

OPTIMAL POWER FLOW SOLUTION WITH

STOCHASTIC RENEWABLE ENERGIES USING

NATURE INSPIRED ALGORITHM

ABDUL MU’IZ ZULFADLI BIN AB WAHAB

B.ENG (HONS.) ELECTRICAL ENGINEERING

(POWER SYSTEM)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : ABDUL MU’IZ ZULFADLI BIN AB WAHAB

Date of Birth : 23 SEPTEMBER 1997

Title : OPTIMAL POWER FLOW SOLUTION WITH STOCHASTIC

RENEWABLE ENERGIES USING NATURE INSPIRED

ALGORITHM

Academic Session : SEMESTER 1 ACADEMIC SESSION 2021/2022

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

970923-11-5373

Date: 13 February 2022

 (Supervisor’s Signature)

Assoc. Prof. Dr. Mohd Herwan Bin

Sulaiman

Date: 13February 2022

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Electrical

Engineering (Power System).

 (Supervisor’s Signature)

Full Name : Assoc. Prof. Dr. Mohd Herwan Bin Sulaiman

Position :

Date :

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : Abdul Mu’iz Zulfadli bin Ab Wahab

ID Number : Ec18091

Date : 13 February 2022

OPTIMAL POWER FLOW SOLUTION WITH STOCHASTIC RENEWABLE

ENERGIES USING NATURE INSPIRED ALGORITHM

ABDUL MU’IZ ZULFADLI BIN AB WAHAB

Thesis submitted in fulfillment of the requirements

for the award of the

B.Eng (Hons.) Electrical Engineering (Power System)

Faculty of Electrical & Electronics Engineering

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2022

ii

ACKNOWLEDGEMENTS

All praise to the almighty God with His blesses and chances for me as I can

finish this project and thesis writing in order for me to finish my Bachelor in Electrical

Engineering.

In this opportunity, I would like to give a big gratitude and thank to my beloved

parent. A thousand of thanks for both of you that support me without hesitate until I can

finish my project. Their moral support gives me hope and push me to exceed my

boundary in making this thesis happen.

Also, I would like to thank and give my gratefulness for my supervisor,

Associate Professor Dr. Mohd Herwan Bin Sulaiman who taught me and lead me until I

can successfully finish the project given in the meantime. His guidelines based on his

experience in researching skills and knowledge help me a lot in doing this project and

writing this thesis.

My next gratitude will be for my Academic Advisor, Ts. Dr. Norazlianie Binti

Sazali as she helps me a lot during my ups and downs while finishing this project. Her

supportive character always calms me and help me in making good decisions

throughout this project development. Not to forget all staff in College in Engineering,

specifically the Department of Electrical Engineering that gives their knowledge and

experience to makes me understands more about my project.

To my friends who is together with me throughout this final year project, our

sleepless night, our joy and cry. From the bottom of my heart, I would like to thank all

of you for the support and encourage to me, lets pray for our best in future.

iii

ABSTRAK

Thesis ini menerangkan penggunaan algoritma Moth Flame Optimization

(MFO) untuk menyelesaikan aliran kuasa optimum sebagai masalah pengoptimuman

objektif dalam pengendalian dan kawalan sistem kuasa. Memandangkan kesan

pencemaran alam sekitar daripada loji kuasa bahan api fosil, aliran kuasa optimum yang

meminimumkan hanya kos keseluruhan bahan api nampaknya tidak lagi relevan untuk

dilihat sebagai kekangan objektif tunggal. Kaedah pengoptimuman, yang berdasarkan

model statistik untuk menyelesaikan aliran kuasa optimum dan masalah, hendaklah

ditakrifkan sebagai menyelesaikan masalah dengan satu fungsi objektif yang sama.

Menggunakan persamaan yang berkaitan, yang tidak melanggar sistem api rama-rama

yang telah dicipta sebagai asasnya, simulasi akan dijalankan untuk beberapa lelaran,

dan selepas melengkapkan lelaran, simulasi akan mencetak keluaran yang paling

optimum. hasil, dan simulasi ini mesti dijalankan beberapa kali untuk mencari output

yang mantap untuk pengumpulan data. Kaedah ini telah digunakan pada tiga sistem

penjanaan yang berbeza dengan keadaan beban yang berbeza-beza. Keputusan yang

diperoleh menggunakan pendekatan yang dicadangkan adalah berkaitan dengan

pendekatan lain yang dibincangkan dalam tinjauan literatur. Menjelang akhir

penyelidikan ini, algoritma ini harus ditunjukkan sebagai salah satu sistem yang mudah

digunakan dan mampu mencari penyelesaian optimum hampir global dengan

penumpuan dan prestasi yang ketara jika dibandingkan dengan algoritma lain.

iv

ABSTRACT

The use of the Moth Flame Optimization (MFO) algorithm to solve optimal

power flow as an objective optimization problem in power system operation and control

is described in this thesis. Given the environmental consequences of pollution from

fossil-fueled power plants, the optimal power flow that minimises only the overall cost

of fuel appears to be no longer relevant as a single objective constraint. The

optimization method, which is based on statistical models to solve optimal power flow

and problems, shall be defined as a method for solving problems with a single identical

objective function. Using the relevant equation, which is not violating the moth flame's

system that has been developed as their base, the testing will run for a number of

iterations, and after achieving the iterations, the testing will print out the output which is

at their best optimal outcome, and this testing must run for a number of times to find the

steady output for data collection. This method was tested on three different generation

systems under varying load conditions. The results obtained using the proposed

approach are comparable to those obtained using the other approaches discussed in the

literature review. By the end of this study, this algorithm should have been

demonstrated to be a process that is simple to use and capable of searching for a near-

global optimal solution with significant convergence and effectiveness when compared

to other algorithms.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF EQUATION x

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statement 2

1.3 Objective Of Project 3

1.4 Scope of project 3

1.5 Thesis Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Moth-Flame Optimization (MFO) 5

2.2.1 The Biological Basis of the Moth-Flame Optimization Algorithm 5

2.2.2 The Moth-Flame Optimization Algorithm's Basic Model 6

vi

2.3 Particle Swarm Optimization (PSO) 10

2.4 Cuckoo Search Algorithm (CSA) 11

2.5 Barnacles Mating Optimizer (BMO) 12

2.6 Summary 14

CHAPTER 3 METHODOLOGY 15

3.1 Introduction 15

3.2 Project flowchart 16

3.3 Pseudocode 18

3.4 Project Design 19

3.5 Project Instrument 19

3.6 Scope of Work 19

3.7 Optimal Power Flow Problem Formulation 21

3.7.1 Cost of generation minimization 21

3.7.2 Loss minimization 24

3.7.3 Voltage deviation minimization 25

3.7.4 Generation and emission cost minimization 25

3.7.5 Constraints 25

3.8 Summary 27

CHAPTER 4 RESULTS AND DISCUSSION 28

4.1 Introduction 28

4.2 Result 28

4.2.1 Cost minimization 30

4.2.2 Loss minimization 31

4.2.3 Voltage load bus 33

vii

4.3 Discussion 34

4.4 Summary 35

CHAPTER 5 CONCLUSION 36

5.1 Conclusion 36

REFERENCES 37

APPENDIX A 40

APPENDIX B 41

viii

LIST OF TABLES

Table 3.1 Summary of IEEE-30 bus system 20

Table 4.1 Cost and emission of coefficients for modified IEEE-30 bus 28

Table 4.2 PDF parameter of solar PV unit and wind power 29

Table 4.3 Statistical result for case 1 30

Table 4.4 Statistical result for case 2 30

Table 4.5 Statistical result for case 1 31

Table 4.6 Statistical result for case 2 31

Table 4.7 Result for voltage profiles of load bus for case 1 and case 2 33

ix

LIST OF FIGURES

Figure 2.1 Spiral flight path of moths near point light source 6

Figure 2.2 PSO algorithm 11

Figure 3.1 Project flowchart 17

Figure 3.2 Modified of IEEE-30 bus system 21

Figure 4.1 Solar irradiance distrinution for solar PV unit at bus 13 29

Figure 4.2 Real power distribution for solar PV at bus 13 30

Figure 4.3 Boxplot cost minimization for 30 runs of simulation for case 1 and case

2 31

Figure 4.4 Boxplot power losses for 30 runs of simulation of cae 1 and case 2 32

Figure 4.5 Voltage profiles of load buses for moth flame algorithms for case 1 and

case 2 34

x

LIST OF EQUATION

2.1 Moth flame matrix population

2.2 Diagrammatical of moth

2.3 Matrices of constant dimension

2.4 Fitness worth vectors

2.5 Mathematical model for flight behaviour of moth flam

2.6 Helical function

2.7 Helical function

2.8 Helical function

2.9 Linear distance

2.10 The algorithm world search capability

2.11 Formula for updating solution

2.12 Flight strategy formula

2.13 Function for CSA

2.14 Matrix form for BMO

2.15 Mathematical form for BMO

2.16 Mathematical form for BMO

2.17 New off spring

2.18 The exploration process

3.1 Total cost of thermal

3.2 Direct cost for solar PV

3.3 Direct cost for wind power

3.4 Reserved cost for solar PV

3.5 Reserve cost for wind power

3.6 Penalty cost for solar PV

3.7 Penalty cost for wind power

3.8 Emission cost

3.9 Cost minimization (without carbon tax)

3.10 Cost minimization (within carbon tax)

3.11 Loss minimization

3.12 Voltage deviation

3.13 Generation and emission cost minimization

3.14 Constraints

3.15 Constraints

3.16 Constraints

xi

3.17 Constraints

3.18 Constraints

3.19 Constraints

3.20 Constraints

3.21 Constraints

3.22 Constraints

3.23 Constraints

xii

LIST OF ABBREVIATIONS

MFO Moth-Flame Optimization

BMO Barnacles Mating Optimizer

PSO Particle Swarm Optimization

CSA Cuckoo Search Algorithm

1

CHAPTER 1

INTRODUCTION

1.1 Project Background

The moth-flame optimization technique is a new algorithm that has recently

received a lot of attention. This new intelligent application was inspired by the

biological behaviour of moths fighting fires in nature. The moth's biological inspiration

is its nocturnal flight method. The moth updates its position by swirling around the

flame. The moth-flame optimization method (MFO) has the advantages of a minimal

number of setup elements, ease of understanding and implementation, and short

convergence time. Nonetheless, the literature shows that the moth-flame optimization

technique still has room for improvement. As a result, a number of scholars have

worked to improve the algorithm in various ways during the previous two years. The

method is also widely used in physics, medicine, economics, and other fields. Finally,

several academics have provided examples of how the method could be applied to real-

world problems in other domains.

The Moth-Flame Optimizer (MFO), a new nature-based optimization method, is

applied to the well-known economic dispatch (ED) problem in power system operation.

ED is a classic optimization problem that has piqued the interest of power engineers and

academics worldwide in order to achieve the lowest cost of power generation while

meeting all constraints and demands. Practical constraints will be considered. MFO, on

the other hand, is a completely new algorithm based on the light-and-fly mechanism.

MFO will be used to determine the best mix of power generation to achieve the lowest

cost while staying within any constraints. This project's goal is to identify the least

amount of power loss while minimising costs.

2

1.2 Problem Statement

One of the foremost tough optimisation issues for power engineers and

researchers to unravel is economic dispatch (ED) problems with sensible constraints.

the matter of disfunction is to seek out the optimum power generation that meets

demand whereas remaining among constraints to attain the bottom doable operative

price. tiny changes in power planning may end up in important cost savings.

Nonetheless, managing the multiple native minimum points within the cost function in

an exceedingly practical ED problem may be a difficult task. As a result, several

techniques and algorithms are enforced in ED to scale back operating costs.

Moth-flame Optimization (MFO), Particle Swarm Optimization (PSO), Cuckoo

Search Algorithm (CSA) and Barnacles Mating Optimizer (BMO) have been proposed

in the literature for solving ED problems.

In the last decade, there has been a flurry of research activity aimed at

developing new algorithms inspired by nature to solve optimization problems. Nature-

inspired algorithms are becoming increasingly popular for a variety of reasons,

including their ease of use, flexibility, lack of complex mathematical derivation, and

ability to avoid the local optima problem. They usually adhere to a simple set of rules

that mimic the behaviour or properties of phenomena or animals. Nature-inspired

algorithms will treat optimization problems as a black box, and the solution will be

found by examining the input and output. As a result, they are extremely adaptable to a

wide range of problems.

Many algorithms, including the popular genetic algorithm (GA), artificial bee

colony (ABC) algorithm, ant colony optimization (ACO), and others, have been

successfully applied to real-world optimization problems. The no free lunch (NFL)

theorem states that no algorithm can perform well in all optimization problems. One can

perform well in one set of problems and then suddenly perform poorly in another set of

problems.

3

1.3 Objective Of Project

The goal of this study is to determine the optimum value output that fulfilled the

OPF function. This goal can be achieved by developing a mathematical equation that

solves the problem of economic load dispatch, combining the two problems into a

single parameter or constraint, and using the Moth Flame Optimization (MFO)

algorithm to solve the problem. At the conclusion of the project, this project should be

able to:

i. To minimize the cost of the power generation that consist of stochastic

solar power generation, thermal generators and wind power generators.

ii. To minimize power losses of the power generation that consist of

stochastic solar power generation, thermal generators and wind power

generators.

1.4 Scope of project

To achieve the objective of this research, there are two scopes that have been

identified:

i. To find the optimal control variables such as power generation,

transformer setting, generator’s voltage, reactive compensation element.

ii. To solve Optimal Power Flow (OPF) in the power system operation and

planning.

4

1.5 Thesis Organization

This thesis is divided into five chapters and appendices, which contain the

following:

The backdrop of the project in general, the description of the problem, the

project goal, the project scopes and limitations, and the thesis organisation are all

covered in Chapter 1.

The literature study presented in Chapter 2 discusses the moth flame

optimization (MFO) and the nature behind it. There is also a review of the literature on

a few algorithms that are used in the optimization area of research.

The study technique utilised to carry out this project, which is moth flame

optimization, is described in Chapter 3.

The findings of moth flame optimization applied to one kind of generation,

which is 30-units, will be presented in Chapter 4. The end outcome is optimum power

flow.

The research effort is summarised in Chapter 5. It will provide a clear

conclusion for this research in order to comprehend the optimization for the area study

based on particular algorithms used for current solutions that should be able to solve the

issue.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

There are numerous papers and journals that have been studied in relation to this

project. The majority of these papers are based on experimental research. This chapter

will explain the background research and literature review on various articles, research

papers, and other similar experiments.

2.2 Moth-Flame Optimization (MFO)

The biological principle and basic model of the moth-flame optimization

algorithm will be introduced in this chapter. The description of the algorithm's basic

situation will be more useful for the operation and implementation of the algorithm's

points for improvement in the following chapter.

2.2.1 The Biological Basis of the Moth-Flame Optimization Algorithm

While flying at night, moths use particularly unique navigational mechanisms to

sustain lateral orientation. The moth flies in this mechanism by having a constant angle

of its light corresponding to the moon. Because the moon is so far away, the moth relies

on this near-parallel light near the surface to keep its path straight. Although lateral

orientation is effective, moths have been observed circling the source repeatedly until

they are exhausted. In fact, the abundance of artificial or natural point light sources

confuses moths. Typically due to the moo productivity of horizontal situating; as it were

when the light source is exceptionally distant absent is it supportive to the moths for

keeping up straight flying development, and there's a part of fake or characteristic light

other than that coming about from moths being exceptionally near to the moon; when

the moths proceed to utilize the light transmitted from a settled point as a light source,

6

disappointment can lead to route and create, as appeared in Figure 2.1, a dangerous

winding flight way.

Figure 2.1 Spiral flight path of moths near point light source

2.2.2 The Moth-Flame Optimization Algorithm's Basic Model

The MFO set of rules assumes the moth to be the candidate way to the problem,

and the variable to be solved is the moth's role in space. Moths can fly in one, two,

three, or even better dimensions with the aid of using converting their role vectors.

Because the MFO set of rules is largely a swarm intelligence optimization set of rules,

the moth populace withinside the matrix may be represented as follows:

𝑀 = [

𝑚1,1 ⋯ 𝑚1,𝑑

⋮ ⋱ ⋮
𝑚𝑛,1 ⋯ 𝑚𝑛,𝑑

] , 2.1

where n is that the variety of moths to be resolved and d is the number of management

variables to be solved (dimension of the optimisation problem). it's conjointly assumed

that there's a corresponding list of fitness price vectors for these moths, that is

diagrammatical as follows:

𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑛

] , 2.2

7

To avoid the algorithmic rule falling into the native optimum value, every

lepidopteran within the MFO algorithm is needed to update its own position solely with

the distinctive flame admire it, that greatly improves the algorithm' world search ability.

As a result, the flame and moth positions in the search house are variable matrices of

constant dimension.

𝐹 = [

𝑓1,1 ⋯ 𝑓1,𝑑

⋮ ⋱ ⋮
𝑓𝑛,1 ⋯ 𝑓𝑛,𝑑

] , 2.3

 It is additionally assumed that there's a corresponding column of fitness worth

vectors for these flames, that is drawn as follows:

𝑂𝐹 = [

𝑂𝐹1

𝑂𝐹2

⋮
𝑂𝐹𝑛

] , 2.4

The update strategy of the variables within the 2 matrices differs throughout the

iteration process. Moths are search people who move through the search space, and also

the flame is that the best position that iteratively optimized lepidopterous insects are

able to do therefore far. every moth is encircled by a corresponding flame, and once a

much better answer is discovered, it's updated to the situation of the flame in the next

generation. The formula will realize the worldwide optimum solution victimization this

mechanism.

The change mechanism for the position of every lepidopteron relative to a flame

are often expressed by the subsequent equation so as to hold out mathematical modeling

for the flight behavior of a moth to a flame:

𝑀𝑖 = 𝑆(𝑀𝑖, 𝐹𝑗), 2.5

where Mi denotes the ith moth, Fj denotes the jth flame, and S denotes the helical

function.

The following conditions are met by this function:

1) The initial point of the helical function is chosen from the moth's initial

space position.

8

2) The spiral's end point corresponds to the current flame's position in space.

3) The spiral's fluctuation range should not be greater than its search space.

The helical function of the moth flight path is defined by the above conditions as

follows:

𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖 ∙ 𝑒𝑏𝑡 ∙ cos(2𝜋𝑡) + 𝐹𝑗 , 2.6

𝑡 = (𝑎 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1, 2.7

𝑎 = −1 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (−
1

𝑇𝑚𝑎𝑥
) , 2.8

where Di is the linear distance between the ith moth and the jth flame, b is the defined

logarithmic helix shape constant, and t is a random number in [-1,1]. The magnitude of t

is represented by Eq (2.7), while the magnitude of an is represented by Eq (2.8), and it

decreases linearly from -1 to -2. The expression of Di is as follows:

𝐷𝑖 = |𝐹𝑗 − 𝑀𝑖|, 2.9

Eq (2.9) simulates the spiral flight of a moth. supported this equation, future

position of the moth' renewal within the epoch is decided by the flame it surrounds.

within the helix function, the constant t (t∈ [−1,1]) represents the space between the

moth' position and therefore the flame in the next optimisation iteration, (t=1)

represents the position nearest to the flame, and (t=−1) represents the position farthest

from the flame. The spiral equation demonstrates that moths will fly round the flame

instead of simply between them, making certain the algorithm' world search and native

development capabilities.

When this model is used, the subsequent characteristics are observed:

1) A moth will converge to any field of flame by at random choosing

parameters t.

2) The closer the moth is to the flame, the smaller the value of t.

3) As the moth gets closer to the flame, its position around the flame is updated

more quickly.

9

The higher than flame position update mechanism will make sure the

lepidopteron' ability to develop domestically round the flame. the most effective answer

found within the current generation is employed because the location of succeeding

generation of moths around the flame to extend the probabilities of finding a far better

solution. As a result, the flame position matrix F typically contains the best solution

presently available. throughout the improvement process, every moth updates its

position supported the F matrix. within the MFO algorithm, the trail constant r is

created of internal random numbers in [r,1], and therefore the variable r decreases

linearly with the quantity of iterations within the improvement iteration method in

[−1,−2]. because the iteration progresses, the moth can approach the flame a lot of

exactly in its corresponding sequence. The flames are reordered supported fitness prices

when every iteration. The moth updates its position in the next generation based on the

flame that corresponds to that in the updated sequence. the primary moth perpetually

updates its position in reference to the flame with the most effective fitness value in the

list, whereas the last moth updates its position in relation to the flame with the worst

fitness value in the list.

If every location update of n moths is predicated on n completely different

locations within the search space, the algorithm' local development capability is

reduced. to deal with this issue, associate accommodative mechanism for the amount of

flames is proposed, permitting the number of flames to be reduced adaptively

throughout the unvarying process, equalization the algorithm' world search capability

and native development capability in the search space. the subsequent is that the

formula:

𝑓𝑙𝑎𝑚𝑒𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 1 ∗
𝑁 − 1

𝑇
) , 2.10

where l represents the present iteration variety, N the initial maximum number of

flames set, and T the utmost number of iterations set Simultaneously, thanks to flame

reduction, the flame insect resembling the reduced flame within the sequence updates

its position in every generation supported the flame with the worst current fitness value.

10

2.3 Particle Swarm Optimization (PSO)

Several studies on the social behaviour of animal teams were developed within

the early 1990s. These studies disclosed that some animals in a very specific group,

particularly birds and fishes, are ready to share data among themselves, and this ability

provides these animals with a major survival advantage. impressed by these works,

Kennedy and Eberhart planned the PSO rule in 1995, a metaheuristic algorithm

appropriate for optimising nonlinear continuous functions. The algorithm was inspired

by the idea of swarm intelligence, that is usually seen in animal groups akin to flocks

and shoals.

A discussion on flock behaviour is given to elucidate however the PSO

impressed the formulation of Associate in Nursing improvement rule to resolve

advanced mathematical downsides. A swarm of birds flying over a location should

realize some extent to land, and decisive wherever the whole swarm ought to land may

be a complex problem as a result of it depends on many factors, as well as increasing

the supply of food and minimising the danger of predators' existence. during this

context, the birds' movement may be understood as a choreography; the birds move

synchronously for a amount of your time till the most effective place to land is known

and also the entire flock lands at once.

In the given example, the flock moves only when all of the swarm members can

share information; otherwise, each animal will more than likely land at a different point

and at a different time. According to the animal social behaviour studies described

earlier in this study, all birds in a swarm looking for a good place to land can know that

the best position until it is discovered by one of the swarm's members. As a result, each

swarm member helps to balance their individual and swarm understanding experiences,

which is referred to as social knowledge

The described problem of determining the best landing spot includes an

optimization problem. In order to maximise the survival conditions of its members, the

flock must identify the best point, such as latitude and longitude. To accomplish this,

each bird flies around searching for and assessing different points while employing

11

several surviving criteria at the same time. Each of those has the advantage of knowing

where the best location point is until it is discovered by the entire swarm.

Kennedy and Eberhart proposed an algorithm called PSO that could mimic the

social behaviour of birds, which provides them with significant survival advantages

when solving the problem of finding a safe place to land. The algorithm's inertial

version, also known as the classical version, was proposed in 1995. Since then, other

variations of the classical formulation have been proposed, such as the linear-decreasing

inertia weight, the constriction factor weight, the dynamic inertia, and maximum

velocity reduction, in addition to hybrid models or even quantum inspired approach

optimization techniques that can be applied to PSO.

Figure 2.2 PSO algorithm

2.4 Cuckoo Search Algorithm (CSA)

In the wild, cuckoos look for suitable nests at random. To simulate the cuckoo

reproductive process, we propose three idealised rules:

1) A solution is an egg for the cuckoos. The cuckoo lays one egg at a time and

then chooses a nest at random to place the egg in.

2) In each generation, the cuckoos find numerous nests in which to lay their

eggs. Some nests contain high-quality or satisfactory solutions, which are

included in the next iteration.

12

3) The total number of nests of the host bird is constant, and the host bird has a

chance of identifying the cuckoo eggs ∈(0,1).

The cuckoo's egg represents a new solution in the cuckoo search algorithm, and

that each egg there in nest defines a solution in the cuckoo search algorithm. Subpar

methods have been filled with the better or new solutions in the nest. Because more

than one egg is located in a nest, the algorithm becomes much more complicated

because there are multiple solutions. In this study, however, we only recognise the

much more normal case, where a nest includes one egg. As a result, in the CS

algorithm, all of the particles, including eggs, nests, as well as cuckoos, represent a

solution.

 According to the above spawning behaviour hypothesis, the formula for updating the

solutions in the CS algorithm is as shown in Eq (2.11),

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼⨁𝐿𝑒𝑣𝑦(𝛽), 2.11

 Where α>0 is used to control step size, its value is usually 0.01, 0.1, or 1, depending on

the specific problem. Its value in this paper is 0.1. The term operator refers to entry-

wise multiplications, and the Levy flight strategy formula is shown as Eq (2.12),

𝐿𝑒𝑣𝑦(𝛽) =
𝜑. 𝑢

|𝑣|1/𝛽
, 2.12

Where v ̴ N(0, 1) u ̴ N(0, 1)

𝜑 =

(

 Γ(1 + 𝛽). sin (𝜋. 𝛽/2)

Γ ((
1 + 𝛽

2
) × 𝛽 × 2(𝛽−1)/2)

)

1/𝛽

, 2.13

Where β is a constant, Its value is on interval [1, 2], and it is usually 1.5,ד (•) denotes to

gamma function.

2.5 Barnacles Mating Optimizer (BMO)

Barnacles mating optimizer (BMO) may be a novel bioinspired optimisation

rule impressed by barnacle mating. The simulation optimization method is completed

13

through initialization, selection, and reproduction. the subsequent is a elaborated

description of the mathematical model.

The barnacle population will be expressed within the following matrix throughout the

data format process:

[
𝑥1

1 ⋯ 𝑥1
𝑛

⋮ ⋱ ⋮
𝑥𝑁

1 ⋯ 𝑥𝑁
𝑛
] , 2.14

where N denotes the number of barnacles within the population and n the number of

management variables the oldsters to be mated are chosen haphazardly from the

population in the following choice process. Eqs. (2.15) and (2.16) propose the

mathematical forms.

𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑑 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑁), 2.15

𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑚 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑁), 2.16

During the reproduction process, BMO primarily produces offspring using the

Hardy-Weinberg principle. The barnacle's penis length (pl) is an intriguing fact that

influences the exploitation and exploration of the BMO algorithm. When pl equals 7,

Fig. 1 shows that barnacle #1 can only mate with one of the barnacles #2-#7. The

exploitation process will then begin. Eq. (2.17) is proposed in this case to produce new

offspring from parents.

𝑥𝑖
𝑁_𝑛𝑒𝑤 = 𝑝𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑑

𝑁 + 𝑞𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑚
𝑁 , 2.17

Where p is a random number drawn from the standard normal distribution between [0,

1], q = (1 – p), xNbarnacle_d and xNbarnacle_m are barnacle Dad and Mum variables

chosen in Eq. (2.15), and (2.16). Furthermore, p and q represent the genotype

percentages of Dad and Mum in the new generation. The genotype frequencies p and q

of the parents are used to generate the new offspring. If Barnacle #1 mates with

Barnacles #8-#10, the offspring undergoes the sperm cast process. The exploration

process will then begin. Eq. (2.18) is proposed in this case to produce new offspring

from parents.

𝑥𝑖
𝑛_𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑() × 𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒_𝑚

𝑛 , 2.18

14

Where rand() returns a number between [0, 1]. It should be noted that Eq. (2.18) shows

that the new offspring are produced solely on the basis of Mum. In general, barnacle

positions are updated in each iteration by Eq. (2.17) or Eq. (2.18) to find the best

position (the best solution).

2.6 Summary

At the end of this chapter, the details of moth flame, and its nature which lead to

a new algorithm called moth flame optimization is explained well together with the

system and process of the optimization under this algorithm. Throughout this chapter

also, there is few details explanations for other algorithms which is particle swarm

optimization, barnacles mating optimizer and Cuckoo Search Algorithm (CSA) that will

be used in this project as comparison for their effectiveness compared to the result that

will be obtain by the moth flame optimization.

15

CHAPTER 3

METHODOLOGY

3.1 Introduction

Methodology is a formal, analytical examination of the processes used in the

field of study. This entails conducting a systematic examination of the set of approaches

and concepts identified by the information group. Theory, analytical model, process,

and quantitative or qualitative techniques are common terms.

The methodology approach is not meant to include solutions, and it is also not

the same as the process. Methodology, on the other hand, provides a theoretical

framework for explaining which procedure, collection of methods, or best practices

should be applied to a specific situation, such as the estimation of a specific outcome.

This chapter will present relevant information about the moth flame

optimization algorithm, as well as the equation that will be used to solve optimal power

flow.

16

3.2 Project flowchart

The work sequence is depicted using a flowchart system. This flowchart can be

used as a guide to ensure that the simulation process is carried out correctly. The

procedure requires the user to enter their desired specifications, such as the number of

moths, as well as the maximum iteration and function details data for lower bound,

upper bound, and variable dimension.

As the user specifies, the system will run the simulation and begin the process

outlined in Chapter 2 Part 2.2, without having violated the moth flame's setup that has

been created as their base.

17

Figure 3.1 Project flowchart

START

Set the number of moths and set the

maximum iteration

Get the function details (data for lower bound, upper

bound, variables dimension) and function evaluation

Initialization

Evaluation of objective function (case 1 and 2) and obtain the results from

MATPOWER

Cost Minimization equation:

𝐹1 = () + 𝑤.𝑗

𝑁

𝑗 1

(𝑤 .𝑗) + 𝑤.𝑗(𝑤 .𝑗 − 𝑤𝑎 .𝑗)

+ 𝑤.𝑗(𝑤𝑎 .𝑗 − 𝑤 .𝑗) + ,

𝑁

 1

(,)

+ . (, − 𝑎 ,) + , (𝑎 , − ,)

Cost Minimization (with carbon tax) equation:

𝐹2 = 𝐹1 + 𝑡𝑎𝑥

Stored the results in matrix form

Update position

Variables out of

bound?

Maximum

iteration?

Pegging at the

boundaries

Yes

No

No

Yes

Print the best results

and optimal power

generation

18

3.3 Pseudocode

Pseudocode is an important factor in determining project success. Pseudocode is

an unofficial high-level definition of a computer system or algorithm operating theory.

It employs complex conventions of standard computer language, but it is intended for a

specific human reading and understanding. Pseudocode generally ignores details that

are critical to a system that the computer system recognises from the proposed

algorithm, such as conditional statements, system-specific code, and some

subprocesses. The proposed MFO algorithm's pseudocode is provided below.

Update flame no using Eq. 2.10

OM = FitnessFunction(M);

If iteration == 1

 F = sort(M);

 OF = sort(OM);

else

F = sort(Mt-1, Mt);

F = sort(Mt, Mt-1);

End

For i = 1 : n

 For j = 1 : d

 Update r and t

 Calculate D using Eq. (3.13) with respect to the corresponding moth

 Update M(I,j) using Eqs. Eqs. (3.11) and (3.12) with respect to the

corresponding moth

 end

end

19

3.4 Project Design

This project was created using a statistical method in which the sample taken

from the moth flame only includes a small proportion of the population in the search

area. The samples have already been collected; the process will follow the steps set out

In chapter 2 Part 2.2.

3.5 Project Instrument

This project's instrument is MATLAB software version 2019a, and it is being

completed using a simulation-based method. The device used for this project has an

AMD Ryzen 7 4800H processor with Radeon Graphics 2.90 GHz and 8GB RAM pre-

installed.

3.6 Scope of Work

For this project, there is use 3 source of power that consist of thermal generator,

wind power generator and solar PV unit. This generator source is used to finding the

OPF which is 30-Unit Bus System. Table 1 will show the summary of IEEE-30 bus

system.

20

Table 3.1 Summary of IEEE-30 bus system

Items Quantity Details

Buses 30 -

Branches 41 -

Thermal generators

(TG1, TG2, TG3)

3 Buses: 1, 2 and 8

Wind generators (WG1,

WG2)

2 Buses: 5 and 11

Solar PV unit (SPV) 1 Bus: 13

Control variables 11 -

Load bus voltage range 24 [0.95-1.05] p.u

21

Figure 3.2 Modified of IEEE-30 bus system

3.7 Optimal Power Flow Problem Formulation

The primary goal of OPF is to find the optimal control variable setting in power

system components to minimise the selected objective functions while satisfying all

equality and inequality constraints. To solve OPF for the system consisting of thermal

and stochastic wind solar and wind power generators, two objectives are chosen: (1)

cost of generation minimization and (2) loss minimization.

3.7.1 Cost of generation minimization

3.7.1.1 Thermal units

The total cost of a thermal generating unit, including valve loading effects, is

expressed as FCost:

22

𝐹𝐶𝑜 𝑡() = {𝑎𝑖 + 𝑏𝑖 𝑖 + 𝑐𝑖 𝑖
2 + |𝑑𝑖 ∙ sin[𝑒𝑖 ∙ (𝑖

𝑚𝑖𝑛 − 𝑖)]}, 3.1

𝑁𝑇

𝑖 1

where is the total power output from thermal generators, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, and 𝑒𝑖 are

the cost coefficients of the respective generator 𝑖 with the valve loading effect taken

into account, 𝑖
𝑚𝑖𝑛 is the i-th generator's minimum power setting, and 𝑁 is the

number of thermal generators in the system.

3.7.1.2 Wind power generator and Solar PV unit

Certain conditions, such as the uncertain and intermittent nature of solar and

wind when integrating into the power grid, had to be considered for solar PV power and

wind power. Typically, solar PV farms are owned by private entities that have a power

purchase agreement with the Independent System Operator (ISO). As a result, the costs

of these power generators are classified into three categories: direct, reserved, and

penalty costs.

The following is the direct cost of a solar PV generator:

 𝑆, (𝑆 ,𝑗) = 𝑔𝑆 , 𝑆 , , 3.2

where 𝑔𝑆 , is the direct cost coefficient associated with the k-th solar power plant and

 𝑆 , is the solar power plant's scheduled power.

The following are the direct costs of wind power:

 𝑤.𝑗(𝑤 .𝑗) = 𝑔𝑗 𝑤 .𝑗 , 3.3

where 𝑔𝑗 is direct cost coefficient related to j -th wind power plant and 𝑤 .𝑗 is

scheduled power.

There is a chance that the actual power delivered by the solar farm will be less

than what was estimated. This phenomenon is known as overestimation of power from

uncertain sources, and it occurs when the system operator must spin reserved in order to

ensure continuous supply to customers. The cost of committing the reserved generating

units to meet the overestimated values is known as the reserve cost, and it can be

expressed as follows for solar power generation:

23

 𝑆, (𝑆 , − 𝑆𝑎 ,) = 𝐾 𝑆, (𝑆 , − 𝑆𝑎 ,), 3.4

 = 𝐾 𝑆, ∗ 𝑓 (𝑆𝑎 , < 𝑆 ,) ∗ 𝑆 , − (𝑆𝑎 , < 𝑆 ,) ′

where 𝐾 𝑆, is the reserve cost coefficient for the k-th solar PV plant, 𝑆𝑎 , is the actual

available power from the same plant, 𝑓 (𝑆𝑎 , < 𝑆 ,) is the probability of a solar

power shortage occurrence compared to the scheduled power (𝑆 ,), and (𝑆𝑎 , <

 𝑆 ,) is the expectation of solar PV power less than 𝑆 , .

The following is the reserve cost of wind power:

 𝑤,𝑗(𝑤 ,𝑗 − 𝑤𝑎 ,𝑗) = 𝐾 𝑤,𝑗(𝑤 ,𝑗 − 𝑤𝑎 ,𝑗 3.5

= 𝐾 𝑤 ∫ (𝑤 ,𝑗 − 𝑝𝑤,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

 𝑤𝑠,𝑗

0

where 𝐾 𝑤,𝑗 denotes the reserve cost coefficient for the j-th wind power plant, and

 𝑤𝑎 ,𝑗 denotes the actual available power from the same plant. The wind power

probability density function for the j-th wind power plant is denoted by 𝑓𝑤(𝑝𝑤,𝑗).

In the event that, contrary to the overestimation of power, the actual power

delivered is greater than the estimated values, resulting in surplus power, it must be

catered for by introducing a penalty cost corresponding to the surplus amount of power,

which can be expressed as follows:

 𝑆, (𝑆𝑎 , − 𝑆 ,) = 𝐾 𝑆, (𝑆𝑎 , − 𝑆 ,), 3.6

 = 𝐾 𝑆, ∗ 𝑓 (𝑆𝑎 , > 𝑆 ,) ∗ [(𝑆𝑎 , > 𝑆 , − 𝑆 ,)]

here, 𝐾 𝑆, denotes the penalty cost coefficient for the k-th solar PV plant, 𝑓 (𝑆𝑎 , >

 𝑆 ,) denotes the probability of solar PV power exceeding the scheduled power

(𝑆 ,), and (𝑆𝑎 , > 𝑆 , − 𝑆 ,) denotes the expectation of solar PV power

exceeding 𝑆 , .

24

The following are the penalties for using wind power:

 𝑤,𝑗(𝑤𝑎 ,𝑗 − 𝑤 ,𝑗) = 𝐾 𝑤,𝑗(𝑤𝑎 ,𝑗 − 𝑤 ,𝑗), 3.7

= 𝐾 𝑤,𝑗 ∫ (𝑝𝑤,𝑗 − 𝑤 ,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

 𝑤𝑟,𝑗

 𝑤𝑠,𝑗

where 𝐾 𝑤,𝑗 is the penalty cost coefficient for the j-th wind power plant and 𝑤𝑟,𝑗 is the

rated output power of the same windfarm.

It is well understood that generating power from traditional energy sources

emits harmful gases into the environment. The emission of SOx and NOx increases

with the increase in generated power (in p.u. MW) from thermal power generators, as

shown in Eq (3.8). Emissions in tonnes per hour (t/h) are calculated as follows:

 𝑚𝑖𝑠𝑠𝑖𝑜𝑛, = 𝛼𝑖 + 𝛽𝑖 𝑖 + 𝛾𝑖 𝑖
2

𝑛

𝑖 1

) + 𝜔𝑖𝑒
(𝜇𝑖 𝑇 𝑖) 3.8

As a result, for the first objective function with and without carbon tax, all of the costs

associated with thermal, wind and solar generation discussed above are aggregated and

shown as follows:

Without Carbon tax:

𝐹1 = () + 𝑤,𝑗(𝑤 ,𝑗) + 𝑤,𝑗(𝑤 ,𝑗 − 𝑤𝑎 ,𝑗) + 𝑤,𝑗(𝑤𝑎 ,𝑗 − 𝑤 ,𝑗) 3.9

𝑁

𝑗 1

+ 𝑆, (𝑆 ,) + . (𝑆 , − 𝑆𝑎 ,) + 𝑆. (𝑆𝑎 , − 𝑆 ,)

𝑁

 1

Within Carbon tax:

𝐹2 = 𝐹1 + 𝑡𝑎𝑥 3.10

3.7.2 Loss minimization

The second goal of OPF is to minimise total real power loss in the transmission

system, FLoss, which can be expressed as follows:

25

𝐹𝐿𝑜 = 𝐺𝑖𝑗

𝑛𝑙

𝑗≠𝑖

𝑛𝑙

𝑖 𝑗

[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗(𝛿𝑖 − 𝛿𝑗)], 3.11

where 𝑉𝑖 and 𝑉𝑗 represent the sending and receiving end voltages at bus i and j,

respectively, 𝐺𝑖𝑗 represents the conductance at the transmission line i-j, and nl

represents the number of power transmission lines.

3.7.3 Voltage deviation minimization

The voltage deviation minimization at each bus of the power system network,

𝐹𝑉𝐷 which can be expressed as follows:

𝐹𝑉𝐷 = |𝑉𝐿𝑚 − 1.0|,

𝑛𝐿

𝑚 1

 3.12

where 𝑉𝐿𝑚 denotes the voltage at load bus m and 𝑛𝐿 denotes the number of load buses.

3.7.4 Generation and emission cost minimization

The part that must be considered is the reduction of generation and emission

costs through the imposition of a carbon tax to reduce greenhouse gas emissions, which

can be defined as follows:

𝐹𝐶𝐸 = 𝐹𝐶𝑜 𝑡 + 𝑐𝑡 𝐸𝑚𝑖 𝑖𝑜𝑛 3.13

where 𝑐𝑡 denotes the carbon tax, which is set at $20 per hour ($/h).

3.7.5 Constraints

In order to solve the OPF problem, all feasible solutions must satisfy all equality

and inequality constraints. The power balance equation for real and reactive power must

be satisfied in order to satisfy the equality constraint, which is expressed as follows:

 𝑖 − 𝐷𝑖 − 𝑉𝑖 𝑉𝑗[𝐺𝑖𝑗cos (𝛿𝑖𝑗) + 𝐵𝑖𝑗sin (𝛿𝑖𝑗)] = 0 ∀𝑖 ∈ 𝑛𝐵, 3.14

𝑛𝐵

𝑗 1

26

𝑄 𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 𝑉𝑗[𝐺𝑖𝑗𝑠𝑖𝑛 (𝛿𝑖𝑗) + 𝐵𝑖𝑗𝑐𝑜𝑠 (𝛿𝑖𝑗)] = 0 ∀𝑖 ∈ 𝑛𝐵, 3.15

𝑛𝐵

𝑗 1

where 𝛿𝑖𝑗 is the voltage angle difference between buses i and j, 𝑖 and 𝑄 𝑖 are the real

and reactive power generation at bus (including wind and solar power), 𝐷𝑖 and 𝑄𝐷𝑖 are

the real and reactive load at bus 𝑖 and 𝑛𝐵 is the total number of buses in the system. The

inequality constraints, on the other hand, are the operating limits of the power system

components, which can be represented as follows:

 𝑖
𝑚𝑖𝑛 ≤ 𝑖 ≤ 𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁 , 3.16

 𝑆 ,
𝑚𝑖𝑛 ≤ 𝑆 , ≤ 𝑆 ,

𝑚𝑎𝑥 𝑘 = 1,… ,𝑁 , 3.17

𝑄 𝑖
𝑚𝑖𝑛 ≤ 𝑄 𝑖 ≤ 𝑄 𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁 , 3.18

𝑄𝑆 ,
𝑚𝑖𝑛 ≤ 𝑄𝑆 , ≤ 𝑄𝑆 ,

𝑚𝑎𝑥 𝑘 = 1,… ,𝑁 , 3.19

𝑉 𝑖
𝑚𝑖𝑛 ≤ 𝑉 𝑖 ≤ 𝑉 𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁 , 3.20

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁𝐿𝑜𝑎𝑑, 3.21

𝑄𝐶,
𝑚𝑖𝑛 ≤ 𝑄𝐶, ≤ 𝑄𝐶,

𝑚𝑎𝑥 𝑘 = 1,… ,𝑁𝑄𝐶, 3.22

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 𝑖 = 1,… ,𝑁 , 3.23

The real and reactive power generation limits for thermal, wind power generators, and

solar PV generation are represented by Equations (3.16) and (3.17) and Equations

(3.18) and (3.19), respectively. Equation (3.20) defines the voltage constraints imposed

on generator buses, whereas Equation (3.21) defines the voltage constraints imposed on

load buses, where 𝑁 denotes the number of generators and 𝑁𝐿𝑜𝑎𝑑 denotes the number

of load buses. Equations (3.22) and (3.23) define the injected MVAR limitation and

transformer tap setting, respectively, where 𝑁𝑄𝐶 is the total number of injected MVAR

and 𝑁 is the number of transformers.

27

It is worth noting that all of these constraints are met by employing the power flow

programme (MATPOWER) to ensure that accurate results are obtained throughout the

studies.

3.8 Summary

This chapter presents the overall methodology involved in doing this project,

where the main point is about the project flowchart, pseudocode used, project design,

project instrument, scope of work and optimal power flow problem formulation.

Mathematical process and equation indeed are well explained in this chapter on how

this project will work and what method and strategy is best to be used. Throughout

these methodology chapter, it is best described as the framework for the research where

it contains elements of work, based on the objective and scope of the research. This

chapter intended to elaborate on the theoretical process into simulation process under

certain circumstances and conditions.

28

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter explained about the analyse project of optimal power flow by using

moth flame optimizer algorithm. Result generated by the MATLAB programming tools

to get the result for the best suitable value for algorithm, cost minimization, power

losses power in exposed and proposed with algorithm. This result generated by

MATPOWER and get by using IEEE 30 bus system.

4.2 Result

Table 4.1 show that the cost and emission that setting for the generators (TG1,

TG2 and TG3). And then, table 4.2 show that the PDF parameter of solar PV unit and

wind power. The figure 4.1 and 4.2 shows that the solar irradiance distribution for solar

PV unit at bus 13 and real power distribution for solar PV at bus 13.

Table 4.1 Cost and emission of coefficients for modified IEEE-30 bus

Generator Bus a b c d e 𝛼 𝛽 𝛾 𝜔 𝜇

TG1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 6.667

TG2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333

TG3 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2

29

Table 4.2 PDF parameter of solar PV unit and wind power

Wind power generating plants Solar PV plant

Windfarm# No. of

turbines

Rated

power,

Pwr

(MW)

Weibull

PDF

parameter

Weibull

mean, Mwbl

Rated

power, Psr

(MW)

Lognormal

PDF

parameters

Lognormal

mean, Mlgn

1 (bus 5) 25 75 c = 9

k = 2

v = 7.976

m/s

50 (bus

13)

𝜇 = 6 𝜎

= 0.6

G = 483

W/m2

2 (bus 11) 20 60 c = 10

k = 2

v = 8.862

m/s

Figure 4.1 Solar irradiance distrinution for solar PV unit at bus 13

30

Figure 4.2 Real power distribution for solar PV at bus 13

4.2.1 Cost minimization

Table 4.3 Statistical result for case 1

Algorithm Max Min Mean Std Dev.

MFO 798.4958 791.2366 793.85425 1.354766161

Table 4.4 Statistical result for case 2

Algorithm Max Min Mean Std Dev.

MFO 909.638 878.445 892.02 10.36354

31

Figure 4.3 Boxplot cost minimization for 30 runs of simulation for case 1 and case 2

4.2.2 Loss minimization

Table 4.5 Statistical result for case 1

Algorithm Max Min Mean Std Dev.

MFO 5.9945 5.0609 5.390733 0.1619278

Table 4.6 Statistical result for case 2

Algorithm Max Min Mean Std Dev.

MFO 2.2145 2.0818 2.13809 0.038792

32

Figure 4.4 Boxplot power losses for 30 runs of simulation of cae 1 and case 2

33

4.2.3 Voltage load bus

Table 4.7 Result for voltage profiles of load bus for case 1 and case 2

Voltage(p.u.) case 1Upper LimitLower LimitVoltage (p.u.) case 2

1.05E+00 1.05 0.95 1.05E+00

1.04E+00 1.05 0.95 1.05E+00

1.04E+00 1.05 0.95 1.05E+00

1.04E+00 1.05 0.95 1.04E+00

1.04E+00 1.05 0.95 1.05E+00

1.02E+00 1.05 0.95 1.03E+00

1.03E+00 1.05 0.95 1.04E+00

1.01E+00 1.05 0.95 1.03E+00

1.01E+00 1.05 0.95 1.02E+00

1.02E+00 1.05 0.95 1.03E+00

1.01E+00 1.05 0.95 1.02E+00

9.99E-01 1.05 0.95 1.01E+00

9.97E-01 1.05 0.95 1.01E+00

1.00E+00 1.05 0.95 1.01E+00

1.00E+00 1.05 0.95 1.01E+00

1.00E+00 1.05 0.95 1.01E+00

9.97E-01 1.05 0.95 1.01E+00

9.89E-01 1.05 0.95 9.98E-01

9.92E-01 1.05 0.95 1.00E+00

9.74E-01 1.05 0.95 9.82E-01

1.00E+00 1.05 0.95 1.01E+00

1.04E+00 1.05 0.95 1.04E+00

9.83E-01 1.05 0.95 9.90E-01

9.71E-01 1.05 0.95 9.79E-01

34

Figure 4.5 Voltage profiles of load buses for moth flame algorithms for case 1 and case

2

4.3 Discussion

Minimization of generation cost performs optimization of generation schedule

for all thermal and renewable energy source generator to minimize total generation cost

given by Eq. (3.9). cost coefficient is shown in Table 4.1. All the optimum setting will

be summarized into appendix that consist of all control variable, generator reactive

power, total generation cost and other useful calculated parameter. Power loss and

Voltage deviation calculated by Eq. (3.11) and (3.12).

Based on the table 4.3, the data that we got from the running programme for the

case 1 which is cost minimization without carbon tax used equation from Eq (3.9). For

the cost minimization, we got that the minimum value that can be achieve from running

for 30 time by using MATLAB was 791.2366($/h), the maximum was 798.4958($/h),

mean was 793.85425($/h) and standard deviation was 1.3548. Next, based on table 4.4

for case 2, that use equation from Eq. (3.10) we got that the value for the minimum was

878.4454($/h), maximum was 909.6375($/h), mean was 892.0202($/h) and standard

deviation was 10.363542. As can see, the bit difference between case 1 and case 2

because for the case 1 need to add with carbon tax. For Carbon tax rate, Ctax is assumed

$20/tonne.

35

For the second objective is to minimize power losses of the power generation

that consist of stochastic solar power generation, thermal generators and wind power

generator. This objective use got from the Eq. (3.11). First, based on table 4.5 for the

case 1 which is without carbon tax, we found that the minimum value was 5.0609MW,

maximum was 5.9945MW, mean was 5.390733MW and standard deviation was

0.161927. And then, based on the table 4.6 for the case 2, the minimum value was

2.0818MW, maximum 2.2145MW, mean 2.138093MW and standard deviation was

0.0387925.

Figure (4.2) shows that the result for the load bus voltage profiles for case 1 and

case 2. In optimal power flow problem, constraints on load bus is the one critical thing

as operating voltage of load buses are often found be close their limits. For this research

the lomit need to be maintained within 0.95p.u to 1.05p.u. If the limit can be reach

upper and lower limit, need to give the penalty on the system because of violating the

system. Based on the result, this project success without any violating the system which

is power cant be reach more than or lower than set values. The value that set was 0.95

p.u until 1.05 p.u.

4.4 Summary

This project involved more data as stated in this chapter for the overall data in

finding OPF value. A total of 30 simulations is made for testing the system, comparison

in algorithm and records the obtained data. For data that has been recorded, this project

reviewed and analysed to find the reliable correlation for optimal power flow solution.

In addition, this project aims to study the optimal power flow solution how it

can give different result when it is combined as a new single objective under the name

optimal power flow. From the data that recorded and analysed, researchers found that

the hypothesis of the study can be accepted.

36

CHAPTER 5

CONCLUSION

5.1 Conclusion

In this report, various of data have been analysed for solving the economic

emission load dispatch. This data later being used for calculation on 1 main items,

optimal power flow using the MATLAB programming tools.

The application of the nature inspired algorithm namely Moth Flame

Optimization in solving practical optimal power flow problems has been proposed in

this paper. The possibility and effectiveness of the proposed method BMO was

demonstrated on 30-Unit generating systems. From the simulations that have been

done, it can be seen that BMO shows the result effectively and yet to be compared with

other algorithm to show its effectiveness compared to any other algorithm in solving

optimal power flow. Listed to be outperform most of the other algorithms based on the

previous researches, MFO can obtain minimum operation cost and obtain close results

compared to another algorithm.

Thus, the application of MFO is the best algorithm to solve the OPF problem

compare to another algorithm by using different power sources consist of thermal, win

and solar PV unit.

37

REFERENCES

[1] M. H. Sulaiman, Z. Mustaffa, M. I. M. Rashid, and H. Daniyal, "Economic Dispatch

Solution Using Moth-Flame Optimization Algorithm," MATEC Web Conferences, vol.

214, p. 03007, 2018

[2] G. Zwe-Lee, "Closure to "Discussion of 'Particle swarm optimization to solving the

economic dispatch considering the generator constraints'"," IEEE Transactions on

Power Systems, vol. 19, pp. 2122-2123, 2004

[3] Mohd Herwan Sulaiman, Zuriani Mustaffa, Mohd Mawardi Saari, Ahmad Johari

Mohamad, Mohd Rusllim Mohamed, “Optimal power flow with stochastic solar power

using barnacles mating optimizer” February 2021 DOI: 10.1002/2050- 7038.12858

[4] Seyedali Mirjalili, "Moth-Flame Optimization Algorithm: A Novel Nature-inspired

Heuristic Paradigm" July 2015 Knowledge-Based Systems 89, DOI:

10.1016/j.knosys.2015.07.006

[5] Mohd Herwan Sulaiman, Zuriani Mustaffa, Mohd Mawardi Saari, Ahmad Johari

Mohamad, Hamdan Daniyal, “Barnacles Mating Optimizer: A Bio-Inspired Algorithm

for Solving Optimization Problems” Jume 2018 DOI: 10.1109/SNPD.2018.8441097

[6] C.-C. Kuo, "A novel string structure for economic dispatch problems with practical

constraints," Energy Conversion and Management, vol. 49, pp. 3571-3577, 2008/12/01/

2008

[7] Ning Ai, Bin Wu, Boyu Li, Zhipeng Zhao, “5G heterogeneous network selection and

resource allocation optimization based on cuckoo search algorithm, Computer

Communications”, Volume 168, 2021, Pages 170-177, ISSN 0140-3664,

https://doi.org/10.1016/j.comcom.2020.12.026.

[8] . Zare and T. G. Bolandi, "Modified iteration particle swarm optimization procedure for

economic dispatch solving with non-smooth and non-convex fuel cost function," in 3rd

IET International Conference on Clean Energy and Technology (CEAT) 2014, 2014,

pp. 1-6.

https://doi.org/10.1016/j.comcom.2020.12.026

38

[9] H. W. Dommel, W. F. Tinney, Optimal Power Flow Solutions, IEEE Transactions on

power apparatus and systems, Vol. PAS.87, N°.10, pp.1866-1876, October 1968.

[10] M. Sasson, Non linear Programming Solutions for load flow, minimum loss, and

economic dispatching problems, IEEE trans. Power apparatus and systems, Vol. Pas-

88, N°4, April 1969.

[11] J. Kennedy and R. Eberhart, Particle swarm optimization . In : IEEE Int. Conf on

Neural Networks, Perth, Australia, 1942-1948, 1995.

[12] Cao J, Du W, Wang HF, “Weather-Based Optimal Power Flow With Wind Farms

Integration”, IEEE Transactions on Power Systems, vol.31, no. 4, pp.3073-3081, Jul

2016.

[13] Jadhav HT, Roy R, “Stochastic optimal power flow incorporating offshore wind farm

and electric vehicles”, International Journal of Electrical Power & Energy Systems,

vol.69, pp. 173-187, Jul 2015

[14] R. Fletcher, Practical methods of optimisation, John Willey & Sons, 1986.

[15] Biswas, P. P., Suganthan, P. N., & Amaratunga, G. A. J. (2017, July 4). Optimal

Power Flow Solutions incorporating stochastic wind and solar power. Energy

Conversion and Management. Retrieved February 10, 2022.

[16] Mishra, S., Yateendra Mishra, and S. Vignesh. Security constrained economic dispatch

considering wind energy conversion systems. Power and Energy Society General

Meeting, 2011 IEEE. IEEE, 2011.

[17] Chaib AE, Bouchekara HREH, Mehasni R, Abido MA. Optimal power flow with

emission and non-smooth cost functions using backtracking search optimization

algorithm. Int J Electr Power Energy Syst 2016;81:64–77.

[18] Mohamed AAA, Mohamed YS, El-Gaafary AA, Hemeida AM. Optimal power flow

using moth swarm algorithm. Electric Power Sys Res 2017;142:190–206.

[19] Shi L, Wang C, Yao L, Ni Y, Bazargan M. Optimal power flow solution incorporating

wind power. IEEE Syst J 2012;6(2):233–41.

39

[20] Chen Chun-Lung, Lee Tsung-Ying, Jan Rong-Mow. Optimal wind-thermal

coordination dispatch in isolated power systems with large integration of wind capacity.

Energy Convers Manage 2006;47(18):3456–72.

[21] C S, T A. Optimal power flow using moth swarm algorithm with gravitational search

algorithm considering wind power. Futur Gener Comput Syst. 2019;98:708-715.

[22] Joorabian M, Afzalan E. Optimal power flow under both normal and contingent

operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder

Mead algorithm (HFPSO–NM). Appl Soft Comput. 2014;14:623-633.

[23] Trivedi IN, Jangir P, Parmar SA, Jangir N. Optimal power flow with voltage stability

improvement and loss reduction in power system using moth-flame optimizer. Neural

Comput & Applic. 2018;30(6):1889-1904.

[24] Taher MA, Kamel S, Jurado F, Ebeed M. An improved moth-flame optimization

algorithm for solving optimal power flow problem. Int Trans Electr Energy Syst.

2019;29(3):e2743.

40

APPENDIX A

Table A1 Simulation result for optimization for case 1 and case 2

Control
variables Min Max Case 1 Case 2 Parameters Min Max Case 1 Case 2

P_TG1(MW) 50 140 123.8 50.01 Q_TG1(MVAr) -20 150 25.76 -20

P_TG2(MW) 20 80 31.48 22.14 Q_TG2(MVAr) -20 60 -20 22.19

P_TG3(MW) 10 35 10 35 Q_TG3(MVAr) -15 40 40 37.92

P_ws1(MW) 0 75 45.83 75 Q_ws1(MVAr) -30 35 35 18.13

P_ws2(MW) 0 60 38.97 60 Q_ws2(MVAr) -25 30 18.23 30

P_ss(MW) 0 50 38.77 43.36 Q_ss(MVAr) -20 25 16.67 21.37

V_1(p.u.) 0.95 1.1 1.078 1.054 Total cost ($/h) 796.9648 887.4973

V_2(p.u.) 0.95 1.1 1.052 1.055 Emission (t/h) 0.80746 0.9925

V_5(p.u.) 0.95 1.1 1.044 1.042 Carbon tax ($/h) - 20

V_8(p.u.) 0.95 1.1 1.04 1.051 P_loss(MW) 5.3456 2.11

V_11(p.u.) 0.95 1.1 1.06 1.098 VD (p.u.) 0.455 0.55685

V_13(p.u.) 0.95 1.1 1.046 1.067

41

APPENDIX B

• MFOOPF.m

global nfeval VD PGS emission ploss VI fuelvlvcost Qgen wgencost sgencost

cumcost

format long e;

tic

problem_size = 11;

pop_size = 30;

N = pop_size;

dim = problem_size;

Xmin = [20 0 10 0 0 0.95 0.95 0.95 0.95 0.95 0.95];

Xmax = [80 75 35 60 50 1.1 1.1 1.1 1.1 1.1 1.1];

lb = Xmin;

ub = Xmax;

Max_FES = 24000;

Max_Gen = 100; Max_iteration = Max_Gen; maxrun = 1; runs = maxrun; gn =

4; % gn is the no. of constraints

feval = []; contvar = zeros(maxrun,problem_size);

Re = zeros(maxrun,3); W = zeros(Max_Gen,3);

fobj = @pflow;

% for runs=1:maxrun

 weibullplot(); % for plotting Weibull PDF

 lognplot(); % for plotting lognormal PDF

 fprintf('Run %d',runs);

 nfeval=0;

 %% parameter settings for MFO

%Initialize the positions of moths

Moth_pos=initialization(N,dim,ub,lb);

Convergence_curve=zeros(1,Max_iteration);

 %% Main loop

for gen=1:Max_Gen

Iteration = gen;

 % Number of flames Eq. (3.14) in the paper

 Flame_no=round(N-Iteration*((N-1)/Max_iteration));

42

 for i=1:size(Moth_pos,1)

 % Check if moths go out of the search spaceand bring it back

 Flag4ub=Moth_pos(i,:)>ub;

 Flag4lb=Moth_pos(i,:)<lb;

Moth_pos(i,:)=(Moth_pos(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4l

b;

 % Calculate the fitness of moths

 Moth_fitness(1,i)=fobj(Moth_pos(i,:));

 end

 if Iteration==1

 % Sort the first population of moths

 [fitness_sorted I]=sort(Moth_fitness);

 sorted_population=Moth_pos(I,:);

 % Update the flames

 best_flames=sorted_population;

 best_flame_fitness=fitness_sorted;

 else

 % Sort the moths

 double_population=[previous_population;best_flames];

 double_fitness=[previous_fitness best_flame_fitness];

 [double_fitness_sorted I]=sort(double_fitness);

 double_sorted_population=double_population(I,:);

 fitness_sorted=double_fitness_sorted(1:N);

 sorted_population=double_sorted_population(1:N,:);

 % Update the flames

 best_flames=sorted_population;

 best_flame_fitness=fitness_sorted;

 end

 % Update the position best flame obtained so far

 Best_flame_score=fitness_sorted(1);

 Best_flame_pos=sorted_population(1,:);

 previous_population=Moth_pos;

43

 previous_fitness=Moth_fitness;

 % a linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)

 a=-1+Iteration*((-1)/Max_iteration);

 for i=1:size(Moth_pos,1)

 for j=1:size(Moth_pos,2)

 if i<=Flame_no % Update the position of the moth with respect to its

corresponsing flame

 % D in Eq. (3.13)

 distance_to_flame=abs(sorted_population(i,j)-Moth_pos(i,j));

 b=1;

 t=(a-1)*rand+1;

 % Eq. (3.12)

Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(i,j

);

 end

 if i>Flame_no % Upaate the position of the moth with respct to one

flame

 % Eq. (3.13)

 distance_to_flame=abs(sorted_population(i,j)-Moth_pos(i,j));

 b=1;

 t=(a-1)*rand+1;

 % Eq. (3.12)

Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(Fl

ame_no,j);

 end

 end

 end

 Convergence_curve(Iteration)=Best_flame_score;

 plot(Convergence_curve)

 grid on

44

 % Display the iteration and best optimum obtained so far

 if mod(Iteration,50)==0

 display(['At iteration ', num2str(Iteration), ' the best fitness is ',

num2str(Best_flame_score)]);

 end

 Iteration=Iteration+1;

 end

toc

% Print results

[~,IND] = min(Re(:,1));

% disp('Control Variables');

% fprintf('\t %0.4f',contvar(IND,:));

% Func(contvar(IND,:));

fprintf('\n Swing generator power %0.5f MW',PGS);

fprintf('\n Cumulative voltage drop %0.5f p.u.',VD);

fprintf('\n Emission %0.5f ton/h',emission);

fprintf('\n Real power loss %0.4f MW',ploss);

fprintf('\n Fuelvlvcost %0.4f \n',fuelvlvcost);

fprintf('\n Wind gen cost %0.4f \n',wgencost);

fprintf('\n Solar gen cost %0.4f \n',sgencost);

fprintf('\n Total generation cost %0.4f \n',cumcost);

disp(' Load bus voltage');

fprintf('\t %0.5f',VI);

fprintf('\n Generator reactive power');

fprintf('\t %0.5f',Qgen);

45

• pflow.m

function [f1,error] = pflow(x)

global VD PGS emission ploss VI scale shape fuelvlvcost Qgen mcarlo SP1

wgencost sgencost nbins cumcost

%x = [27.0699 42.9420 10.0000 36.2679 38.0055

1.0720 1.0570 1.0348 1.0396 1.0982 1.0556];

%x = [20.58 60 35 60 60 1.0543 1.04764 1.03343 1.04372 1.0802 1.07762];

%x = [62.84 50 24.64 40 40 1.0591 1.05273 1.03364 1.0355 1.071 1.08075];

% scale = [9 10 11]; % Enter shape parameters of 3 windfarms for Weibull dist

% shape = [2 2 2]; % Enter shape parameters of 3 windfarms for Weibull dist

NT = [25 20]; % No. of turbines in the 2 farms

Vin = 3; Vout = 25; Vr = 16; Pr = 3; % Cut-in, cut-out, rated speed and rated

power of turbine

Ctax = 20; % Carbon tax $/ton

data = loadcase(case30);

data.gen(2:6,2) = x(1:5);

data.gen(1:6,6) = x(6:11);

mpopt = mpoption('pf.enforce_q_lims',2,'verbose',0,'out.all',0);

result = runpf(data,mpopt);

thpowgen = [result.gen(1,2),x(1),x(3)];

%thpowgen = [94.7753,x(1),x(3)];

thgencoeff = vertcat(data.gencost(1:2,5:7),data.gencost(4,5:7));

thgencost =

sum(thgencoeff(:,1)+thgencoeff(:,2).*thpowgen'+thgencoeff(:,3).*(thpowgen.^2

)'); % thermal generator cost

%Find wind generator related parameters

%windgen parameter sl no. bus costcoeff

wgenpar = [1 5 1.60;

 2 11 1.75];

Crwj = 3; Cpwj = 1.5; % wind power penalty and reserve cost coefficients

schwpow = [x(2),x(4)]';

%stochastic wind power cost

%meanwpow = [26;30]; wp = 35;

Prw0 = 1-exp(-(Vin./scale).^shape)+exp(-(Vout./scale).^shape);

Prwwr = exp(-(Vr./scale).^shape)-exp(-(Vout./scale).^shape);

46

count1 = 1;

wovest = zeros(); wundest = zeros();

for ii = 1:2

 Prww1 = (shape(ii)*(Vr-Vin))/((scale(ii)^shape(ii))*(NT(ii)*Pr));

 Prww = @(wp)((schwpow(ii)-wp)*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii))));

 wovest2 = integral(Prww,0,schwpow(ii),'ArrayValued',true);

 wovest(count1) = schwpow(ii)*Prw0(ii)*Crwj+Crwj*wovest2;

 Prww = @(wp)((wp-schwpow(ii))*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii))));

 wundest2 = integral(Prww,schwpow(ii),NT(ii)*Pr,'ArrayValued',true);

 wundest(count1) = (NT(ii)*Pr-

schwpow(ii))*Prwwr(ii)*Cpwj+Cpwj*wundest2;

 count1 = count1+1;

end

wgencost = sum(wgenpar(:,3).*schwpow)+sum(wovest)+sum(wundest); %

wind generator cost

%solargen parameter sl no. bus costcoeff

sgenpar = [1 13 1.60];

Crsj = 3; % Reserve cost for solar power overestimation ($/MW)

Cpsj = 1.5; % Penalty cost for solar power underestimation ($/MW)

schspow = x(5); % solar generator schedule power

% Segregate over and underestimated power on the power histogram

[histy1,histx1] = hist(SP1,nbins);

Lowind1 = histx1<schspow;

Highind1 = histx1>schspow;

allP1und = schspow-histx1(histx1<schspow);

allP1over = histx1(histx1>schspow)-schspow;

ProbP1und = histy1(Lowind1)./mcarlo;

ProbP1over = histy1(Highind1)./mcarlo;

% Finding under and over estimation cost

C1und = sum(Crsj*(ProbP1und.*allP1und));

C1over = sum(Cpsj*(ProbP1over.*allP1over));

sovundcost = [C1und,C1over];

47

sgencost = sum(sgenpar(:,3).*schspow)+sum(sovundcost); % solar generator

cost

%Constraint finding

Vmax = data.bus(:,12);

Vmin = data.bus(:,13);

genbus = data.gen(:,1);

Qmax = data.gen(:,4)/data.baseMVA;

Qmin = data.gen(:,5)/data.baseMVA;

Qgen = result.gen(:,3);

QG = result.gen(:,3)/data.baseMVA;

PGSmax = data.gen(1,9);

PGSmin = data.gen(1,10);

PGS = result.gen(1,2);

PGSerr = (PGS<PGSmin)*(abs(PGSmin-PGS)/(PGSmax-

PGSmin))+(PGS>PGSmax)*(abs(PGSmax-PGS)/(PGSmax-PGSmin));

blimit = data.branch(:,6);

Slimit = sqrt(result.branch(:,14).^2+result.branch(:,15).^2);

Serr = sum((Slimit>blimit).*abs(blimit-Slimit))/data.baseMVA;

% TO find the error in Qg of gen buses- inequality constraint

Qerr = sum((QG<Qmin).*(abs(Qmin-QG)./(Qmax-

Qmin))+(QG>Qmax).*(abs(Qmax-QG)./(Qmax-Qmin)));

% TO find the error in V of load buses-inequality constraint

VI = result.bus(:,8); %V of load buses-inequality constraint

VI(genbus)=[];

Vmax(genbus)=[];

Vmin(genbus)=[];

VIerr = sum((VI<Vmin).*(abs(Vmin-VI)./(Vmax-

Vmin))+(VI>Vmax).*(abs(Vmax-VI)./(Vmax-Vmin)));

VD = sum(abs(VI-1));

% Emission : Of thermal generating unit

% bus_no. alpha beta gama omega miu d e Pmin

 emcoeff = [

 1 0.04091 -0.05554 0.06490 0.000200 6.667 18 0.037 50;

 2 0.02543 -0.06047 0.05638 0.000500 3.333 16 0.038 20;

 8 0.05326 -0.03550 0.03380 0.002000 2.000 12 0.045 10];

% VALVE EFFECT

48

valveff = sum(abs(emcoeff(:,7).*sin(emcoeff(:,8).*(emcoeff(:,9)-thpowgen'))));

% if all have valve effects

% OBJECTIVE FUNCTIONS

emission =

sum(emcoeff(:,2)+emcoeff(:,3).*thpowgen'/100+emcoeff(:,4).*(thpowgen.^2/10

0^2)'...

 +emcoeff(:,5).*exp(emcoeff(:,6).*thpowgen'/100));

ploss = sum(result.branch(:,14)+result.branch(:,16));

fuelvlvcost = thgencost+valveff;

cumcost = fuelvlvcost+wgencost+sgencost;

error = [Qerr,VIerr,Serr,PGSerr];

if Qerr~=0

 PF1=1000;

else, PF1=0;

end

if VIerr~=0

 PF2=1000;

else, PF2=0;

end

if Serr~=0

 PF3=1000;

else, PF3=0;

end

if PGSerr~=0

 PF4=1000;

else, PF4=0;

end

f1 = ploss+PF1+PF2+PF3+PF4; % CASE 1: fuel cost only

% f1 = cumcost+(Ctax*emission)+PF1+PF2+PF3+PF4; % CASE 2:

fuelcost+carbon tax

49

• pflow_plot.m

function [f1,error,result] = pflow_plot(x)

global VD PGS emission ploss VI scale shape fuelvlvcost Qgen mcarlo SP1

wgencost sgencost nbins cumcost

%x = [27.0699 42.9420 10.0000 36.2679 38.0055

1.0720 1.0570 1.0348 1.0396 1.0982 1.0556];

%x = [20.58 60 35 60 60 1.0543 1.04764 1.03343 1.04372 1.0802 1.07762];

%x = [62.84 50 24.64 40 40 1.0591 1.05273 1.03364 1.0355 1.071 1.08075];

% scale = [9 10 11]; % Enter shape parameters of 3 windfarms for Weibull dist

% shape = [2 2 2]; % Enter shape parameters of 3 windfarms for Weibull dist

NT = [25 20]; % No. of turbines in the 2 farms

Vin = 3; Vout = 25; Vr = 16; Pr = 3; % Cut-in, cut-out, rated speed and rated

power of turbine

Ctax = 20; % Carbon tax $/ton

data = loadcase(case30);

data.gen(2:6,2) = x(1:5);

data.gen(1:6,6) = x(6:11);

mpopt = mpoption('pf.enforce_q_lims',2,'verbose',0,'out.all',0);

result = runpf(data,mpopt);

thpowgen = [result.gen(1,2),x(1),x(3)];

%thpowgen = [94.7753,x(1),x(3)];

thgencoeff = vertcat(data.gencost(1:2,5:7),data.gencost(4,5:7));

thgencost =

sum(thgencoeff(:,1)+thgencoeff(:,2).*thpowgen'+thgencoeff(:,3).*(thpowgen.^2

)'); % thermal generator cost

%Find wind generator related parameters

%windgen parameter sl no. bus costcoeff

wgenpar = [1 5 1.60;

 2 11 1.75];

Crwj = 3; Cpwj = 1.5; % wind power penalty and reserve cost coefficients

schwpow = [x(2),x(4)]';

%stochastic wind power cost

%meanwpow = [26;30]; wp = 35;

Prw0 = 1-exp(-(Vin./scale).^shape)+exp(-(Vout./scale).^shape);

Prwwr = exp(-(Vr./scale).^shape)-exp(-(Vout./scale).^shape);

50

count1 = 1;

wovest = zeros(); wundest = zeros();

for ii = 1:2

 Prww1 = (shape(ii)*(Vr-Vin))/((scale(ii)^shape(ii))*(NT(ii)*Pr));

 Prww = @(wp)((schwpow(ii)-wp)*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii))));

 wovest2 = integral(Prww,0,schwpow(ii),'ArrayValued',true);

 wovest(count1) = schwpow(ii)*Prw0(ii)*Crwj+Crwj*wovest2;

 Prww = @(wp)((wp-schwpow(ii))*Prww1*((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))^(shape(ii)-1))*(exp(-((Vin + (wp/(NT(ii)*Pr))*(Vr-

Vin))/scale(ii))^shape(ii))));

 wundest2 = integral(Prww,schwpow(ii),NT(ii)*Pr,'ArrayValued',true);

 wundest(count1) = (NT(ii)*Pr-

schwpow(ii))*Prwwr(ii)*Cpwj+Cpwj*wundest2;

 count1 = count1+1;

end

wgencost = sum(wgenpar(:,3).*schwpow)+sum(wovest)+sum(wundest); %

wind generator cost

%solargen parameter sl no. bus costcoeff

sgenpar = [1 13 1.60];

Crsj = 3; % Reserve cost for solar power overestimation ($/MW)

Cpsj = 1.5; % Penalty cost for solar power underestimation ($/MW)

schspow = x(5); % solar generator schedule power

% Segregate over and underestimated power on the power histogram

[histy1,histx1] = hist(SP1,nbins);

Lowind1 = histx1<schspow;

Highind1 = histx1>schspow;

allP1und = schspow-histx1(histx1<schspow);

allP1over = histx1(histx1>schspow)-schspow;

ProbP1und = histy1(Lowind1)./mcarlo;

ProbP1over = histy1(Highind1)./mcarlo;

% Finding under and over estimation cost

C1und = sum(Crsj*(ProbP1und.*allP1und));

C1over = sum(Cpsj*(ProbP1over.*allP1over));

sovundcost = [C1und,C1over];

51

sgencost = sum(sgenpar(:,3).*schspow)+sum(sovundcost); % solar generator

cost

%Constraint finding

Vmax = data.bus(:,12);

Vmin = data.bus(:,13);

genbus = data.gen(:,1);

Qmax = data.gen(:,4)/data.baseMVA;

Qmin = data.gen(:,5)/data.baseMVA;

Qgen = result.gen(:,3);

QG = result.gen(:,3)/data.baseMVA;

PGSmax = data.gen(1,9);

PGSmin = data.gen(1,10);

PGS = result.gen(1,2);

PGSerr = (PGS<PGSmin)*(abs(PGSmin-PGS)/(PGSmax-

PGSmin))+(PGS>PGSmax)*(abs(PGSmax-PGS)/(PGSmax-PGSmin));

blimit = data.branch(:,6);

Slimit = sqrt(result.branch(:,14).^2+result.branch(:,15).^2);

Serr = sum((Slimit>blimit).*abs(blimit-Slimit))/data.baseMVA;

% TO find the error in Qg of gen buses- inequality constraint

Qerr = sum((QG<Qmin).*(abs(Qmin-QG)./(Qmax-

Qmin))+(QG>Qmax).*(abs(Qmax-QG)./(Qmax-Qmin)));

% TO find the error in V of load buses-inequality constraint

VI = result.bus(:,8); %V of load buses-inequality constraint

VI(genbus)=[];

Vmax(genbus)=[];

Vmin(genbus)=[];

VIerr = sum((VI<Vmin).*(abs(Vmin-VI)./(Vmax-

Vmin))+(VI>Vmax).*(abs(Vmax-VI)./(Vmax-Vmin)));

VD = sum(abs(VI-1));

% Emission : Of thermal generating unit

% bus_no. alpha beta gama omega miu d e Pmin

 emcoeff = [

 1 0.04091 -0.05554 0.06490 0.000200 6.667 18 0.037 50;

 2 0.02543 -0.06047 0.05638 0.000500 3.333 16 0.038 20;

 8 0.05326 -0.03550 0.03380 0.002000 2.000 12 0.045 10];

% VALVE EFFECT

52

valveff = sum(abs(emcoeff(:,7).*sin(emcoeff(:,8).*(emcoeff(:,9)-thpowgen'))));

% if all have valve effects

% OBJECTIVE FUNCTIONS

emission =

sum(emcoeff(:,2)+emcoeff(:,3).*thpowgen'/100+emcoeff(:,4).*(thpowgen.^2/10

0^2)'...

 +emcoeff(:,5).*exp(emcoeff(:,6).*thpowgen'/100));

ploss = sum(result.branch(:,14)+result.branch(:,16));

fuelvlvcost = thgencost+valveff;

cumcost = fuelvlvcost+wgencost+sgencost;

error = [Qerr,VIerr,Serr,PGSerr];

if Qerr~=0

 PF1=1000;

else, PF1=0;

end

if VIerr~=0

 PF2=1000;

else, PF2=0;

end

if Serr~=0

 PF3=1000;

else, PF3=0;

end

if PGSerr~=0

 PF4=1000;

else, PF4=0;

end

f1 = ploss+PF1+PF2+PF3+PF4; % CASE 1: fuel cost only

% f1 = cumcost+(Ctax*emission)+PF1+PF2+PF3+PF4; % CASE 2:

fuelcost+carbon tax

53

• initialization.m

%___

% Moth-Flame Optimization Algorithm (MFO)

%___

% This function creates the first random population of moths

function X=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % numnber of boundaries

% If the boundaries of all variables are equal and user enter a signle

% number for both ub and lb

if Boundary_no==1

 X=rand(SearchAgents_no,dim).*(ub-lb)+lb;

end

% If each variable has a different lb and ub

if Boundary_no>1

 for i=1:dim

 ub_i=ub(i);

 lb_i=lb(i);

 X(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;

 end

end

54

• lognplot.m

%___

% Moth-Flame Optimization Algorithm (MFO)

%___

% This function creates the first random population of moths

function X=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % numnber of boundaries

% If the boundaries of all variables are equal and user enter a signle

% number for both ub and lb

if Boundary_no==1

 X=rand(SearchAgents_no,dim).*(ub-lb)+lb;

end

% If each variable has a different lb and ub

if Boundary_no>1

 for i=1:dim

 ub_i=ub(i);

 lb_i=lb(i);

 X(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;

 end

end

55

• weinullplot.m

function weibullplot()

global scale shape

scale = [9 10]; % Enter shape parameters of 2 windfarms for Weibull dist

shape = [2 2]; % Enter shape parameters of 2 windfarms for Weibull dist

W1 = wblrnd(scale(1),shape(1),8000,1);

figure(1)

histfit(W1,30,'weibull')

xlabel('Wind speed (m/s) for wind generator at bus 5')

ylabel('Frequency')

legend ('Wind distribution')

W2 = wblrnd(scale(2),shape(2),8000,1);

figure(2)

histfit(W2,30,'weibull')

xlabel('Wind speed (m/s) for wind generator at bus 11')

ylabel('Frequency')

legend ('Wind distribution')

56

• boundConstraint.m

function vi = boundConstraint (vi, pop, X_max, X_min)

% if the boundary constraint is violated, set the value to be the middle

% of the previous value and the bound

[NP, D] = size(pop); % the population size and the problem's dimension

%% check the lower bound

xl = repmat(X_min, NP, 1);

pos = vi < xl;

vi(pos) = (pop(pos) + xl(pos)) / 2;

%% check the upper bound

xu = repmat(X_max, NP, 1);

pos = vi > xu;

vi(pos) = (pop(pos) + xu(pos)) / 2;

57

• case30.m

function mpc = case30

%CASE30 Power flow data for 30 bus, 6 generator case.

% Please see CASEFORMAT for details on the case file format.

%

% Based on data from ...

% Alsac, O. & Stott, B., "Optimal Load Flow with Steady State Security",

% IEEE Transactions on Power Apparatus and Systems, Vol. PAS 93, No. 3,

% 1974, pp. 745-751.

% ... with branch parameters rounded to nearest 0.01, shunt values divided

% by 100 and shunt on bus 10 moved to bus 5, load at bus 5 zeroed out.

% Generator locations, costs and limits and bus areas were taken from ...

% Ferrero, R.W., Shahidehpour, S.M., Ramesh, V.C., "Transaction analysis

% in deregulated power systems using game theory", IEEE Transactions on

% Power Systems, Vol. 12, No. 3, Aug 1997, pp. 1340-1347.

% Generator Q limits were derived from Alsac & Stott, using their Pmax

% capacities. V limits and line |S| limits taken from Alsac & Stott.

% MATPOWER

%% MATPOWER Case Format : Version 2

mpc.version = '2';

%%----- Power Flow Data -----%%

%% system MVA base

mpc.baseMVA = 100;

%% bus data

% bus_i type Pd Qd Gs Bs area Vm Va

 baseKV zone Vmax Vmin

mpc.bus = [

 1 3 0 0 0 0 1 1 0 135 1

 1.1 0.95;

 2 2 21.7 12.7 0 0 1 1 0 135

1 1.1 0.95;

 3 1 2.4 1.2 0 0 1 1 0 135 1

 1.05 0.95;

 4 1 7.6 1.6 0 0 1 1 0 135 1

 1.05 0.95;

 5 2 94.2 19 0 0.19 1 1 0 135 1

 1.1 0.95;

 6 1 0 0 0 0 1 1 0 135 1

 1.05 0.95;

58

 7 1 22.8 10.9 0 0 1 1 0 135

1 1.05 0.95;

 8 2 30 30 0 0 1 1 0 135 1

 1.10 0.95;

 9 1 0 0 0 0 1 1 0 135 1

 1.05 0.95;

 10 1 5.8 2 0 0 3 1 0 135 1

 1.05 0.95;

 11 2 0 0 0 0 1 1 0 135 1

 1.10 0.95;

 12 1 11.2 7.5 0 0 2 1 0 135

1 1.05 0.95;

 13 2 0 0 0 0 2 1 0 135 1

 1.10 0.95;

 14 1 6.2 1.6 0 0 2 1 0 135 1

 1.05 0.95;

 15 1 8.2 2.5 0 0 2 1 0 135 1

 1.05 0.95;

 16 1 3.5 1.8 0 0 2 1 0 135 1

 1.05 0.95;

 17 1 9 5.8 0 0 2 1 0 135 1

 1.05 0.95;

 18 1 3.2 0.9 0 0 2 1 0 135 1

 1.05 0.95;

 19 1 9.5 3.4 0 0 2 1 0 135 1

 1.05 0.95;

 20 1 2.2 0.7 0 0 2 1 0 135 1

 1.05 0.95;

 21 1 17.5 11.2 0 0 3 1 0 135

1 1.05 0.95;

 22 1 0 0 0 0 3 1 0 135 1

 1.05 0.95;

 23 1 3.2 1.6 0 0 2 1 0 135 1

 1.05 0.95;

 24 1 8.7 6.7 0 0.04 3 1 0 135 1

 1.05 0.95;

 25 1 0 0 0 0 3 1 0 135 1

 1.05 0.95;

 26 1 3.5 2.3 0 0 3 1 0 135 1

 1.05 0.95;

 27 1 0 0 0 0 3 1 0 135 1

 1.05 0.95;

 28 1 0 0 0 0 1 1 0 135 1

 1.05 0.95;

59

 29 1 2.4 0.9 0 0 3 1 0 135 1

 1.05 0.95;

 30 1 10.6 1.9 0 0 3 1 0 135

1 1.05 0.95;

];

%% generator data

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin

 Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max

 ramp_agc ramp_10 ramp_30 ramp_q apf

mpc.gen = [

 1 99.211 -3.99 150.0 -20 1.0 100 1 140 50 0

0 0 0 0 0 0 0 0 0;

 2 80.00 50.0 60.0 -20 1.0 100 1 80 20 0

0 0 0 0 0 0 0 0 0;

 5 50.00 37.0 35.0 -30 1.0 100 1 60 10 0

0 0 0 0 0 0 0 0 0;

 8 20.00 37.3 40.0 -15 1.0 100 1 35 10 0

0 0 0 0 0 0 0 0 0;

 11 20.00 37.3 30.0 -25 1.0 100 1 60 10 0 0 0 0 0

0 0 0 0 0;

 13 20.00 37.3 25.0 -20 1.0 100 1 60 10 0 0 0 0 0

0 0 0 0 0;

];

%% branch data

% fbus tbus r x b rateA rateB rateC ratio angle

 status angminangmax

mpc.branch = [

1 2 0.0192 0.0575 0.0528 130 130 130 0 0 1

 -360 360;

1 3 0.0452 0.1652 0.0408 130 130 130 0 0 1

 -360 360;

2 4 0.057 0.1737 0.0368 65 65 65 0 0 1

 -360 360;

3 4 0.0132 0.0379 0.0084 130 130 130 0 0 1

 -360 360;

2 5 0.0472 0.1983 0.0418 130 130 130 0 0 1

 -360 360;

2 6 0.0581 0.1763 0.0374 65 65 65 0 0 1

 -360 360;

4 6 0.0119 0.0414 0.009 90 90 90 0 0 1

 -360 360;

60

5 7 0.046 0.116 0.0204 70 70 70 0 0 1

 -360 360;

6 7 0.0267 0.082 0.017 130 130 130 0 0 1

 -360 360;

6 8 0.012 0.042 0.009 32 32 32 0 0 1

 -360 360;

6 9 0.00 0.208 0.00 65 65 65 0 0 1

 -360 360;

6 10 0.00 0.556 0.00 32 32 32 0 0 1

 -360 360;

9 11 0.00 0.208 0.00 65 65 65 0 0 1

 -360 360;

9 10 0.00 0.11 0.00 65 65 65 0 0 1

 -360 360;

4 12 0.00 0.256 0.00 65 65 65 0 0 1

 -360 360;

12 13 0.00 0.14 0.00 65 65 65 0 0 1

 -360 360;

12 14 0.1231 0.2559 0.00 32 32 32 0 0 1

 -360 360;

12 15 0.0662 0.1304 0.00 32 32 32 0 0 1

 -360 360;

12 16 0.0945 0.1987 0.00 32 32 32 0 0 1

 -360 360;

14 15 0.221 0.1997 0.00 16 16 16 0 0 1

 -360 360;

16 17 0.0524 0.1923 0.00 16 16 16 0 0 1

 -360 360;

15 18 0.1073 0.2185 0.00 16 16 16 0 0 1

 -360 360;

18 19 0.0639 0.1292 0.00 16 16 16 0 0 1

 -360 360;

19 20 0.034 0.068 0.00 32 32 32 0 0 1

 -360 360;

10 20 0.0936 0.209 0.00 32 32 32 0 0 1

 -360 360;

10 17 0.0324 0.0845 0.00 32 32 32 0 0 1

 -360 360;

10 21 0.0348 0.0749 0.00 32 32 32 0 0 1

 -360 360;

10 22 0.0727 0.1499 0.00 32 32 32 0 0 1

 -360 360;

21 22 0.0116 0.0236 0.00 32 32 32 0 0 1

 -360 360;

61

15 23 0.10 0.202 0.00 16 16 16 0 0 1

 -360 360;

22 24 0.115 0.179 0.00 16 16 16 0 0 1

 -360 360;

23 24 0.132 0.27 0.00 16 16 16 0 0 1

 -360 360;

24 25 0.1885 0.3292 0.00 16 16 16 0 0 1

 -360 360;

25 26 0.2544 0.38 0.00 16 16 16 0 0 1

 -360 360;

25 27 0.1093 0.2087 0.00 16 16 16 0 0 1

 -360 360;

28 27 0.00 0.396 0.00 65 65 65 0 0 1

 -360 360;

27 29 0.2198 0.4153 0.00 16 16 16 0 0 1

 -360 360;

27 30 0.3202 0.6027 0.00 16 16 16 0 0 1

 -360 360;

29 30 0.2399 0.4533 0.00 16 16 16 0 0 1

 -360 360;

8 28 0.0636 0.20 0.0428 32 32 32 0 0 1

 -360 360;

6 28 0.0169 0.0599 0.013 32 32 32 0 0 1

 -360 360;

];

%%----- OPF Data -----%%

%% generator cost data

% 1 startup shutdown n x1 y1 ... xn yn

% 2 startup shutdown n c(n-1) ... c0

mpc.gencost = [

 2 0 0 3 0.0 2.00 0.00375;

 2 0 0 3 0.0 1.75 0.0175;

 2 0 0 3 0.0 3.00 0.025;

 2 0 0 3 0.0 3.25 0.00834;

 2 0 0 3 0.0 3.00 0.025;

 2 0 0 3 0.0 3.00 0.025;

];

