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ABSTRACT 

 

This paper describes innovative method for computing fluid solid interaction using 

Immersed boundary methods with two stage pressure-velocity corrections. The 

algorithm calculates the interactions between incompressible viscous flows and a solid 

shape in three-dimensional domain. The fractional step method is used to solve the 

Navier-Stokes equations in finite difference schemes. Most of IBMs are concern about 

exchange of the momentum between the Eulerian variables (fluid) and the Lagrangian 

nodes (solid). To address that concern, a new algorithm to correct the pressure and the 

velocity using Simplified Marker and Cell method is added. This scheme is applied on 

staggered grid to simulate the flow past a circular cylinder and study the effect of the 

new stage on calculations cost. To evaluate the accuracy of the computations the results 

are compared with the previous software results. The paper confirms the capacity of 

new algorithm for accurate and robust simulation of Fluid Solid Interaction with respect 

to pressure field.  

 

Keywords: Immersed Boundary Methods; Two stage pressure-velocity correction 

approach; three dimension domain; incompressible flow.  

  

INTRODUCTION 

 

In many fluid-solid engineering the structure is in general flexible and interacts with the 

surrounding fluid. Commonly a body-fitted meshes techniques is used to model such 

systems since its consideration to both fluid and solid dynamics like The arbitrary 

Lagrangian–Eulerian method(Donea, Giuliani et al. 1982). The Immersed boundary 

methods (IBM) is a nonconforming methods to calculate the fluid solid interaction. 

Charles S, Peskin invented the methods(Charles S 1977) and since then it is become 

popular among the researcher because of simplicity and geometric flexibility. IBMs 

cancel the need of mesh regenerations and handle well the boundary deformations. 

 IBMs represent the immersed boundary by a set of moving Lagrangian points 

with a fixed Eulerian grid for the fluid. The group of material points linked with fibers 

(springs) shows the solid interface mode. This technique simplifies treating immersed 

boundaries of nearly any arbitrary shapes, sizes and configurations, without use of ALE 

descriptions or adaptive meshing(Wang 2010) . An efficient way to transform between 

the Eulerian fluid motion and the Lagrangian structure motion is to use the Dirac delta 

function. For numerical view the big advantage of IBM is the ability to employ a simple 

finite difference or finite volume scheme on a Cartesian mesh. Apply elastics boundary 

algorithm to simulate moving boundaries problems is easy, and it is work in three 
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dimension simulation. One of the major weakness that it cannot work efficiency when 

simulate a flow in high Reynolds numbers(Peskin 2002). 

 (Mohd-Yusof 1997) developed a method that extracts the forcing direct from the 

numerical solution for which a preliminary estimate can be determined(Mohd-Yusof 

1998). The discrete approach is better suited for higher Reynolds numbers, because of 

imposing the velocity boundary conditions at the immersed boundary, without 

introducing or computing any forcing term. The governing equations are most of the 

time discretized as follows. A second-order Adams-Bash forth scheme is employed for 

the convective terms, while the diffusion terms are discretized using an implicit Crank-

Nicolson scheme. This cancels the viscous stability constraint, which can be severe in 

simulation of viscous flows. The (spectral) method of Mohd-Yusof settle the force term 

by the variance between the interpolated velocities in the boundary points and the 

anticipated (physical) boundary velocities. This method reduces the errors between the 

calculated velocities and the desired velocity profile on the body surface. If the 

boundary is stationary, the force can be determined by pairing the velocity at the 

internal point to the velocity at the external point with a weighted linear interpolation 

(Zhang and Zheng 2007). 

The obstacle of using a grid does not adapt to the body border is including the 

boundary conditions in the governing equations will involve enormous adjustments 

nearby the boundaries. Comparing with the traditional methods, it is challenging and 

had a bad impact on accuracy and conservation properties when treat the boundaries in 

IBM. In the boundary conforming grid methods, the control of grid resolutions on the 

body surrounding areas is much better. IBM has effects on grid resolutions to achieve 

the certain amount of control which leads to increase of the grid size with increasing 

Reynolds numbers. The alignment between the body surface and the grid lines places 

some grid points to be inside the body boundary where solving fluid flow equations is 

not essential (Ya, Takeuchi et al. 2007). 

To enforce Dirichlet conditions at the boundary, interpolations are performed 

between Lagrangian velocities at the solid surface and Eulerian velocities at 

neighboring grid points. These interpolations have proved to be un robust, which is 

undoubtedly as obstacle for this method to become widespread for practicable 

applications. In (Kajishima, Takiguchi et al. 2001) body force method, the force 

between the solid and fluid is modeled by a volume fraction function of the solid 

volumetric fraction and the relative velocities of the two phases. This method ensures no 

momentum leakage between the phases as both fluid and solid share the rectilinear 

Eulerian grid and, therefore, making interpolation unnecessary. However, continuity is 

affected because of changes in velocity field enforced by volume averaging of the local 

fluid velocity and local solid velocity. Using Kajishima’s method, the fluid-solid 

interaction is coupled by the body force. To use pressure as means of coupling of new 

two-way fluid-solid interaction, additional correction of pressure and velocity is needed. 

In this paper we develop a model for three dimensions arbitrary elastic solid in a 

viscos incompressible domain based on two stage pressure-velocity correction 

immersed boundary methods. Following the steps of (Ya, Takeuchi et al. 2007) Method, 

we develop a code for three dimensions domain. 
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MATHEMATICAL MODEL 

 

The equations governing the flow around the immersed boundaries are the continuity 

and momentum equations for viscous incompressible flow past a body is describe by the 

non-dimensional Navier-Stokes equations, including the body force term are given by 

  ⃗⃗ 

  
  ⃗⃗    ⃗⃗  

 

 
   

 

  
  ⃗⃗   ⃗   (1) 

   ⃗⃗              (2) 

 ⃗⃗   ⃗⃗             (3) 

Where  ⃗   ⃗     represent the velocity field of the flow,    ⃗    is the pressure and 

 ⃗ represents any external source terms. The quantities   and   are constant fluid density 

and viscosity, respectively.  The solid body occupies the domain   , with boundary 

showed by   , and the surrounding fluid domain noted by   . The governing equations 

were transformed into dimensionless forms on incorporating the following 

nondimensional variables.  

This set of equations is solved with the immersed boundary condition, which 

constrains the velocity of the fluid to the velocity of the local IB, exactly at the IB. The 

immersed boundary condition (IBC) can be implemented in different ways that lead to 

different methods, which can be both of first- or second-order accurate. A second-order 

accurate method employs a piecewise linear representation of Eq. (3); that is, linear 

interpolation is employed to relate the IB to the surrounding points. In a first order 

accurate method, the IB is approximated to the nearest discrete velocity point. 

For cells partially occupied by the solid structure, Kajishima et al (Kajishima, 

Takiguchi et al. 2001) proposed an immersed boundary method that solves the 

momentum exchange at the fluid structure boundary. This method is briefly described 

by Yuki et al(Yuki, Takeuchi et al. 2007)  as follows. A velocity field  ⃗  is introduced by 

calculating the volume fraction and finding the local fluid velocity  ⃗      and the local 

solid phase velocity  ⃗      in each cell by: 

 ⃗⃗        ⃗⃗           ⃗⃗       (4) 

where              is the local solid volumetric fraction in a cell. The fluid-

structure interaction then can be solved at the interface by assuming the velocity field  ⃗⃗  
follows the adjusted Navier-Stokes equations: 

 ⃗⃗      ⃗⃗  

  
   ⃗⃗    ⃗⃗  

 

 
   

 

  
  ⃗⃗   ⃗   (5) 

 ⃗⃗      ⃗⃗  

  
  

 

 
      ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗   (6) 

And by sing projection method 

  ⃗⃗⃗⃗   ⃗⃗      (
 

 
   ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  

 

 
   ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗   ) (7) 

where superscripts   represent time,    is the time increment and   ⃗⃗  ⃗is 

intermediate velocity. Time advancement is then carried by second-order Adam-

Bashforth method and Fractional Step Method as a single continuum. Then we solve the 

pressure A Poisson equation is then solved with diverging the intermediate velocity   ⃗⃗  ⃗ 
as a source term to provide a pressure     ,  
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    ⃗⃗⃗⃗ 

  
 (8) 

this is then used to correct the intermediate velocity, providing a divergence free 

velocity  ⃗⃗     and integration continuing to the next time step. 

 ⃗⃗       ⃗⃗⃗⃗           (9) 

That finish the first correction stage. 

The second correction for the velocity field  ⃗⃗    
    is derived by the volume 

averaging the local fluid velocity  ⃗⃗    
      and the local solid phase velocity 

 ⃗⃗    
      in each fluid cell that is partially or fully occupied by solid cell, 

 ⃗⃗    
          ⃗⃗    

          ⃗⃗    
      (10) 

Since there is significant change of the velocity field, the value of pressure should also 

reflect these changes. Therefore developing the second-stage correction. This procedure 

is also applied to fluid cells that are partially or fully occupied by solid cells bounded by 

a region called small domain. First, the SMAC method is used to find the scalar 

potential,    .      then used as the velocity and pressure correction factor to get  ⃗    
    

and     
    

       
   ⃗⃗    

   

  
 (11) 

 ⃗⃗    
     ⃗⃗    

             (12) 

    
              (13) 

where  ⃗⃗    
    and     

   are velocity and pressure that satisfies continuity equation. The 

velocity and pressure fields are used for the next time step. 

 

Discretization of the governing equations 

 

The continuity and momentum equations are discretized on a staggered grid(Harlow and 

Welch 1965, Patankar 1980), which is more natural than a collocated variable 

arrangement for Cartesian problems, as there is no artificial boundary conditions are 

needed and false modes are prevented. On a staggered grid, the cell faces contain the 

normal velocity components. The remaining variables, such as density and pressure, are 

stored at cell centers. A pressure projection method is employed to obtain the correct 

pressure after an initial guess of the velocity field. 

  

     

Figure 1. (a) Fluid element for conservation laws; (b) mass flows of fluid element 
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In Figure 1a, the six faces are labeled N, S, E, W, T and B, which stands for North, 

South, East, West, Top and Bottom. The pressure in the center of the element is found at 

position (x,y, z). Deriving the mass conservation equation is to write down a mass 

balance for the element lead to : 
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This equation will discretize using finite difference schemes with second order. By 

using the same local volumetric fraction it mentain secondorder accurate interpolation. 

This algorithm impose as: 

1. Solve the Navier-Stokes equations using projection methods 

2. Use second-order Adam-Bashforth method and Fractional Step Method to get the 

intermediate velocity component  

3. Apply Successive of relaxation to calculate the pressure using the Poisson equation. 

4. Correct the velocity. 

5. Calculate the local solid volumetric fraction and update the velocity.  

6. Use SMAC method to find the scalar potential ϕ then solve Poisson equation using 

SOR. 

7. Update the velocity and pressure. 

8. Go to step (1).  

 

VALIDATION 

 

Flow past a circular cylinder follow the shape of the body provided the velocity of the 

flow is slow; this is known as laminar flow. Validate our algorithm by Recreating the 

same bench mark test which suggested by Schäfer, Michael, et al. (Schäfer, Turek et al. 

1996). For the 3D test cases the flows around a cylinder with circular cross–sections are 

considered. 

 

Figure 2 Configuration for flow around a cylinder (Schäfer, Turek et al. 1996). 
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RESULTS 

 

Animated movies were created to foresee the results data from the model. The 

representation of the simulation of viscous Newtonian fluid flow around solid cylinder 

at definite time.  

 

Figure 3 simulation flow around solid cylinder 

The time step and grid size in the simulations are chosen with consideration to the 

stability coefficient. We calculate the drag and lift coefficients and make comparison 

with the bench mark data. In chart (4, 5) the simulated drag coefficient Cd and 

simulated lift coefficient Cl are plotted against the result obtained from the bench mark 

tests. It can be seen that the simulated drag coefficients lie very close to the established 

relations. The drag coefficient differs slightly from the test data because the domain size 

starts to affect the flow and the known drag relationships are determined for cylinder 

immersed in an infinite fluid. 

 
Figure 4 Drag Coefficient  
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Figure 5 Lift Coefficient 

 

We assume in or hypothesis that the cylinder is very rigid so there is no need to 

calculate the solid movement by using finite element methods. That leads to the 

different in the pressure as figure 6 shows. Although, it is not severely violate the 

standard deviation limits. 

 

Figure 6 Pressure 

 

CONCLUSION 

 

In this paper, a novel implicit second-order accurate immersed boundary methods with 

two stage pressure-velocity corrections is developed, implemented and validated. The 

method is successfully simulating the fluid solid interaction phenomena in three 

dimensions. Those results encourage us to pursue our quest to upgrade the algorithm to 

deal with any arbitrary shape. For future work we intend to try new methods for 

calculating the local volume fraction and optimize the code for better computation cost.  
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