 

3.3 Pseudocode 18 

3.4 Project Design 19 

3.5 Project Instrument 19 

3.6 Scope of Work 19 

3.7 Optimal Power Flow Problem Formulation 21 

3.7.1 Cost of generation minimization 21 

3.7.2 Loss minimization 24 

3.7.3 Voltage deviation minimization 25 

3.7.4 Generation and emission cost minimization 25 

3.7.5 Constraints 25 

3.8 Summary 27 

CHAPTER 4 RESULTS AND DISCUSSION 28 

4.1 Introduction 28 

4.2 Result 28 

4.2.1 Cost minimization 30 

4.2.2 Loss minimization 31 

4.2.3 Voltage load bus 33 



vii 

4.3 Discussion 34 

4.4 Summary 35 

CHAPTER 5 CONCLUSION 36 

5.1 Conclusion 36 

REFERENCES 37 

APPENDIX A 40 

APPENDIX B 41 

 

 



viii 

LIST OF TABLES 

Table 3.1 Summary of IEEE-30 bus system 20 

Table 4.1 Cost and emission of coefficients for modified IEEE-30 bus 28 

Table 4.2 PDF parameter of solar PV unit and wind power 29 

Table 4.3 Statistical result for case 1 30 

Table 4.4 Statistical result for case 2 30 

Table 4.5 Statistical result for case 1 31 

Table 4.6 Statistical result for case 2 31 

Table 4.7 Result for voltage profiles of load bus for case 1 and case 2 33 

 



ix 

LIST OF FIGURES 

Figure 2.1 Spiral flight path of moths near point light source 6 

Figure 2.2 PSO algorithm 11 

Figure 3.1 Project flowchart 17 

Figure 3.2 Modified of IEEE-30 bus system 21 

Figure 4.1 Solar irradiance distrinution for solar PV unit at bus 13 29 

Figure 4.2 Real power distribution for solar PV at bus 13 30 

Figure 4.3 Boxplot cost minimization for 30 runs of simulation for case 1 and case 

2 31 

Figure 4.4 Boxplot power losses for 30 runs of simulation of cae 1 and case 2 32 

Figure 4.5 Voltage profiles of load buses for moth flame algorithms for case 1 and 

case 2 34 

 



x 

LIST OF EQUATION 

2.1 Moth flame matrix population 

2.2 Diagrammatical of moth 

2.3 Matrices of constant dimension 

2.4 Fitness worth vectors 

2.5 Mathematical model for flight behaviour of moth flam 

2.6 Helical function 

2.7 Helical function 

2.8 Helical function 

2.9 Linear distance 

2.10 The algorithm world search capability 

2.11 Formula for updating solution 

2.12 Flight strategy formula 

2.13 Function for CSA 

2.14 Matrix form for BMO 

2.15 Mathematical form for BMO 

2.16 Mathematical form for BMO 

2.17 New off spring 

2.18 The exploration process 

3.1 Total cost of thermal 

3.2 Direct cost for solar PV 

3.3 Direct cost for wind power 

3.4 Reserved cost for solar PV 

3.5 Reserve cost for wind power 

3.6 Penalty cost for solar PV 

3.7 Penalty cost for wind power 

3.8 Emission cost 

3.9 Cost minimization (without carbon tax) 

3.10 Cost minimization (within carbon tax) 

3.11 Loss minimization 

3.12 Voltage deviation 

3.13 Generation and emission cost minimization 

3.14 Constraints 

3.15 Constraints 

3.16 Constraints 



xi 

3.17 Constraints 

3.18 Constraints 

3.19 Constraints 

3.20 Constraints 

3.21 Constraints 

3.22 Constraints 

3.23 Constraints 

 

 



xii 

LIST OF ABBREVIATIONS 

MFO Moth-Flame Optimization 

BMO Barnacles Mating Optimizer 

PSO Particle Swarm Optimization 

CSA Cuckoo Search Algorithm 

  

  

  

  



1 

CHAPTER 1 

 

 

INTRODUCTION 

1.1 Project Background 

The moth-flame optimization technique is a new algorithm that has recently 

received a lot of attention. This new intelligent application was inspired by the 

biological behaviour of moths fighting fires in nature. The moth's biological inspiration 

is its nocturnal flight method. The moth updates its position by swirling around the 

flame. The moth-flame optimization method (MFO) has the advantages of a minimal 

number of setup elements, ease of understanding and implementation, and short 

convergence time. Nonetheless, the literature shows that the moth-flame optimization 

technique still has room for improvement. As a result, a number of scholars have 

worked to improve the algorithm in various ways during the previous two years. The 

method is also widely used in physics, medicine, economics, and other fields. Finally, 

several academics have provided examples of how the method could be applied to real-

world problems in other domains. 

The Moth-Flame Optimizer (MFO), a new nature-based optimization method, is 

applied to the well-known economic dispatch (ED) problem in power system operation. 

ED is a classic optimization problem that has piqued the interest of power engineers and 

academics worldwide in order to achieve the lowest cost of power generation while 

meeting all constraints and demands. Practical constraints will be considered. MFO, on 

the other hand, is a completely new algorithm based on the light-and-fly mechanism. 

MFO will be used to determine the best mix of power generation to achieve the lowest 

cost while staying within any constraints. This project's goal is to identify the least 

amount of power loss while minimising costs. 
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1.2 Problem Statement 

One of the foremost tough optimisation issues for power engineers and 

researchers to unravel is economic dispatch (ED) problems with sensible constraints. 

the matter of disfunction is to seek out the optimum power generation that meets 

demand whereas remaining among constraints to attain the bottom doable operative 

price. tiny changes in power planning may end up in important cost savings. 

Nonetheless, managing the multiple native minimum points within the cost function in 

an exceedingly practical ED problem may be a difficult task. As a result, several 

techniques and algorithms are enforced in ED to scale back operating costs. 

Moth-flame Optimization (MFO), Particle Swarm Optimization (PSO), Cuckoo 

Search Algorithm (CSA) and Barnacles Mating Optimizer (BMO) have been proposed 

in the literature for solving ED problems. 

In the last decade, there has been a flurry of research activity aimed at 

developing new algorithms inspired by nature to solve optimization problems. Nature-

inspired algorithms are becoming increasingly popular for a variety of reasons, 

including their ease of use, flexibility, lack of complex mathematical derivation, and 

ability to avoid the local optima problem. They usually adhere to a simple set of rules 

that mimic the behaviour or properties of phenomena or animals. Nature-inspired 

algorithms will treat optimization problems as a black box, and the solution will be 

found by examining the input and output. As a result, they are extremely adaptable to a 

wide range of problems. 

Many algorithms, including the popular genetic algorithm (GA), artificial bee 

colony (ABC) algorithm, ant colony optimization (ACO), and others, have been 

successfully applied to real-world optimization problems. The no free lunch (NFL) 

theorem states that no algorithm can perform well in all optimization problems. One can 

perform well in one set of problems and then suddenly perform poorly in another set of 

problems. 
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1.3 Objective Of Project 

The goal of this study is to determine the optimum value output that fulfilled the 

OPF function. This goal can be achieved by developing a mathematical equation that 

solves the problem of economic load dispatch, combining the two problems into a 

single parameter or constraint, and using the Moth Flame Optimization (MFO) 

algorithm to solve the problem. At the conclusion of the project, this project should be 

able to: 

i. To minimize the cost of the power generation that consist of stochastic 

solar power generation, thermal generators and wind power generators. 

ii. To minimize power losses of the power generation that consist of 

stochastic solar power generation, thermal generators and wind power 

generators. 

1.4 Scope of project 

To achieve the objective of this research, there are two scopes that have been 

identified: 

i. To find the optimal control variables such as power generation, 

transformer setting, generator’s voltage, reactive compensation element. 

ii. To solve Optimal Power Flow (OPF) in the power system operation and 

planning.  



4 

1.5 Thesis Organization 

This thesis is divided into five chapters and appendices, which contain the 

following: 

The backdrop of the project in general, the description of the problem, the 

project goal, the project scopes and limitations, and the thesis organisation are all 

covered in Chapter 1. 

The literature study presented in Chapter 2 discusses the moth flame 

optimization (MFO) and the nature behind it. There is also a review of the literature on 

a few algorithms that are used in the optimization area of research. 

The study technique utilised to carry out this project, which is moth flame 

optimization, is described in Chapter 3. 

The findings of moth flame optimization applied to one kind of generation, 

which is 30-units, will be presented in Chapter 4. The end outcome is optimum power 

flow. 

The research effort is summarised in Chapter 5. It will provide a clear 

conclusion for this research in order to comprehend the optimization for the area study 

based on particular algorithms used for current solutions that should be able to solve the 

issue.
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

There are numerous papers and journals that have been studied in relation to this 

project. The majority of these papers are based on experimental research. This chapter 

will explain the background research and literature review on various articles, research 

papers, and other similar experiments. 

2.2 Moth-Flame Optimization (MFO) 

The biological principle and basic model of the moth-flame optimization 

algorithm will be introduced in this chapter. The description of the algorithm's basic 

situation will be more useful for the operation and implementation of the algorithm's 

points for improvement in the following chapter. 

2.2.1 The Biological Basis of the Moth-Flame Optimization Algorithm 

While flying at night, moths use particularly unique navigational mechanisms to 

sustain lateral orientation. The moth flies in this mechanism by having a constant angle 

of its light corresponding to the moon. Because the moon is so far away, the moth relies 

on this near-parallel light near the surface to keep its path straight. Although lateral 

orientation is effective, moths have been observed circling the source repeatedly until 

they are exhausted. In fact, the abundance of artificial or natural point light sources 

confuses moths. Typically due to the moo productivity of horizontal situating; as it were 

when the light source is exceptionally distant absent is it supportive to the moths for 

keeping up straight flying development, and there's a part of fake or characteristic light 

other than that coming about from moths being exceptionally near to the moon; when 

the moths proceed to utilize the light transmitted from a settled point as a light source, 
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disappointment can lead to route and create, as appeared in Figure 2.1, a dangerous 

winding flight way. 

 

Figure 2.1 Spiral flight path of moths near point light source 

2.2.2 The Moth-Flame Optimization Algorithm's Basic Model 

The MFO set of rules assumes the moth to be the candidate way to the problem, 

and the variable to be solved is the moth's role in space. Moths can fly in one, two, 

three, or even better dimensions with the aid of using converting their role vectors. 

Because the MFO set of rules is largely a swarm intelligence optimization set of rules, 

the moth populace withinside the matrix may be represented as follows: 

𝑀 = [

𝑚1,1 ⋯ 𝑚1,𝑑

⋮ ⋱ ⋮
𝑚𝑛,1 ⋯ 𝑚𝑛,𝑑

] ,                                                          2.1 

where n is that the variety of moths to be resolved and d is the number of management 

variables to be solved (dimension of the optimisation problem). it's conjointly assumed 

that there's a corresponding list of fitness price vectors for these moths, that is 

diagrammatical as follows: 

𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑛

] ,                                                                    2.2 
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To avoid the algorithmic rule falling into the native optimum value, every 

lepidopteran within the MFO algorithm is needed to update its own position solely with 

the distinctive flame admire it, that greatly improves the algorithm' world search ability. 

As a result, the flame and moth positions in the search house are variable matrices of 

constant dimension. 

𝐹 = [

𝑓1,1 ⋯ 𝑓1,𝑑

⋮ ⋱ ⋮
𝑓𝑛,1 ⋯ 𝑓𝑛,𝑑

] ,                                                           2.3 

 It is additionally assumed that there's a corresponding column of fitness worth 

vectors for these flames, that is drawn as follows: 

𝑂𝐹 = [

𝑂𝐹1

𝑂𝐹2

⋮
𝑂𝐹𝑛

] ,                                                                    2.4 

The update strategy of the variables within the 2 matrices differs throughout the 

iteration process. Moths are search people who move through the search space, and also 

the flame is that the best position that iteratively optimized lepidopterous insects are 

able to do therefore far. every moth is encircled by a corresponding flame, and once a 

much better answer is discovered, it's updated to the situation of the flame in the next 

generation. The formula will realize the worldwide optimum solution victimization this 

mechanism. 

The change mechanism for the position of every lepidopteron relative to a flame 

are often expressed by the subsequent equation so as to hold out mathematical modeling 

for the flight behavior of a moth to a flame: 

𝑀𝑖 = 𝑆(𝑀𝑖, 𝐹𝑗),                                                               2.5 

where Mi denotes the ith moth, Fj denotes the jth flame, and S denotes the helical 

function. 

The following conditions are met by this function: 

1) The initial point of the helical function is chosen from the moth's initial 

space position. 
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2) The spiral's end point corresponds to the current flame's position in space. 

3) The spiral's fluctuation range should not be greater than its search space. 

The helical function of the moth flight path is defined by the above conditions as 

follows: 

𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖 ∙ 𝑒𝑏𝑡 ∙ cos(2𝜋𝑡) + 𝐹𝑗 ,                                          2.6 

𝑡 = (𝑎 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1,                                                    2.7 

𝑎 = −1 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (−
1

𝑇𝑚𝑎𝑥
) ,                                          2.8 

where Di is the linear distance between the ith moth and the jth flame, b is the defined 

logarithmic helix shape constant, and t is a random number in [-1,1]. The magnitude of t 

is represented by Eq (2.7), while the magnitude of an is represented by Eq (2.8), and it 

decreases linearly from -1 to -2. The expression of Di is as follows: 

𝐷𝑖 = |𝐹𝑗 − 𝑀𝑖|,                                                              2.9 

Eq (2.9) simulates the spiral flight of a moth. supported this equation, future 

position of the moth' renewal within the epoch is decided by the flame it surrounds. 

within the helix function, the constant t (t∈ [−1,1]) represents the space between the 

moth' position and therefore the flame in the next optimisation iteration, (t=1) 

represents the position nearest to the flame, and (t=−1) represents the position farthest 

from the flame. The spiral equation demonstrates that moths will fly round the flame 

instead of simply between them, making certain the algorithm' world search and native 

development capabilities. 

When this model is used, the subsequent characteristics are observed: 

1) A moth will converge to any field of flame by at random choosing 

parameters t. 

2) The closer the moth is to the flame, the smaller the value of t. 

3) As the moth gets closer to the flame, its position around the flame is updated 

more quickly. 
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The higher than flame position update mechanism will make sure the 

lepidopteron' ability to develop domestically round the flame. the most effective answer 

found within the current generation is employed because the location of succeeding 

generation of moths around the flame to extend the probabilities of finding a far better 

solution. As a result, the flame position matrix F typically contains the best solution 

presently available. throughout the improvement process, every moth updates its 

position supported the F matrix. within the MFO algorithm, the trail constant r is 

created of internal random numbers in [r,1], and therefore the variable r decreases 

linearly with the quantity of iterations within the improvement iteration method in 

[−1,−2]. because the iteration progresses, the moth can approach the flame a lot of 

exactly in its corresponding sequence. The flames are reordered supported fitness prices 

when every iteration. The moth updates its position in the next generation based on the 

flame that corresponds to that in the updated sequence. the primary moth perpetually 

updates its position in reference to the flame with the most effective fitness value in the 

list, whereas the last moth updates its position in relation to the flame with the worst 

fitness value in the list. 

If every location update of n moths is predicated on n completely different 

locations within the search space, the algorithm' local development capability is 

reduced. to deal with this issue, associate accommodative mechanism for the amount of 

flames is proposed, permitting the number of flames to be reduced adaptively 

throughout the unvarying process, equalization the algorithm' world search capability 

and native development capability in the search space. the subsequent is that the 

formula: 

𝑓𝑙𝑎𝑚𝑒𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 1 ∗
𝑁 − 1

𝑇
) ,                                           2.10 

where l represents the present iteration variety, N the initial maximum number of 

flames set, and T the utmost number of iterations set Simultaneously, thanks to flame 

reduction, the flame insect resembling the reduced flame within the sequence updates 

its position in every generation supported the flame with the worst current fitness value. 
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2.3 Particle Swarm Optimization (PSO) 

Several studies on the social behaviour of animal teams were developed within 

the early 1990s. These studies disclosed that some animals in a very specific group, 

particularly birds and fishes, are ready to share data among themselves, and this ability 

provides these animals with a major survival advantage. impressed by these works, 

Kennedy and Eberhart planned the PSO rule in 1995, a metaheuristic algorithm 

appropriate for optimising nonlinear continuous functions. The algorithm was inspired 

by the idea of swarm intelligence, that is usually seen in animal groups akin to flocks 

and shoals. 

A discussion on flock behaviour is given to elucidate however the PSO 

impressed the formulation of Associate in Nursing improvement rule to resolve 

advanced mathematical downsides. A swarm of birds flying over a location should 

realize some extent to land, and decisive wherever the whole swarm ought to land may 

be a complex problem as a result of it depends on many factors, as well as increasing 

the supply of food and minimising the danger of predators' existence. during this 

context, the birds' movement may be understood as a choreography; the birds move 

synchronously for a amount of your time till the most effective place to land is known 

and also the entire flock lands at once. 

In the given example, the flock moves only when all of the swarm members can 

share information; otherwise, each animal will more than likely land at a different point 

and at a different time. According to the animal social behaviour studies described 

earlier in this study, all birds in a swarm looking for a good place to land can know that 

the best position until it is discovered by one of the swarm's members. As a result, each 

swarm member helps to balance their individual and swarm understanding experiences, 

which is referred to as social knowledge 

 

The described problem of determining the best landing spot includes an 

optimization problem. In order to maximise the survival conditions of its members, the 

flock must identify the best point, such as latitude and longitude. To accomplish this, 

each bird flies around searching for and assessing different points while employing 
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several surviving criteria at the same time. Each of those has the advantage of knowing 

where the best location point is until it is discovered by the entire swarm. 

Kennedy and Eberhart proposed an algorithm called PSO that could mimic the 

social behaviour of birds, which provides them with significant survival advantages 

when solving the problem of finding a safe place to land. The algorithm's inertial 

version, also known as the classical version, was proposed in 1995. Since then, other 

variations of the classical formulation have been proposed, such as the linear-decreasing 

inertia weight, the constriction factor weight, the dynamic inertia, and maximum 

velocity reduction, in addition to hybrid models or even quantum inspired approach 

optimization techniques that can be applied to PSO. 

 

Figure 2.2 PSO algorithm 

 

2.4 Cuckoo Search Algorithm (CSA) 

In the wild, cuckoos look for suitable nests at random. To simulate the cuckoo 

reproductive process, we propose three idealised rules: 

1) A solution is an egg for the cuckoos. The cuckoo lays one egg at a time and 

then chooses a nest at random to place the egg in. 

2) In each generation, the cuckoos find numerous nests in which to lay their 

eggs. Some nests contain high-quality or satisfactory solutions, which are 

included in the next iteration. 
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3) The total number of nests of the host bird is constant, and the host bird has a 

chance of identifying the cuckoo eggs ∈(0,1). 

The cuckoo's egg represents a new solution in the cuckoo search algorithm, and 

that each egg there in nest defines a solution in the cuckoo search algorithm. Subpar 

methods have been filled with the better or new solutions in the nest. Because more 

than one egg is located in a nest, the algorithm becomes much more complicated 

because there are multiple solutions. In this study, however, we only recognise the 

much more normal case, where a nest includes one egg. As a result, in the CS 

algorithm, all of the particles, including eggs, nests, as well as cuckoos, represent a 

solution. 

 According to the above spawning behaviour hypothesis, the formula for updating the 

solutions in the CS algorithm is as shown in Eq (2.11), 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼⨁𝐿𝑒𝑣𝑦(𝛽),                                                      2.11 

 Where α>0 is used to control step size, its value is usually 0.01, 0.1, or 1, depending on 

the specific problem. Its value in this paper is 0.1. The term operator refers to entry-

wise multiplications, and the Levy flight strategy formula is shown as Eq (2.12), 

𝐿𝑒𝑣𝑦(𝛽) =
𝜑. 𝑢

|𝑣|1/𝛽
,                                                            2.12 

Where v   ̴ N(0, 1) u   ̴ N(0, 1) 

𝜑 =

(

 
 Γ(1 + 𝛽). sin (𝜋. 𝛽/2)

Γ ((
1 + 𝛽

2
) × 𝛽 × 2(𝛽−1)/2)

)

 
 

1/𝛽

,                                      2.13 

Where β is a constant, Its value is on interval [1, 2], and it is usually 1.5,ד (•) denotes to 

gamma function. 

2.5 Barnacles Mating Optimizer (BMO) 

Barnacles mating optimizer (BMO) may be a novel bioinspired optimisation 

rule impressed by barnacle mating. The simulation optimization method is completed 
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through initialization, selection, and reproduction. the subsequent is a elaborated 

description of the mathematical model. 

The barnacle population will be expressed within the following matrix throughout the 

data format process: 

[
𝑥1

1 ⋯ 𝑥1
𝑛

⋮ ⋱ ⋮
𝑥𝑁

1 ⋯ 𝑥𝑁
𝑛
] ,                                                          2.14 

where N denotes the number of barnacles within the population and n the number of 

management variables the oldsters to be mated are chosen haphazardly from the 

population in the following choice process. Eqs. (2.15) and (2.16) propose the 

mathematical forms. 

𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑑 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑁),                                           2.15 

𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑚 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑁),                                           2.16 

During the reproduction process, BMO primarily produces offspring using the 

Hardy-Weinberg principle. The barnacle's penis length (pl) is an intriguing fact that 

influences the exploitation and exploration of the BMO algorithm. When pl equals 7, 

Fig. 1 shows that barnacle #1 can only mate with one of the barnacles #2-#7. The 

exploitation process will then begin. Eq. (2.17) is proposed in this case to produce new 

offspring from parents. 

𝑥𝑖
𝑁_𝑛𝑒𝑤 = 𝑝𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑑

𝑁 + 𝑞𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑚
𝑁 ,                                      2.17 

Where p is a random number drawn from the standard normal distribution between [0, 

1], q = (1 – p), xNbarnacle_d and xNbarnacle_m are barnacle Dad and Mum variables 

chosen in Eq. (2.15), and (2.16). Furthermore, p and q represent the genotype 

percentages of Dad and Mum in the new generation. The genotype frequencies p and q 

of the parents are used to generate the new offspring. If Barnacle #1 mates with 

Barnacles #8-#10, the offspring undergoes the sperm cast process. The exploration 

process will then begin. Eq. (2.18) is proposed in this case to produce new offspring 

from parents. 

𝑥𝑖
𝑛_𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑() × 𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑚

𝑛 ,                                            2.18 
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Where rand() returns a number between [0, 1]. It should be noted that Eq. (2.18) shows 

that the new offspring are produced solely on the basis of Mum. In general, barnacle 

positions are updated in each iteration by Eq. (2.17) or Eq. (2.18) to find the best 

position (the best solution). 

2.6 Summary 

At the end of this chapter, the details of moth flame, and its nature which lead to 

a new algorithm called moth flame optimization is explained well together with the 

system and process of the optimization under this algorithm. Throughout this chapter 

also, there is few details explanations for other algorithms which is particle swarm 

optimization, barnacles mating optimizer and Cuckoo Search Algorithm (CSA) that will 

be used in this project as comparison for their effectiveness compared to the result that 

will be obtain by the moth flame optimization. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

Methodology is a formal, analytical examination of the processes used in the 

field of study. This entails conducting a systematic examination of the set of approaches 

and concepts identified by the information group. Theory, analytical model, process, 

and quantitative or qualitative techniques are common terms. 

The methodology approach is not meant to include solutions, and it is also not 

the same as the process. Methodology, on the other hand, provides a theoretical 

framework for explaining which procedure, collection of methods, or best practices 

should be applied to a specific situation, such as the estimation of a specific outcome. 

This chapter will present relevant information about the moth flame 

optimization algorithm, as well as the equation that will be used to solve optimal power 

flow. 
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3.2 Project flowchart 

The work sequence is depicted using a flowchart system. This flowchart can be 

used as a guide to ensure that the simulation process is carried out correctly. The 

procedure requires the user to enter their desired specifications, such as the number of 

moths, as well as the maximum iteration and function details data for lower bound, 

upper bound, and variable dimension. 

As the user specifies, the system will run the simulation and begin the process 

outlined in Chapter 2 Part 2.2, without having violated the moth flame's setup that has 

been created as their base. 
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Figure 3.1 Project flowchart 

 

START 

Set the number of moths and set the 

maximum iteration 

Get the function details (data for lower bound, upper 

bound, variables dimension) and function evaluation 

Initialization 

Evaluation of objective function (case 1 and 2) and obtain the results from 

MATPOWER 

Cost Minimization equation: 

𝐹1 =   (   ) +    𝑤.𝑗

𝑁  

𝑗 1

( 𝑤 .𝑗) +   𝑤.𝑗( 𝑤 .𝑗 −  𝑤𝑎 .𝑗)

+   𝑤.𝑗( 𝑤𝑎 .𝑗 −  𝑤 .𝑗)          +     , 

𝑁  

  1

(   , )

+    . (   , −   𝑎 , ) +    , (  𝑎 , −    , )  

Cost Minimization (with carbon tax) equation: 

𝐹2 = 𝐹1 +  𝑡𝑎𝑥  

 

Stored the results in matrix form 

Update position 

Variables out of 

bound? 

Maximum 

iteration? 

Pegging at the 

boundaries 

Yes 

No 

No 

Yes 

Print the best results 

and optimal power 

generation 
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3.3 Pseudocode 

Pseudocode is an important factor in determining project success. Pseudocode is 

an unofficial high-level definition of a computer system or algorithm operating theory. 

It employs complex conventions of standard computer language, but it is intended for a 

specific human reading and understanding. Pseudocode generally ignores details that 

are critical to a system that the computer system recognises from the proposed 

algorithm, such as conditional statements, system-specific code, and some 

subprocesses. The proposed MFO algorithm's pseudocode is provided below. 

Update flame no using Eq. 2.10 

OM = FitnessFunction(M); 

If iteration == 1 

 F = sort(M); 

 OF = sort(OM); 

else  

F = sort(Mt-1, Mt); 

F = sort(Mt, Mt-1); 

End 

For i = 1 : n 

 For j = 1 : d 

  Update r and t 

  Calculate D using Eq. (3.13) with respect to the corresponding moth 

 Update M(I,j) using Eqs. Eqs. (3.11) and (3.12) with respect to the 

corresponding moth 

 end 

end 
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3.4 Project Design 

This project was created using a statistical method in which the sample taken 

from the moth flame only includes a small proportion of the population in the search 

area. The samples have already been collected; the process will follow the steps set out 

In chapter 2 Part 2.2. 

3.5 Project Instrument 

This project's instrument is MATLAB software version 2019a, and it is being 

completed using a simulation-based method. The device used for this project has an 

AMD Ryzen 7 4800H processor with Radeon Graphics 2.90 GHz and 8GB RAM pre-

installed. 

3.6 Scope of Work 

For this project, there is use 3 source of power that consist of thermal generator, 

wind power generator and solar PV unit. This generator source is used to finding the 

OPF which is 30-Unit Bus System. Table 1 will show the summary of IEEE-30 bus 

system. 
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Table 3.1 Summary of IEEE-30 bus system 

Items Quantity Details 

Buses 30 - 

Branches 41 - 

Thermal generators 

(TG1, TG2, TG3) 

3 Buses: 1, 2 and 8 

Wind generators (WG1, 

WG2) 

2 Buses: 5 and 11 

Solar PV unit (SPV) 1 Bus: 13 

Control variables 11 - 

Load bus voltage range 24 [0.95-1.05] p.u 
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Figure 3.2 Modified of IEEE-30 bus system 

3.7 Optimal Power Flow Problem Formulation 

The primary goal of OPF is to find the optimal control variable setting in power 

system components to minimise the selected objective functions while satisfying all 

equality and inequality constraints. To solve OPF for the system consisting of thermal 

and stochastic wind solar and wind power generators, two objectives are chosen: (1) 

cost of generation minimization and (2) loss minimization. 

3.7.1 Cost of generation minimization 

3.7.1.1 Thermal units 

The total cost of a thermal generating unit, including valve loading effects, is 

expressed as FCost: 
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𝐹𝐶𝑜 𝑡(    ) =  {𝑎𝑖 + 𝑏𝑖   𝑖 + 𝑐𝑖   𝑖
2 + |𝑑𝑖 ∙ sin[𝑒𝑖 ∙ (   𝑖

𝑚𝑖𝑛 −    𝑖)]},          3.1

𝑁𝑇 

𝑖 1

 

where      is the total power output from thermal generators, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, and 𝑒𝑖 are 

the cost coefficients of the respective generator    𝑖 with the valve loading effect taken 

into account,    𝑖
𝑚𝑖𝑛  is the i-th generator's minimum power setting, and 𝑁   is the 

number of thermal generators in the system. 

3.7.1.2 Wind power generator and Solar PV unit 

Certain conditions, such as the uncertain and intermittent nature of solar and 

wind when integrating into the power grid, had to be considered for solar PV power and 

wind power. Typically, solar PV farms are owned by private entities that have a power 

purchase agreement with the Independent System Operator (ISO). As a result, the costs 

of these power generators are classified into three categories: direct, reserved, and 

penalty costs. 

The following is the direct cost of a solar PV generator: 

 𝑆, ( 𝑆 ,𝑗) = 𝑔𝑆 ,  𝑆 , ,                                                     3.2 

where 𝑔𝑆 ,  is the direct cost coefficient associated with the k-th solar power plant and 

 𝑆 ,  is the solar power plant's scheduled power. 

The following are the direct costs of wind power: 

 𝑤.𝑗( 𝑤 .𝑗) = 𝑔𝑗 𝑤 .𝑗 ,                                                         3.3 

where 𝑔𝑗  is direct cost coefficient related to j -th wind power plant and  𝑤 .𝑗  is 

scheduled power. 

There is a chance that the actual power delivered by the solar farm will be less 

than what was estimated. This phenomenon is known as overestimation of power from 

uncertain sources, and it occurs when the system operator must spin reserved in order to 

ensure continuous supply to customers. The cost of committing the reserved generating 

units to meet the overestimated values is known as the reserve cost, and it can be 

expressed as follows for solar power generation: 
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  𝑆, ( 𝑆 , −  𝑆𝑎 , ) = 𝐾 𝑆, ( 𝑆 , −  𝑆𝑎 , ),                                                        3.4 

                         = 𝐾 𝑆, ∗ 𝑓 ( 𝑆𝑎 , <  𝑆 , ) ∗   𝑆 , −  ( 𝑆𝑎 , <  𝑆 , ) ′ 

where 𝐾 𝑆,  is the reserve cost coefficient for the k-th solar PV plant,  𝑆𝑎 ,  is the actual 

available power from the same plant, 𝑓 ( 𝑆𝑎 , <  𝑆 , ) is the probability of a solar 

power shortage occurrence compared to the scheduled power ( 𝑆 , ), and  ( 𝑆𝑎 , <

 𝑆 , ) is the expectation of solar PV power less than  𝑆 , . 

The following is the reserve cost of wind power: 

  𝑤,𝑗( 𝑤 ,𝑗 −  𝑤𝑎 ,𝑗) = 𝐾 𝑤,𝑗( 𝑤 ,𝑗 −  𝑤𝑎 ,𝑗                                 3.5 

= 𝐾 𝑤 ∫ ( 𝑤 ,𝑗 − 𝑝𝑤,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

 𝑤𝑠,𝑗

0

 

where 𝐾 𝑤,𝑗  denotes the reserve cost coefficient for the j-th wind power plant, and 

 𝑤𝑎 ,𝑗  denotes the actual available power from the same plant. The wind power 

probability density function for the j-th wind power plant is denoted by 𝑓𝑤(𝑝𝑤,𝑗). 

In the event that, contrary to the overestimation of power, the actual power 

delivered is greater than the estimated values, resulting in surplus power, it must be 

catered for by introducing a penalty cost corresponding to the surplus amount of power, 

which can be expressed as follows: 

  𝑆, ( 𝑆𝑎 , −  𝑆 , ) = 𝐾 𝑆, ( 𝑆𝑎 , −  𝑆 , ),                                                   3.6 

                          = 𝐾 𝑆, ∗ 𝑓 ( 𝑆𝑎 , >  𝑆 , ) ∗ [ ( 𝑆𝑎 , >  𝑆 , −  𝑆 , )] 

here, 𝐾 𝑆,  denotes the penalty cost coefficient for the k-th solar PV plant, 𝑓 ( 𝑆𝑎 , >

 𝑆 , )  denotes the probability of solar PV power exceeding the scheduled power 

(  𝑆 , ), and  ( 𝑆𝑎 , >  𝑆 , −  𝑆 , )  denotes the expectation of solar PV power 

exceeding  𝑆 , . 
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The following are the penalties for using wind power: 

  𝑤,𝑗( 𝑤𝑎 ,𝑗 −  𝑤 ,𝑗) = 𝐾 𝑤,𝑗( 𝑤𝑎 ,𝑗 −  𝑤 ,𝑗),                                                  3.7 

= 𝐾 𝑤,𝑗 ∫ (𝑝𝑤,𝑗 −  𝑤 ,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

 𝑤𝑟,𝑗

 𝑤𝑠,𝑗

 

where 𝐾 𝑤,𝑗 is the penalty cost coefficient for the j-th wind power plant and  𝑤𝑟,𝑗 is the 

rated output power of the same windfarm. 

It is well understood that generating power from traditional energy sources 

emits harmful gases into the environment. The emission of SOx and NOx increases 

with the increase in generated power (in p.u. MW) from thermal power generators, as 

shown in Eq (3.8). Emissions in tonnes per hour (t/h) are calculated as follows: 

 𝑚𝑖𝑠𝑠𝑖𝑜𝑛,  =   𝛼𝑖 + 𝛽𝑖   𝑖 + 𝛾𝑖   𝑖
2

𝑛  

𝑖 1

) + 𝜔𝑖𝑒
(𝜇𝑖 𝑇 𝑖)                 3.8 

As a result, for the first objective function with and without carbon tax, all of the costs 

associated with thermal, wind and solar generation discussed above are aggregated and 

shown as follows: 

Without Carbon tax: 

𝐹1 =   (   ) +    𝑤,𝑗( 𝑤 ,𝑗) +   𝑤,𝑗( 𝑤 ,𝑗 −  𝑤𝑎 ,𝑗) +   𝑤,𝑗( 𝑤𝑎 ,𝑗 −  𝑤 ,𝑗)  3.9 

𝑁  

𝑗 1

+    𝑆, ( 𝑆 , ) +    . ( 𝑆 , −  𝑆𝑎 , ) +   𝑆. ( 𝑆𝑎 , −  𝑆 , ) 

𝑁  

  1

 

Within Carbon tax: 

𝐹2 = 𝐹1 +  𝑡𝑎𝑥                                                             3.10 

3.7.2 Loss minimization 

The second goal of OPF is to minimise total real power loss in the transmission 

system, FLoss, which can be expressed as follows: 
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𝐹𝐿𝑜  =   𝐺𝑖𝑗

𝑛𝑙

𝑗≠𝑖

𝑛𝑙

𝑖 𝑗

[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗(𝛿𝑖 − 𝛿𝑗)],                                     3.11 

where 𝑉𝑖  and 𝑉𝑗  represent the sending and receiving end voltages at bus i and j, 

respectively, 𝐺𝑖𝑗  represents the conductance at the transmission line i-j, and nl 

represents the number of power transmission lines. 

3.7.3 Voltage deviation minimization 

The voltage deviation minimization at each bus of the power system network, 

𝐹𝑉𝐷 which can be expressed as follows: 

𝐹𝑉𝐷 =  |𝑉𝐿𝑚 − 1.0|,

𝑛𝐿

𝑚 1

                                                        3.12 

where 𝑉𝐿𝑚 denotes the voltage at load bus m and 𝑛𝐿 denotes the number of load buses. 

3.7.4 Generation and emission cost minimization 

The part that must be considered is the reduction of generation and emission 

costs through the imposition of a carbon tax to reduce greenhouse gas emissions, which 

can be defined as follows: 

𝐹𝐶𝐸 = 𝐹𝐶𝑜 𝑡 + 𝑐𝑡 𝐸𝑚𝑖  𝑖𝑜𝑛                                                    3.13 

where 𝑐𝑡 denotes the carbon tax, which is set at $20 per hour ($/h). 

3.7.5 Constraints 

In order to solve the OPF problem, all feasible solutions must satisfy all equality 

and inequality constraints. The power balance equation for real and reactive power must 

be satisfied in order to satisfy the equality constraint, which is expressed as follows: 

  𝑖 −  𝐷𝑖 − 𝑉𝑖  𝑉𝑗[𝐺𝑖𝑗cos (𝛿𝑖𝑗) + 𝐵𝑖𝑗sin (𝛿𝑖𝑗)] = 0 ∀𝑖 ∈ 𝑛𝐵,              3.14

𝑛𝐵

𝑗 1
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𝑄 𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖  𝑉𝑗[𝐺𝑖𝑗𝑠𝑖𝑛 (𝛿𝑖𝑗) + 𝐵𝑖𝑗𝑐𝑜𝑠 (𝛿𝑖𝑗)] = 0 ∀𝑖 ∈ 𝑛𝐵,              3.15

𝑛𝐵

𝑗 1

 

 

where 𝛿𝑖𝑗 is the voltage angle difference between buses i and j,   𝑖 and 𝑄 𝑖 are the real 

and reactive power generation at bus (including wind and solar power),  𝐷𝑖 and 𝑄𝐷𝑖 are 

the real and reactive load at bus 𝑖 and 𝑛𝐵 is the total number of buses in the system. The 

inequality constraints, on the other hand, are the operating limits of the power system 

components, which can be represented as follows: 

   𝑖
𝑚𝑖𝑛 ≤    𝑖 ≤    𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁  ,                                          3.16 

 𝑆 , 
𝑚𝑖𝑛 ≤  𝑆 , ≤  𝑆 , 

𝑚𝑎𝑥  𝑘 = 1,… ,𝑁  ,                                          3.17 

𝑄  𝑖
𝑚𝑖𝑛 ≤ 𝑄  𝑖 ≤ 𝑄  𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁  ,                                          3.18 

𝑄𝑆 , 
𝑚𝑖𝑛 ≤ 𝑄𝑆 , ≤ 𝑄𝑆 , 

𝑚𝑎𝑥 𝑘 = 1,… ,𝑁  ,                                          3.19 

𝑉 𝑖
𝑚𝑖𝑛 ≤ 𝑉 𝑖 ≤ 𝑉 𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁 ,                                          3.20 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥  𝑖 = 1,… ,𝑁𝐿𝑜𝑎𝑑,                                          3.21 

𝑄𝐶, 
𝑚𝑖𝑛 ≤ 𝑄𝐶, ≤ 𝑄𝐶, 

𝑚𝑎𝑥 𝑘 = 1,… ,𝑁𝑄𝐶,                                          3.22 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁 ,                                          3.23 

The real and reactive power generation limits for thermal, wind power generators, and 

solar PV generation are represented by Equations (3.16) and (3.17) and Equations 

(3.18) and (3.19), respectively. Equation (3.20) defines the voltage constraints imposed 

on generator buses, whereas Equation (3.21) defines the voltage constraints imposed on 

load buses, where 𝑁  denotes the number of generators and 𝑁𝐿𝑜𝑎𝑑 denotes the number 

of load buses. Equations (3.22) and (3.23) define the injected MVAR limitation and 

transformer tap setting, respectively, where 𝑁𝑄𝐶 is the total number of injected MVAR 

and 𝑁  is the number of transformers. 
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It is worth noting that all of these constraints are met by employing the power flow 

programme (MATPOWER) to ensure that accurate results are obtained throughout the 

studies. 

3.8 Summary 

This chapter presents the overall methodology involved in doing this project, 

where the main point is about the project flowchart, pseudocode used, project design, 

project instrument, scope of work and optimal power flow problem formulation. 

Mathematical process and equation indeed are well explained in this chapter on how 

this project will work and what method and strategy is best to be used. Throughout 

these methodology chapter, it is best described as the framework for the research where 

it contains elements of work, based on the objective and scope of the research. This 

chapter intended to elaborate on the theoretical process into simulation process under 

certain circumstances and conditions. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter explained about the analyse project of optimal power flow by using 

moth flame optimizer algorithm. Result generated by the MATLAB programming tools 

to get the result for the best suitable value for algorithm, cost minimization, power 

losses power in exposed and proposed with algorithm. This result generated by 

MATPOWER and get by using IEEE 30 bus system. 

4.2 Result 

Table 4.1 show that the cost and emission that setting for the generators (TG1, 

TG2 and TG3). And then, table 4.2 show that the PDF parameter of solar PV unit and 

wind power. The figure 4.1 and 4.2 shows that the solar irradiance distribution for solar 

PV unit at bus 13 and real power distribution for solar PV at bus 13. 

Table 4.1 Cost and emission of coefficients for modified IEEE-30 bus 

Generator Bus a b c d e 𝛼 𝛽 𝛾 𝜔 𝜇 

TG1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 6.667 

TG2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333 

TG3 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2 
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Table 4.2 PDF parameter of solar PV unit and wind power 

Wind power generating plants Solar PV plant 

Windfarm# No. of 

turbines 

Rated 

power, 

Pwr 

(MW) 

Weibull 

PDF 

parameter 

Weibull 

mean, Mwbl 

Rated 

power, Psr 

(MW) 

Lognormal 

PDF 

parameters 

Lognormal 

mean, Mlgn 

1 (bus 5) 25 75 c = 9  

k = 2 

v = 7.976 

m/s 

50 (bus 

13) 

𝜇 = 6 𝜎

= 0.6 

G = 483 

W/m2 

2 (bus 11) 20 60 c = 10  

k = 2 

v = 8.862 

m/s 

   

 

 

Figure 4.1 Solar irradiance distrinution for solar PV unit at bus 13 
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Figure 4.2 Real power distribution for solar PV at bus 13 

4.2.1 Cost minimization 

Table 4.3 Statistical result for case 1 

Algorithm Max Min Mean Std Dev. 

MFO 798.4958 791.2366 793.85425 1.354766161 

 

Table 4.4 Statistical result for case 2 

Algorithm Max Min Mean Std Dev. 

MFO 909.638 878.445 892.02 10.36354 
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Figure 4.3 Boxplot cost minimization for 30 runs of simulation for case 1 and case 2 

4.2.2 Loss minimization 

Table 4.5 Statistical result for case 1 

Algorithm Max Min Mean Std Dev. 

MFO 5.9945 5.0609 5.390733 0.1619278 

 

Table 4.6 Statistical result for case 2 

Algorithm Max Min Mean Std Dev. 

MFO 2.2145 2.0818 2.13809 0.038792 
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Figure 4.4 Boxplot power losses for 30 runs of simulation of cae 1 and case 2 



33 

4.2.3 Voltage load bus 

Table 4.7 Result for voltage profiles of load bus for case 1 and case 2 

 

 

Voltage(p.u.) case 1Upper LimitLower LimitVoltage (p.u.) case 2

1.05E+00 1.05 0.95 1.05E+00

1.04E+00 1.05 0.95 1.05E+00

1.04E+00 1.05 0.95 1.05E+00

1.04E+00 1.05 0.95 1.04E+00

1.04E+00 1.05 0.95 1.05E+00

1.02E+00 1.05 0.95 1.03E+00

1.03E+00 1.05 0.95 1.04E+00

1.01E+00 1.05 0.95 1.03E+00

1.01E+00 1.05 0.95 1.02E+00

1.02E+00 1.05 0.95 1.03E+00

1.01E+00 1.05 0.95 1.02E+00

9.99E-01 1.05 0.95 1.01E+00

9.97E-01 1.05 0.95 1.01E+00

1.00E+00 1.05 0.95 1.01E+00

1.00E+00 1.05 0.95 1.01E+00

1.00E+00 1.05 0.95 1.01E+00

9.97E-01 1.05 0.95 1.01E+00

9.89E-01 1.05 0.95 9.98E-01

9.92E-01 1.05 0.95 1.00E+00

9.74E-01 1.05 0.95 9.82E-01

1.00E+00 1.05 0.95 1.01E+00

1.04E+00 1.05 0.95 1.04E+00

9.83E-01 1.05 0.95 9.90E-01

9.71E-01 1.05 0.95 9.79E-01
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Figure 4.5 Voltage profiles of load buses for moth flame algorithms for case 1 and case 

2 

 

4.3 Discussion 

Minimization of generation cost performs optimization of generation schedule 

for all thermal and renewable energy source generator to minimize total generation cost 

given by Eq. (3.9). cost coefficient is shown in Table 4.1. All the optimum setting will 

be summarized into appendix that consist of all control variable, generator reactive 

power, total generation cost and other useful calculated parameter. Power loss and 

Voltage deviation calculated by Eq. (3.11) and (3.12).  

Based on the table 4.3, the data that we got from the running programme for the 

case 1 which is cost minimization without carbon tax used equation from Eq (3.9). For 

the cost minimization, we got that the minimum value that can be achieve from running 

for 30 time by using MATLAB was 791.2366($/h), the maximum was 798.4958($/h), 

mean was 793.85425($/h) and standard deviation was 1.3548. Next, based on table 4.4 

for case 2, that use equation from Eq. (3.10) we got that the value for the minimum was 

878.4454($/h), maximum was 909.6375($/h), mean was 892.0202($/h) and standard 

deviation was 10.363542. As can see, the bit difference between case 1 and case 2 

because for the case 1 need to add with carbon tax. For Carbon tax rate, Ctax is assumed 

$20/tonne. 
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For the second objective is to minimize power losses of the power generation 

that consist of stochastic solar power generation, thermal generators and wind power 

generator. This objective use got from the Eq. (3.11). First, based on table 4.5 for the 

case 1 which is without carbon tax, we found that the minimum value was 5.0609MW, 

maximum was 5.9945MW, mean was 5.390733MW and standard deviation was 

0.161927. And then, based on the table 4.6 for the case 2, the minimum value was 

2.0818MW, maximum 2.2145MW, mean 2.138093MW and standard deviation was 

0.0387925.  

Figure (4.2) shows that the result for the load bus voltage profiles for case 1 and 

case 2. In optimal power flow problem, constraints on load bus is the one critical thing 

as operating voltage of load buses are often found be close their limits. For this research 

the lomit need to be maintained within 0.95p.u to 1.05p.u. If the limit can be reach 

upper and lower limit, need to give the penalty on the system because of violating the 

system. Based on the result, this project success without any violating the system which 

is power cant be reach more than or lower than set values. The value that set was 0.95 

p.u until 1.05 p.u. 

4.4 Summary 

This project involved more data as stated in this chapter for the overall data in 

finding OPF value. A total of 30 simulations is made for testing the system, comparison 

in algorithm and records the obtained data. For data that has been recorded, this project 

reviewed and analysed to find the reliable correlation for optimal power flow solution. 

In addition, this project aims to study the optimal power flow solution how it 

can give different result when it is combined as a new single objective under the name 

optimal power flow. From the data that recorded and analysed, researchers found that 

the hypothesis of the study can be accepted. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Conclusion 

In this report, various of data have been analysed for solving the economic 

emission load dispatch. This data later being used for calculation on 1 main items, 

optimal power flow using the MATLAB programming tools. 

The application of the nature inspired algorithm namely Moth Flame 

Optimization in solving practical optimal power flow problems has been proposed in 

this paper. The possibility and effectiveness of the proposed method BMO was 

demonstrated on 30-Unit generating systems. From the simulations that have been 

done, it can be seen that BMO shows the result effectively and yet to be compared with 

other algorithm to show its effectiveness compared to any other algorithm in solving 

optimal power flow. Listed to be outperform most of the other algorithms based on the 

previous researches, MFO can obtain minimum operation cost and obtain close results 

compared to another algorithm.  

Thus, the application of MFO is the best algorithm to solve the OPF problem 

compare to another algorithm by using different power sources consist of thermal, win 

and solar PV unit. 
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APPENDIX A 

Table A1 Simulation result for optimization for case 1 and case 2 

Control 
variables Min Max Case 1 Case 2 Parameters Min Max Case 1 Case 2 

P_TG1(MW) 50 140 123.8 50.01 Q_TG1(MVAr) -20 150 25.76 -20 

P_TG2(MW) 20 80 31.48 22.14 Q_TG2(MVAr) -20 60 -20 22.19 

P_TG3(MW) 10 35 10 35 Q_TG3(MVAr) -15 40 40 37.92 

P_ws1(MW) 0 75 45.83 75 Q_ws1(MVAr) -30 35 35 18.13 

P_ws2(MW) 0 60 38.97 60 Q_ws2(MVAr) -25 30 18.23 30 

P_ss(MW) 0 50 38.77 43.36 Q_ss(MVAr) -20 25 16.67 21.37 

V_1(p.u.) 0.95 1.1 1.078 1.054 Total cost ($/h)  796.9648 887.4973 

V_2(p.u.) 0.95 1.1 1.052 1.055 Emission (t/h)  0.80746 0.9925 

V_5(p.u.) 0.95 1.1 1.044 1.042 Carbon tax ($/h)  - 20 

V_8(p.u.) 0.95 1.1 1.04 1.051 P_loss(MW)  5.3456 2.11 

V_11(p.u.) 0.95 1.1 1.06 1.098 VD (p.u.)   0.455 0.55685 

V_13(p.u.) 0.95 1.1 1.046 1.067      
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APPENDIX B 

• MFOOPF.m 

 

global  nfeval VD PGS emission ploss VI fuelvlvcost Qgen wgencost sgencost 

cumcost 

format long e; 

tic 

problem_size = 11; 

pop_size = 30; 

N = pop_size; 

dim = problem_size; 

Xmin = [20 0 10 0 0 0.95 0.95 0.95 0.95 0.95 0.95]; 

Xmax = [80 75 35 60 50 1.1 1.1 1.1 1.1 1.1 1.1]; 

lb = Xmin; 

ub = Xmax; 

Max_FES = 24000;  

Max_Gen = 100; Max_iteration = Max_Gen; maxrun = 1; runs = maxrun; gn = 

4; % gn is the no. of constraints 

feval = []; contvar = zeros(maxrun,problem_size); 

Re = zeros(maxrun,3); W = zeros(Max_Gen,3); 

 

fobj = @pflow; 

 

%  for runs=1:maxrun  

  weibullplot(); % for plotting Weibull PDF 

  lognplot(); % for plotting lognormal PDF 

  fprintf('Run %d',runs); 

  nfeval=0; 

 

 %%  parameter settings for MFO 

%Initialize the positions of moths 

Moth_pos=initialization(N,dim,ub,lb); 

 

Convergence_curve=zeros(1,Max_iteration); 

  

 %% Main loop 

 

for gen=1:Max_Gen 

Iteration = gen; 

     % Number of flames Eq. (3.14) in the paper 

    Flame_no=round(N-Iteration*((N-1)/Max_iteration)); 
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    for i=1:size(Moth_pos,1) 

         

        % Check if moths go out of the search spaceand bring it back 

        Flag4ub=Moth_pos(i,:)>ub; 

        Flag4lb=Moth_pos(i,:)<lb; 

        

Moth_pos(i,:)=(Moth_pos(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4l

b;   

         

        % Calculate the fitness of moths 

        Moth_fitness(1,i)=fobj(Moth_pos(i,:));   

         

    end 

        

    if Iteration==1 

        % Sort the first population of moths 

        [fitness_sorted I]=sort(Moth_fitness); 

        sorted_population=Moth_pos(I,:); 

         

        % Update the flames 

        best_flames=sorted_population; 

        best_flame_fitness=fitness_sorted; 

    else 

         

        % Sort the moths 

        double_population=[previous_population;best_flames]; 

        double_fitness=[previous_fitness best_flame_fitness]; 

         

        [double_fitness_sorted I]=sort(double_fitness); 

        double_sorted_population=double_population(I,:); 

         

        fitness_sorted=double_fitness_sorted(1:N); 

        sorted_population=double_sorted_population(1:N,:); 

         

        % Update the flames 

        best_flames=sorted_population; 

        best_flame_fitness=fitness_sorted; 

    end 

     

    % Update the position best flame obtained so far 

    Best_flame_score=fitness_sorted(1); 

    Best_flame_pos=sorted_population(1,:); 

       

    previous_population=Moth_pos; 
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    previous_fitness=Moth_fitness; 

     

    % a linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) 

    a=-1+Iteration*((-1)/Max_iteration); 

     

    for i=1:size(Moth_pos,1) 

         

        for j=1:size(Moth_pos,2) 

            if i<=Flame_no % Update the position of the moth with respect to its 

corresponsing flame 

                 

                % D in Eq. (3.13) 

                distance_to_flame=abs(sorted_population(i,j)-Moth_pos(i,j)); 

                b=1; 

                t=(a-1)*rand+1; 

                 

                % Eq. (3.12) 

                

Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(i,j

); 

            end 

             

            if i>Flame_no % Upaate the position of the moth with respct to one 

flame 

                 

                % Eq. (3.13) 

                distance_to_flame=abs(sorted_population(i,j)-Moth_pos(i,j)); 

                b=1; 

                t=(a-1)*rand+1; 

                 

                % Eq. (3.12) 

                

Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(Fl

ame_no,j); 

            end 

             

        end 

         

    end 

     

    Convergence_curve(Iteration)=Best_flame_score; 

    plot(Convergence_curve) 

    grid on 
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    % Display the iteration and best optimum obtained so far 

    if mod(Iteration,50)==0 

        display(['At iteration ', num2str(Iteration), ' the best fitness is ', 

num2str(Best_flame_score)]); 

    end 

    Iteration=Iteration+1;  

 

 end 

 

toc 

 

% Print results 

[~,IND] = min(Re(:,1)); 

% disp('Control Variables'); 

% fprintf('\t %0.4f',contvar(IND,:)); 

% Func(contvar(IND,:)); 

fprintf('\n Swing generator power %0.5f MW',PGS); 

fprintf('\n Cumulative voltage drop %0.5f p.u.',VD); 

fprintf('\n Emission %0.5f ton/h',emission); 

fprintf('\n Real power loss %0.4f MW',ploss); 

fprintf('\n Fuelvlvcost %0.4f \n',fuelvlvcost); 

fprintf('\n Wind gen cost %0.4f \n',wgencost); 

fprintf('\n Solar gen cost %0.4f \n',sgencost); 

fprintf('\n Total generation cost %0.4f \n',cumcost); 

disp(' Load bus voltage'); 

fprintf('\t %0.5f',VI); 

fprintf('\n Generator reactive power'); 

fprintf('\t %0.5f',Qgen); 
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• pflow.m 

 

function [f1,error] = pflow(x) 

 

global VD PGS emission ploss VI scale shape fuelvlvcost Qgen mcarlo SP1 

wgencost sgencost nbins cumcost 

%x = [27.0699  42.9420  10.0000  36.2679  38.0055  

1.0720  1.0570  1.0348  1.0396  1.0982  1.0556]; 

%x = [20.58 60 35 60 60 1.0543 1.04764 1.03343 1.04372 1.0802 1.07762]; 

%x = [62.84 50 24.64 40 40 1.0591 1.05273 1.03364 1.0355 1.071 1.08075]; 

 

% scale = [9 10 11]; % Enter shape parameters of 3 windfarms for Weibull dist 

% shape = [2 2 2]; % Enter shape parameters of 3 windfarms for Weibull dist 

NT = [25 20]; % No. of turbines in the 2 farms 

Vin = 3; Vout = 25; Vr = 16; Pr = 3; % Cut-in, cut-out, rated speed and rated 

power of turbine 

Ctax = 20; % Carbon tax $/ton 

 

data = loadcase(case30); 

data.gen(2:6,2) = x(1:5); 

data.gen(1:6,6) = x(6:11); 

 

mpopt = mpoption('pf.enforce_q_lims',2,'verbose',0,'out.all',0); 

result = runpf(data,mpopt); 

 

thpowgen = [result.gen(1,2),x(1),x(3)]; 

%thpowgen = [94.7753,x(1),x(3)]; 

thgencoeff = vertcat(data.gencost(1:2,5:7),data.gencost(4,5:7)); 

 

thgencost = 

sum(thgencoeff(:,1)+thgencoeff(:,2).*thpowgen'+thgencoeff(:,3).*(thpowgen.^2

)'); % thermal generator cost 

 

%Find wind generator related parameters 

%windgen parameter sl no. bus costcoeff 

wgenpar = [1   5   1.60; 

           2   11  1.75]; 

Crwj = 3; Cpwj = 1.5; % wind power penalty and reserve cost coefficients 

schwpow = [x(2),x(4)]'; 

 

%stochastic wind power cost 

%meanwpow = [26;30]; wp = 35; 

Prw0 = 1-exp(-(Vin./scale).^shape)+exp(-(Vout./scale).^shape); 

Prwwr = exp(-(Vr./scale).^shape)-exp(-(Vout./scale).^shape); 
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count1 = 1; 

wovest = zeros(); wundest = zeros(); 

 

for ii = 1:2 

    Prww1 = (shape(ii)*(Vr-Vin))/((scale(ii)^shape(ii))*(NT(ii)*Pr)); 

    Prww = @(wp)((schwpow(ii)-wp)*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii)))); 

    wovest2 = integral(Prww,0,schwpow(ii),'ArrayValued',true); 

    wovest(count1) = schwpow(ii)*Prw0(ii)*Crwj+Crwj*wovest2; 

 

    Prww = @(wp)((wp-schwpow(ii))*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii)))); 

    wundest2 = integral(Prww,schwpow(ii),NT(ii)*Pr,'ArrayValued',true); 

    wundest(count1) = (NT(ii)*Pr-

schwpow(ii))*Prwwr(ii)*Cpwj+Cpwj*wundest2; 

    count1 = count1+1; 

end 

 

wgencost = sum(wgenpar(:,3).*schwpow)+sum(wovest)+sum(wundest); % 

wind generator cost 

 

%solargen parameter sl no. bus costcoeff 

sgenpar = [1   13  1.60]; 

Crsj = 3; % Reserve cost for solar power overestimation ($/MW) 

Cpsj = 1.5; % Penalty cost for solar power underestimation ($/MW) 

schspow = x(5); % solar generator schedule power 

 

% Segregate over and underestimated power on the power histogram 

 

[histy1,histx1] = hist(SP1,nbins); 

 

Lowind1 = histx1<schspow; 

Highind1 = histx1>schspow; 

allP1und = schspow-histx1(histx1<schspow); 

allP1over = histx1(histx1>schspow)-schspow; 

ProbP1und = histy1(Lowind1)./mcarlo; 

ProbP1over = histy1(Highind1)./mcarlo; 

 

% Finding under and over estimation cost 

C1und = sum(Crsj*(ProbP1und.*allP1und)); 

C1over = sum(Cpsj*(ProbP1over.*allP1over)); 

sovundcost = [C1und,C1over]; 
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sgencost = sum(sgenpar(:,3).*schspow)+sum(sovundcost); % solar generator 

cost 

 

%Constraint finding  

Vmax = data.bus(:,12); 

Vmin = data.bus(:,13); 

genbus = data.gen(:,1); 

 

Qmax = data.gen(:,4)/data.baseMVA; 

Qmin = data.gen(:,5)/data.baseMVA; 

Qgen = result.gen(:,3); 

QG = result.gen(:,3)/data.baseMVA; 

 

PGSmax = data.gen(1,9); 

PGSmin = data.gen(1,10); 

PGS = result.gen(1,2); 

PGSerr = (PGS<PGSmin)*(abs(PGSmin-PGS)/(PGSmax-

PGSmin))+(PGS>PGSmax)*(abs(PGSmax-PGS)/(PGSmax-PGSmin)); 

 

blimit = data.branch(:,6); 

Slimit = sqrt(result.branch(:,14).^2+result.branch(:,15).^2); 

Serr = sum((Slimit>blimit).*abs(blimit-Slimit))/data.baseMVA; 

 

% TO find the error in Qg of gen buses- inequality constraint 

Qerr = sum((QG<Qmin).*(abs(Qmin-QG)./(Qmax-

Qmin))+(QG>Qmax).*(abs(Qmax-QG)./(Qmax-Qmin))); 

% TO find the error in V of load buses-inequality constraint 

VI = result.bus(:,8);  %V of load buses-inequality constraint 

VI(genbus)=[]; 

Vmax(genbus)=[]; 

Vmin(genbus)=[]; 

VIerr = sum((VI<Vmin).*(abs(Vmin-VI)./(Vmax-

Vmin))+(VI>Vmax).*(abs(Vmax-VI)./(Vmax-Vmin))); 

VD = sum(abs(VI-1)); 

 

% Emission : Of thermal generating unit 

% bus_no. alpha beta gama omega miu d e Pmin 

 emcoeff = [ 

  1 0.04091 -0.05554 0.06490 0.000200 6.667 18 0.037 50; 

  2 0.02543 -0.06047 0.05638 0.000500 3.333 16 0.038 20; 

  8 0.05326 -0.03550 0.03380 0.002000 2.000 12 0.045 10]; 

 

% VALVE EFFECT 
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valveff = sum(abs(emcoeff(:,7).*sin(emcoeff(:,8).*(emcoeff(:,9)-thpowgen')))); 

% if all have valve effects 

 

% OBJECTIVE FUNCTIONS 

emission = 

sum(emcoeff(:,2)+emcoeff(:,3).*thpowgen'/100+emcoeff(:,4).*(thpowgen.^2/10

0^2)'... 

     +emcoeff(:,5).*exp(emcoeff(:,6).*thpowgen'/100)); 

 

ploss = sum(result.branch(:,14)+result.branch(:,16)); 

 

fuelvlvcost = thgencost+valveff; 

cumcost = fuelvlvcost+wgencost+sgencost; 

error = [Qerr,VIerr,Serr,PGSerr]; 

if Qerr~=0 

    PF1=1000; 

else, PF1=0; 

end 

if VIerr~=0 

    PF2=1000; 

else, PF2=0; 

end 

if Serr~=0 

    PF3=1000; 

else, PF3=0; 

end 

if PGSerr~=0 

    PF4=1000; 

else, PF4=0; 

end 

f1 = ploss+PF1+PF2+PF3+PF4; % CASE 1: fuel cost only 

% f1 = cumcost+(Ctax*emission)+PF1+PF2+PF3+PF4; % CASE 2: 

fuelcost+carbon tax 
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• pflow_plot.m 

 

function [f1,error,result] = pflow_plot(x) 

 

global VD PGS emission ploss VI scale shape fuelvlvcost Qgen mcarlo SP1 

wgencost sgencost nbins cumcost 

%x = [27.0699  42.9420  10.0000  36.2679  38.0055  

1.0720  1.0570  1.0348  1.0396  1.0982  1.0556]; 

%x = [20.58 60 35 60 60 1.0543 1.04764 1.03343 1.04372 1.0802 1.07762]; 

%x = [62.84 50 24.64 40 40 1.0591 1.05273 1.03364 1.0355 1.071 1.08075]; 

 

% scale = [9 10 11]; % Enter shape parameters of 3 windfarms for Weibull dist 

% shape = [2 2 2]; % Enter shape parameters of 3 windfarms for Weibull dist 

NT = [25 20]; % No. of turbines in the 2 farms 

Vin = 3; Vout = 25; Vr = 16; Pr = 3; % Cut-in, cut-out, rated speed and rated 

power of turbine 

Ctax = 20; % Carbon tax $/ton 

 

data = loadcase(case30); 

data.gen(2:6,2) = x(1:5); 

data.gen(1:6,6) = x(6:11); 

 

mpopt = mpoption('pf.enforce_q_lims',2,'verbose',0,'out.all',0); 

result = runpf(data,mpopt); 

 

thpowgen = [result.gen(1,2),x(1),x(3)]; 

%thpowgen = [94.7753,x(1),x(3)]; 

thgencoeff = vertcat(data.gencost(1:2,5:7),data.gencost(4,5:7)); 

 

thgencost = 

sum(thgencoeff(:,1)+thgencoeff(:,2).*thpowgen'+thgencoeff(:,3).*(thpowgen.^2

)'); % thermal generator cost 

 

%Find wind generator related parameters 

%windgen parameter sl no. bus costcoeff 

wgenpar = [1   5   1.60; 

           2   11  1.75]; 

Crwj = 3; Cpwj = 1.5; % wind power penalty and reserve cost coefficients 

schwpow = [x(2),x(4)]'; 

 

%stochastic wind power cost 

%meanwpow = [26;30]; wp = 35; 

Prw0 = 1-exp(-(Vin./scale).^shape)+exp(-(Vout./scale).^shape); 

Prwwr = exp(-(Vr./scale).^shape)-exp(-(Vout./scale).^shape); 
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count1 = 1; 

wovest = zeros(); wundest = zeros(); 

 

for ii = 1:2 

    Prww1 = (shape(ii)*(Vr-Vin))/((scale(ii)^shape(ii))*(NT(ii)*Pr)); 

    Prww = @(wp)((schwpow(ii)-wp)*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii)))); 

    wovest2 = integral(Prww,0,schwpow(ii),'ArrayValued',true); 

    wovest(count1) = schwpow(ii)*Prw0(ii)*Crwj+Crwj*wovest2; 

 

    Prww = @(wp)((wp-schwpow(ii))*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii)))); 

    wundest2 = integral(Prww,schwpow(ii),NT(ii)*Pr,'ArrayValued',true); 

    wundest(count1) = (NT(ii)*Pr-

schwpow(ii))*Prwwr(ii)*Cpwj+Cpwj*wundest2; 

    count1 = count1+1; 

end 

 

wgencost = sum(wgenpar(:,3).*schwpow)+sum(wovest)+sum(wundest); % 

wind generator cost 

 

%solargen parameter sl no. bus costcoeff 

sgenpar = [1   13  1.60]; 

Crsj = 3; % Reserve cost for solar power overestimation ($/MW) 

Cpsj = 1.5; % Penalty cost for solar power underestimation ($/MW) 

schspow = x(5); % solar generator schedule power 

 

% Segregate over and underestimated power on the power histogram 

 

[histy1,histx1] = hist(SP1,nbins); 

 

Lowind1 = histx1<schspow; 

Highind1 = histx1>schspow; 

allP1und = schspow-histx1(histx1<schspow); 

allP1over = histx1(histx1>schspow)-schspow; 

ProbP1und = histy1(Lowind1)./mcarlo; 

ProbP1over = histy1(Highind1)./mcarlo; 

 

% Finding under and over estimation cost 

C1und = sum(Crsj*(ProbP1und.*allP1und)); 

C1over = sum(Cpsj*(ProbP1over.*allP1over)); 

sovundcost = [C1und,C1over]; 
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sgencost = sum(sgenpar(:,3).*schspow)+sum(sovundcost); % solar generator 

cost 

 

%Constraint finding  

Vmax = data.bus(:,12); 

Vmin = data.bus(:,13); 

genbus = data.gen(:,1); 

 

Qmax = data.gen(:,4)/data.baseMVA; 

Qmin = data.gen(:,5)/data.baseMVA; 

Qgen = result.gen(:,3); 

QG = result.gen(:,3)/data.baseMVA; 

 

PGSmax = data.gen(1,9); 

PGSmin = data.gen(1,10); 

PGS = result.gen(1,2); 

PGSerr = (PGS<PGSmin)*(abs(PGSmin-PGS)/(PGSmax-

PGSmin))+(PGS>PGSmax)*(abs(PGSmax-PGS)/(PGSmax-PGSmin)); 

 

blimit = data.branch(:,6); 

Slimit = sqrt(result.branch(:,14).^2+result.branch(:,15).^2); 

Serr = sum((Slimit>blimit).*abs(blimit-Slimit))/data.baseMVA; 

 

% TO find the error in Qg of gen buses- inequality constraint 

Qerr = sum((QG<Qmin).*(abs(Qmin-QG)./(Qmax-

Qmin))+(QG>Qmax).*(abs(Qmax-QG)./(Qmax-Qmin))); 

% TO find the error in V of load buses-inequality constraint 

VI = result.bus(:,8);  %V of load buses-inequality constraint 

VI(genbus)=[]; 

Vmax(genbus)=[]; 

Vmin(genbus)=[]; 

VIerr = sum((VI<Vmin).*(abs(Vmin-VI)./(Vmax-

Vmin))+(VI>Vmax).*(abs(Vmax-VI)./(Vmax-Vmin))); 

VD = sum(abs(VI-1)); 

 

% Emission : Of thermal generating unit 

% bus_no. alpha beta gama omega miu d e Pmin 

 emcoeff = [ 

  1 0.04091 -0.05554 0.06490 0.000200 6.667 18 0.037 50; 

  2 0.02543 -0.06047 0.05638 0.000500 3.333 16 0.038 20; 

  8 0.05326 -0.03550 0.03380 0.002000 2.000 12 0.045 10]; 

 

% VALVE EFFECT 
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valveff = sum(abs(emcoeff(:,7).*sin(emcoeff(:,8).*(emcoeff(:,9)-thpowgen')))); 

% if all have valve effects 

 

% OBJECTIVE FUNCTIONS 

emission = 

sum(emcoeff(:,2)+emcoeff(:,3).*thpowgen'/100+emcoeff(:,4).*(thpowgen.^2/10

0^2)'... 

     +emcoeff(:,5).*exp(emcoeff(:,6).*thpowgen'/100)); 

 

ploss = sum(result.branch(:,14)+result.branch(:,16)); 

 

fuelvlvcost = thgencost+valveff; 

cumcost = fuelvlvcost+wgencost+sgencost; 

error = [Qerr,VIerr,Serr,PGSerr]; 

if Qerr~=0 

    PF1=1000; 

else, PF1=0; 

end 

if VIerr~=0 

    PF2=1000; 

else, PF2=0; 

end 

if Serr~=0 

    PF3=1000; 

else, PF3=0; 

end 

if PGSerr~=0 

    PF4=1000; 

else, PF4=0; 

end 

 

f1 = ploss+PF1+PF2+PF3+PF4; % CASE 1: fuel cost only 

% f1 = cumcost+(Ctax*emission)+PF1+PF2+PF3+PF4; % CASE 2: 

fuelcost+carbon tax 
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• initialization.m 

 

%_______________________________________________________________

_______________________________ 

%  Moth-Flame Optimization Algorithm (MFO)                                                             

%_______________________________________________________________

________________________________ 

 

% This function creates the first random population of moths 

 

function X=initialization(SearchAgents_no,dim,ub,lb) 

 

Boundary_no= size(ub,2); % numnber of boundaries 

 

% If the boundaries of all variables are equal and user enter a signle 

% number for both ub and lb 

if Boundary_no==1 

    X=rand(SearchAgents_no,dim).*(ub-lb)+lb; 

end 

 

% If each variable has a different lb and ub 

if Boundary_no>1 

    for i=1:dim 

        ub_i=ub(i); 

        lb_i=lb(i); 

        X(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i; 

    end 

end 
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• lognplot.m 

 

%_______________________________________________________________

_______________________________ 

%  Moth-Flame Optimization Algorithm (MFO)                                                             

%_______________________________________________________________

________________________________ 

 

% This function creates the first random population of moths 

 

function X=initialization(SearchAgents_no,dim,ub,lb) 

 

Boundary_no= size(ub,2); % numnber of boundaries 

 

% If the boundaries of all variables are equal and user enter a signle 

% number for both ub and lb 

if Boundary_no==1 

    X=rand(SearchAgents_no,dim).*(ub-lb)+lb; 

end 

 

% If each variable has a different lb and ub 

if Boundary_no>1 

    for i=1:dim 

        ub_i=ub(i); 

        lb_i=lb(i); 

        X(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i; 

    end 

end 
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• weinullplot.m 

 

function weibullplot() 

global scale shape 

scale = [9 10]; % Enter shape parameters of 2 windfarms for Weibull dist 

shape = [2 2]; % Enter shape parameters of 2 windfarms for Weibull dist 

 

W1 = wblrnd(scale(1),shape(1),8000,1); 

figure(1) 

histfit(W1,30,'weibull') 

xlabel('Wind speed (m/s) for wind generator at bus 5') 

ylabel('Frequency') 

legend ('Wind distribution') 

 

W2 = wblrnd(scale(2),shape(2),8000,1); 

figure(2) 

histfit(W2,30,'weibull') 

xlabel('Wind speed (m/s) for wind generator at bus 11') 

ylabel('Frequency') 

legend ('Wind distribution') 
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• boundConstraint.m 

 

function vi = boundConstraint (vi, pop, X_max, X_min) 

 

% if the boundary constraint is violated, set the value to be the middle 

% of the previous value and the bound 

 

 

[NP, D] = size(pop);  % the population size and the problem's dimension 

 

%% check the lower bound 

xl = repmat(X_min, NP, 1); 

pos = vi < xl; 

vi(pos) = (pop(pos) + xl(pos)) / 2; 

 

%% check the upper bound 

xu = repmat(X_max, NP, 1); 

pos = vi > xu; 

vi(pos) = (pop(pos) + xu(pos)) / 2; 
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• case30.m 

 

function mpc = case30 

%CASE30    Power flow data for 30 bus, 6 generator case. 

%   Please see CASEFORMAT for details on the case file format. 

% 

%   Based on data from ... 

%     Alsac, O. & Stott, B., "Optimal Load Flow with Steady State Security", 

%     IEEE Transactions on Power Apparatus and Systems, Vol. PAS 93, No. 3, 

%     1974, pp. 745-751. 

%   ... with branch parameters rounded to nearest 0.01, shunt values divided 

%   by 100 and shunt on bus 10 moved to bus 5, load at bus 5 zeroed out. 

%   Generator locations, costs and limits and bus areas were taken from ... 

%     Ferrero, R.W., Shahidehpour, S.M., Ramesh, V.C., "Transaction analysis 

%     in deregulated power systems using game theory", IEEE Transactions on 

%     Power Systems, Vol. 12, No. 3, Aug 1997, pp. 1340-1347. 

%   Generator Q limits were derived from Alsac & Stott, using their Pmax 

%   capacities. V limits and line |S| limits taken from Alsac & Stott. 

 

%   MATPOWER 

 

%% MATPOWER Case Format : Version 2 

mpc.version = '2'; 

 

%%-----  Power Flow Data  -----%% 

%% system MVA base 

mpc.baseMVA = 100; 

 

%% bus data 

% bus_i type Pd Qd Gs Bs area Vm Va

 baseKV zone Vmax Vmin 

mpc.bus = [ 

 1 3 0       0       0 0 1 1 0 135     1

 1.1  0.95; 

 2 2 21.7 12.7 0 0 1 1 0 135     

1 1.1     0.95; 

 3 1 2.4     1.2     0 0 1 1 0 135     1

 1.05 0.95; 

 4 1 7.6     1.6     0 0 1 1 0 135     1

 1.05 0.95; 

 5 2 94.2    19      0 0.19 1 1 0 135     1

 1.1 0.95; 

 6 1 0       0       0   0 1 1 0 135     1

 1.05 0.95; 
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 7 1 22.8 10.9 0 0 1 1 0 135     

1 1.05 0.95; 

 8 2 30      30      0 0 1 1 0 135     1

 1.10 0.95; 

 9 1 0       0       0 0 1 1 0 135     1

 1.05 0.95; 

 10 1 5.8     2       0 0 3 1 0 135     1

 1.05 0.95; 

 11 2 0       0       0 0 1 1 0 135     1

 1.10 0.95; 

 12 1 11.2 7.5     0 0 2 1 0 135     

1 1.05 0.95; 

 13 2 0       0       0 0 2 1 0 135     1

 1.10    0.95; 

 14 1 6.2     1.6     0 0 2 1 0 135     1

 1.05 0.95; 

 15 1 8.2     2.5     0 0 2 1 0 135     1

 1.05 0.95; 

 16 1 3.5     1.8     0 0 2 1 0 135     1

 1.05 0.95; 

 17 1 9       5.8     0 0 2 1 0 135     1

 1.05 0.95; 

 18 1 3.2     0.9     0 0 2 1 0 135     1

 1.05 0.95; 

 19 1 9.5     3.4     0 0 2 1 0 135     1

 1.05 0.95; 

 20 1 2.2     0.7     0 0 2 1 0 135     1

 1.05 0.95; 

 21 1 17.5 11.2 0 0 3 1 0 135     

1 1.05 0.95; 

 22 1 0       0       0 0 3 1 0 135     1

 1.05    0.95; 

 23 1 3.2     1.6     0 0 2 1 0 135     1

 1.05     0.95; 

 24 1 8.7     6.7     0 0.04 3 1 0 135     1

 1.05 0.95; 

 25 1 0       0       0 0 3 1 0 135     1

 1.05 0.95; 

 26 1 3.5     2.3     0 0 3 1 0 135     1

 1.05 0.95; 

 27 1 0       0       0 0 3 1 0 135     1

 1.05    0.95; 

 28 1 0       0       0 0 1 1 0 135     1

 1.05 0.95; 
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 29 1 2.4     0.9     0 0 3 1 0 135     1

 1.05 0.95; 

 30 1 10.6 1.9     0 0 3 1 0 135     

1 1.05 0.95; 

]; 

 

%% generator data 

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin

 Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max

 ramp_agc ramp_10 ramp_30 ramp_q apf 

mpc.gen = [ 

 1    99.211     -3.99 150.0 -20     1.0     100 1 140 50 0 

0 0 0 0 0 0 0 0 0; 

 2    80.00      50.0 60.0    -20     1.0     100 1 80 20 0 

0 0 0 0 0 0 0 0 0; 

 5    50.00      37.0 35.0  -30  1.0     100 1 60 10 0 

0 0 0 0 0 0 0 0 0; 

 8    20.00      37.3 40.0    -15  1.0  100 1 35 10 0 

0 0 0 0 0 0 0 0 0; 

    11   20.00      37.3 30.0   -25  1.0  100 1 60 10 0 0 0 0 0 

0 0 0 0 0; 

    13   20.00      37.3 25.0   -20  1.0  100 1 60 10 0 0 0 0 0 

0 0 0 0 0; 

]; 

 

%% branch data 

% fbus tbus r x b rateA rateB rateC ratio angle

 status angminangmax 

mpc.branch = [ 

1 2 0.0192 0.0575 0.0528 130 130 130 0 0 1

 -360 360; 

1 3 0.0452 0.1652 0.0408 130 130 130 0 0 1

 -360 360; 

2 4 0.057 0.1737 0.0368 65 65 65 0 0 1

 -360 360; 

3 4 0.0132 0.0379 0.0084 130 130 130 0 0 1

 -360 360; 

2 5 0.0472 0.1983 0.0418 130 130 130 0 0 1

 -360 360; 

2 6 0.0581 0.1763 0.0374 65 65 65 0 0 1

 -360 360; 

4 6 0.0119 0.0414 0.009 90 90 90 0 0 1

 -360 360; 
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5 7 0.046 0.116 0.0204 70 70 70 0 0 1

 -360 360; 

6 7 0.0267 0.082 0.017 130 130 130 0 0 1

 -360 360; 

6 8 0.012 0.042 0.009 32 32 32 0 0 1

 -360 360; 

6 9 0.00 0.208 0.00 65 65 65 0 0 1

 -360 360; 

6 10 0.00 0.556 0.00 32 32 32 0 0 1

 -360 360; 

9 11 0.00 0.208 0.00 65 65 65 0 0 1

 -360 360; 

9 10 0.00 0.11 0.00 65 65 65 0 0 1

 -360 360; 

4 12 0.00 0.256 0.00 65 65 65 0 0 1

 -360 360; 

12 13 0.00 0.14 0.00 65 65 65 0 0 1

 -360 360; 

12 14 0.1231 0.2559 0.00 32 32 32 0 0 1

 -360 360; 

12 15 0.0662 0.1304 0.00 32 32 32 0 0 1

 -360 360; 

12 16 0.0945 0.1987 0.00 32 32 32 0 0 1

 -360 360; 

14 15 0.221 0.1997 0.00 16 16 16 0 0 1

 -360 360; 

16 17 0.0524 0.1923 0.00 16 16 16 0 0 1

 -360 360; 

15 18 0.1073 0.2185 0.00 16 16 16 0 0 1

 -360 360; 

18 19 0.0639 0.1292 0.00 16 16 16 0 0 1

 -360 360; 

19 20 0.034 0.068 0.00 32 32 32 0 0 1

 -360 360; 

10 20 0.0936 0.209 0.00 32 32 32 0 0 1

 -360 360; 

10 17 0.0324 0.0845 0.00 32 32 32 0 0 1

 -360 360; 

10 21 0.0348 0.0749 0.00 32 32 32 0 0 1

 -360 360; 

10 22 0.0727 0.1499 0.00 32 32 32 0 0 1

 -360 360; 

21 22 0.0116 0.0236 0.00 32 32 32 0 0 1

 -360 360; 
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15 23 0.10 0.202 0.00 16 16 16 0 0 1

 -360 360; 

22 24 0.115 0.179 0.00 16 16 16 0 0 1

 -360 360; 

23 24 0.132 0.27 0.00 16 16 16 0 0 1

 -360 360; 

24 25 0.1885 0.3292 0.00 16 16 16 0 0 1

 -360 360; 

25 26 0.2544 0.38 0.00 16 16 16 0 0 1

 -360 360; 

25 27 0.1093 0.2087 0.00 16 16 16 0 0 1

 -360 360; 

28 27 0.00 0.396 0.00 65 65 65 0 0 1

 -360 360; 

27 29 0.2198 0.4153 0.00 16 16 16 0 0 1

 -360 360; 

27 30 0.3202 0.6027 0.00 16 16 16 0 0 1

 -360 360; 

29 30 0.2399 0.4533 0.00 16 16 16 0 0 1

 -360 360; 

8 28 0.0636 0.20 0.0428 32 32 32 0 0 1

 -360 360; 

6 28 0.0169 0.0599 0.013 32 32 32 0 0 1

 -360 360; 

]; 

 

%%-----  OPF Data  -----%% 

%% generator cost data 

% 1 startup shutdown n x1 y1 ... xn yn 

% 2 startup shutdown n c(n-1) ... c0 

mpc.gencost = [ 

 2 0 0 3 0.0     2.00 0.00375; 

 2 0 0 3 0.0     1.75 0.0175; 

 2 0 0 3 0.0     3.00 0.025; 

 2 0 0 3 0.0     3.25 0.00834; 

 2 0 0 3 0.0     3.00 0.025; 

 2 0 0 3 0.0  3.00 0.025; 

]; 


