
THE DESIGN FOR AN AERIAL MONITORING

SYSTEM FOR ENVIRONMENTAL

SURVEILLANCE APPLICATIONS

AMIR FARHAN BIN MOHD RASIDI

BACHELOR OF ELECTRICAL ENGINEERING

(ELECTRONICS) WITH HONOURS

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration

letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : AMIR FARHAN BIN MOHD RASIDI

Date of Birth : 9/10/1997

Title : THE DESIGN FOR AN AERIAL MONITORING

SYSTEM FOR ENVIRONMENTAL SURVEILLANCE

APPLICATIONS

Academic Session : 2022

I declare that this thesis is classified as:

☒ CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1997) *

☒ RESTRICTED (Contains restricted information as specified by the

organization where research was done) *

☒ OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the

thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student’s Signature)

 971009-43-5169

New IC/Passport Number

Date: 21/06/2022

(Supervisor’s Signature)

Professor Madya Ir. Dr Nurul

Hazlina Binti Noordin

Name of Supervisor

Date: 22/06/2022

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis. This thesis is adequate in terms of scope

and quality for the award of Bachelor of Electrical Engineering (Electronics) with

Honors.

(Supervisor's Signature)

Full Name : Professor Madya Ir. Dr Nurul Hazlina Binti Noordin

Position : Associate Professor

Date : 21/06/2022

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

(Student's Signature)

Full Name : AMIR FARHAN BIN MOHD RASIDI

I.D. Number : EA18013

Date : 21/06/2022

THE DESIGN FOR AN AERIAL MONITORING SYSTEM FOR

ENVIRONMENTAL SURVEILLANCE APPLICATIONS

AMIR FARHAN BIN MOHD RASIDI

A thesis submitted in fulfilment of the requirements

for the award of the Bachelor of Electrical Engineering (Electronics) with Honors

Faculty of Electrical & Electronics Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2022

ii

ACKNOWLEDGEMENTS

All praise be to Allah SWT, the only one who is the most merciful for providing the

strength to complete this thesis. I want to give this token of appreciation to Universiti

Malaysia Pahang (UMP) for financial support for this project.

From the bottom of my heart, I would want to thank my supervisor, Professor Madya Ir.

Dr. Nurul Hazlina Binti Noordin, for her outstanding guidance and encouragement. As a

supervisor, she always gives out ideas and responds to every question upon completing

this project. I am beyond grateful for her unwavering support. I am also incredibly

thankful for all the lecturers of Universiti Malaysia Pahang (UMP). They are willing to

help whenever I reach for their help and guidance.

I am also expressing my appreciation to Intel Microelectronics (M) Sdn. Bhd. for

providing the FPGA DE10-Lite Development Kit for this project and basic knowledge of

using the FPGA board.

A special thanks to my beloved family and friends for their constant moral support and

motivation. Their motivation keeps me going and brings out my potential to give my all

for this project. Lastly, I would like to express my heartfelt gratitude to anyone who

contributed to the process of succeeding in this project. I hope that all the research done

on putting this project into words will be of great use and bring about great inspiration.

iii

ABSTRAK

Bahaya semula jadi berlaku pada kadar yang membimbangkan di seluruh dunia. Sebelum

memulakan usaha menyelamat dan bantuan yang sesuai di kawasan yang dilanda

bencana, perlu menjalankan siasatan. Pegawai tentera selalunya mesti meronda di lokasi

berisiko untuk mencari sebarang potensi ancaman, aktiviti haram atau pencerobohan

dalam sempadan negara yang boleh membahayakan nyawa penduduk. Lokasi sedemikian

membawa risiko yang sangat ketara kepada kehidupan manusia.

Selain daripada UAV atau dron berteknologi tinggi, nanosatelit seperti CanSat boleh

digunakan untuk pengawasan dan pemantauan udara dalam Sistem Udara Tanpa

Pemandu (UAS). Ia juga boleh menyediakan data masa nyata ke bilik kawalan atau

komputer. Jenis telemetri CanSat digunakan dalam projek ini untuk mengumpul dan

menghantar data daripada penerbangan dan keadaan persekitaran dalam masa nyata

untuk diproses oleh stesen pangkalan. Bahagian utama yang digunakan dalam reka

bentuk CanSat ialah mikropengawal dan bekalan kuasa. Sebagai tambahan kepada yang

dinyatakan di atas, misi mungkin menggabungkan elemen lain. FPGA dalam kapal

angkasa ini membolehkan pemprosesan yang lebih cekap dengan memindahkan reka

bentuk kepada perkakasan.

Terdapat banyak kesukaran dalam mereka bentuk nanosatelit seperti CanSat. Pertama,

sukar untuk mereka bentuk nanotelit menggunakan teknologi FPGA dan

mengintegrasikannya dengan penderia kerana FPGA terdiri daripada elemen logik

mudah, yang boleh digabungkan untuk melaksanakan persisian yang dinyatakan sebelum

ini, tetapi hanya berinteraksi dengan kebanyakan elektronik digital lain. Reka bentuk

CanSat perlu menyesuaikan mikropengawal sebagai unit utama dengan semua subsistem

utama yang terdapat dalam satelit, seperti kuasa, penderia dan sistem komunikasi, ke

dalam volum minimum. Selain itu, penggunaan mikropengawal tersebut adalah kurang

cekap untuk mendapatkan data masa nyata berkelajuan tinggi dalam aplikasi pengawasan

udara

Matlamat utama kerja ini adalah untuk membangunkan telemetri CanSat menggunakan

Papan Pembangunan FPGA DE10-Lite (Altera Max 10), Pengawal Mikro Arduino Uno

R3, dan penderia yang sesuai (Penderia suhu dan kelembapan, Modul GPS, Penderia

Barometrik, Penderia Accelerometer) dan sistem komunikasi tanpa wayar. CanSat

kemudiannya akan memantau dan mengumpul data telemetri masa nyata dari stesen

bumi. Akhir sekali, data telemetri dari pelbagai tempat dan ketinggian di bawah 1km akan

dianalisis.

iv

ABSTRACT

Natural hazards are occurring at an alarming rate around the world. Before beginning

suitable rescue and aid efforts in a disaster-stricken area, it is required to conduct an

investigation. Military officials often must patrol risky locations to seek any potential

threat, illegal activity, or intrusion within a country's borders that can put the lives of

inhabitants in jeopardy. Such locations carry a very significant risk to human life.

Other than UAVs or high-tech drones, nanosatellites such as CanSat can be utilized for

aerial surveillance and monitoring in Unmanned Aerial Systems (UAS). It can also

provide real-time data to a control room or computer. The telemetry type of CanSat is

utilized in this project to gather and send data from the flight and environmental

conditions in real-time for processing by a base station. The major parts employed in the

CanSat design are the microcontroller and power supply. In addition to those stated

above, the mission may incorporate other elements. These FPGAs in spacecraft enable

more efficient processing by transferring the design to hardware.

There are many difficulties in designing nanosatellites such as CanSat. Firstly, is difficult

in designing nanosatellites using FPGAs technology and integrate them with the sensors

because FPGAs consist of simple logic elements, which can be combined to implement

the peripherals previously mentioned, but only interact with most other digital

electronics. The design of CanSat needs to fit the microcontroller as the main unit with

all the major subsystems found in a satellite, such as power, sensors, and a

communication system, into the minimal volume. Besides, using those microcontrollers

is less efficient to get the high-speed real-time data in an aerial surveillance application.

The primary goal of this work is to develop a telemetry CanSat utilizing an FPGA DE10-

Lite Development Board (Altera Max 10), Arduino Uno R3 Microcontroller, and an

appropriate sensor (Temperature and humidity sensor, GPS Module, Barometric Sensor,

Accelerometer Sensor) and a wireless communication system. The CanSat will then

monitor and collect real-time telemetry data from a ground station. Finally, the telemetry

data from various places and altitudes below 1km will be analyzed.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

LIST OF APPENDICES xii

CHAPTER 1 INTRODUCTION 13

1.1 Project Background 13

1.2 Problem Statement 14

1.3 Objective 14

1.4 Significance 15

1.5 Project Scope 15

1.6 Thesis Outline 15

CHAPTER 2 LITERATURE REVIEW 17

2.1 Introduction 17

2.2 Unmanned Aerial System (UAS) 17

2.3 Field Programmable Gate Array (FPGA) 18

2.3.1 FPGA Workflow 19

2.3.2 Comparison between Microprocessors, FPGAs and ASICs 21

vi

2.4 CanSat Nanosatellite 22

2.4.1 CanSat Concept 22

2.4.2 CANSAT Design 23

2.4.3 Type of CANSAT 23

2.5 Comparison between different approaches of CanSat 25

2.6 Summary 28

CHAPTER 3 METHODOLOGY 29

3.1 Introduction 29

3.2 Flow of Methodology 29

3.3 Block Diagram for Input/Output 30

3.4 Lists of Software 31

3.4.1 Quartus Prime 18.1 Lite Edition 31

3.4.2 Arduino IDE 1.8.19 33

3.4.3 Parallax Data Acquisition tool (PLX-DAQ) Software 34

3.5 Lists of Component 35

3.5.1 DE10-Lite Development Board (Altera FPGA MAX10) 35

3.5.2 Arduino Uno R3 Microcontroller 36

3.5.3 DHT22 Temperature and Humidity Sensor 37

3.5.4 The built-in accelerometer in DE10-Lite Development Board

(ADXL345) 38

3.5.5 GPS NEO-7M Module. 39

3.5.6 BMP280 Barometric Pressure Sensor 39

3.5.7 RF transceiver module (2.4GHz, NRF24L01+ with PA and LNA) 40

3.6 Flowchart of the system 41

3.7 Design Development 43

vii

3.7.1 FPGA DE10-lite Development Board Connection 45

3.7.2 Development Of a Message Processing Module from A GPS

Module 46

3.7.3 Module for displaying information on a seven-segment indicator 49

3.7.4 Built-in DE10-lite Accelerometer Sensor 50

3.7.5 Arduino Uno R3 Microcontroller connection 51

3.8 Chapter Summary 52

CHAPTER 4 RESULTS AND DISCUSSION 53

4.1 Introduction 53

4.2 Hardware Design 53

4.3 Telemetry data collection from different Altitude and locations 55

4.4 GPS reading and Accelerometer Output 56

4.5 Arduino Uno Serial monitor on the Ground Station 58

4.6 Telemetry data in Microsoft Excel on the Ground Station 59

4.7 Data analysis in data collection 60

CHAPTER 5 CONCLUSION 62

5.1 Introduction 62

5.2 Conclusion 62

5.3 Project Management 63

5.3.1 Cost of Project 63

5.4 Future Recommendation 63

REFERENCES 64

APPENDICES 67

viii

LIST OF TABLES

Table 2. 1 Comparison between different approaches 25

Table 5. 1 Cost of Project 63

ix

LIST OF FIGURES

Figure 2. 1 Unmanned Aerial System Model[8] 18

Figure 2. 2 FPGA Workflow[18] 20

Figure 2. 3 Comparison of Technologies[18] 22

Figure 2. 4 Cansat[2] 23

Figure 2. 5 Summary of literature review 28

Figure 3. 1 Flow of Methodology 30

Figure 3. 2 Block Diagram 30

Figure 3. 3 Quartus Prime 18.1 Lite Edition Software Logo 31

Figure 3. 4 Quartus Prime Design Software Interface[28] 32

Figure 3. 5 Arduino IDE 1.8.19 Software Logo 33

Figure 3. 6 Arduino IDE 1.8.19 Software Interface[31] 33

Figure 3. 7 PLX-DAQ Software Interface[32] 34

Figure 3. 8 DE10-Lite Development Board 35

Figure 3. 9 Arduino Uno R3 Microcontroller Board[34] 36

Figure 3. 10 DHT22 Temperature and Humidity Sensor[35] 37

Figure 3. 11 Connection between the accelerometer sensor and FPGA 38

Figure 3. 12 GPS NEO-7M Module[38] 39

Figure 3. 13 BMP280 Barometric Pressure Sensor [39] 39

Figure 3. 14 RF NRF24L01+ transceiver module[40] 40

Figure 3. 15 Deployment flowchart 41

Figure 3. 16 System flowchart 42

Figure 3. 17 CanSat Circuit Design 43

Figure 3. 18 Circuit Design on Ground Station 44

Figure 3. 19 DE10-Lite Development Board circuit connection 45

Figure 3. 20 State Diagram for Message Processing Module 47

Figure 3. 21 Accelerometer Connection with LEDs 50

Figure 3. 22 Arduino Uno R3 Circuit on CanSat 51

Figure 3. 23 Arduino Uno R3 Circuit Connection on Ground Station 52

x

Figure 4. 1 Hardware Design 53

Figure 4. 2 Dimension of the enclosure 54

Figure 4. 3 Faculty of Computer 1st and 2nd floor 55

Figure 4. 4 Faculty of Computer 3rd and 4th floor 55

Figure 4. 5 GPS and Accelerometer output displayed 56

Figure 4. 6 GPS coordinate website 56

Figure 4. 7 Accelerometer output display on the LEDs 57

Figure 4. 8 Arduino IDE Serial Monitor 58

Figure 4. 9 Telemetry data in Microsoft Excel 59

Figure 4. 10 Altitude vs Atmospheric pressure graph 60

Figure 4. 11 Temperature vs Humidity graph 60

Figure 4. 12 GPS time taken graph 61

xi

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

ASIC Application-Specific Integrated Circuit

CPLD Complex Programmable Logic Device

CAD Computer-Aided Design

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

FTDI Future Technology Devices International Limited

GPS Global Positioning System

HDL Hardware Description Language

IC Integrated Circuit

IIR Infinite impulse response

INS Inertial Navigation System

IP Intellectual Property

I2C Inter-Integrated Circuit

LEs Logic Elements

MISO Master In Slave Out

MOSI Master Out Slave In

NTC Negative Temperature Coefficient

PC Personal Computer

RF Radio Frequency

RTL Register-Transfer Level

SCL Serial Clock line

SDA Serial Data line

SPI Serial Peripheral Interface

SoC System On Chip

TNC Terminal Node Controller

UART Universal Asynchronous Receiver/Transmitter

UA Unmanned Aerial

UAS Unmanned Aerial System

VCC Voltage Common Collector

VHDL Verilog Hardware Description Language (VHDL)

xii

LIST OF APPENDICES

Appendix A Gantt Chart 67

Appendix B Arduino IDE coding 68

Appendix C Quartus Prime Code (Verilog) 73

 13

CHAPTER 1

INTRODUCTION

1.1 Project Background

Natural hazards are occurring at an alarming rate around the world. Before

beginning suitable rescue and aid efforts in a disaster-stricken area, it is required to

conduct an investigation. Military officials often must patrol risky locations to seek any

potential threat, illegal activity, or intrusion within a country's borders that can put the

lives of inhabitants in jeopardy. Such locations carry a very significant risk to human life

[1].

The Aerial Surveillance System can readily be employed to complete this task

without endangering human lives. Furthermore, the speed of operation will be faster with

drones because they may fly unfettered for days and days on end. An aerial Surveillance

System is a flying machine that can be remotely controlled to deliver real-time data to a

control room [1]. The name Unmanned Aerial System (UAS) was coined to emphasize

that an Aerial Surveillance system is a component of a larger system that includes ground

stations, launch mechanisms, and other components [1]. A UAS is a system that includes

the necessary hardware, communication, and humans to operate an unmanned aircraft.

Furthermore, in the recent decade, developing technologies for space education

have risen rapidly [2]. Nowadays, miniaturized satellites play an important role in

academics and scientific projects for monitoring or imaging [2]. Small instruments can

be integrated into the payload and operated remotely and telemetry for data acquisition

[2].

Nano-satellites such as CanSat can be used for aerial surveillance and monitoring

in Unmanned Aerial Systems (UAS), in addition to deploying Unmanned Aerial Vehicles

(UAVs) or high-tech drones [2]. It can also transmit real-time data to a ground station or

PC. The telemetry type in CanSat is utilized in this project to gather and transmit data

 14

from the flight and environmental conditions in real-time to a ground station for

processing. In CanSat design, the Microcontroller and power supply are the main

elements used in every CanSat. Aside from the elements described above, more may be

added following the task assigned to it. The main unit used for this project is the FPGA

DE10-Lite Development Board and Arduino Uno R3. Using these FPGAs in spacecraft

will allow more efficient processing by moving the design onto hardware.

1.2 Problem Statement

There are many difficulties in designing nanosatellites such as CanSat. Firstly, is

difficult in designing nanosatellites using FPGAs technology and integrate them with the

sensors because FPGAs consist of simple logic elements, which can be combined to

implement the peripherals previously mentioned, but only interact with most other digital

electronics. CanSat's architecture must include the microcontroller as the core unit, as

well as all of the essential subsystems present in a satellite, such as power, sensors, and a

communication system, in the smallest possible size. Besides, using those

microcontrollers is less efficient to get the high-speed real-time data in an aerial

surveillance application.

1.3 Objective

This project aims to design a nanosatellite for applying ariel surveillance and ariel

monitoring systems. The objectives include: -

i. To design telemetry CanSat using FPGA (Altera Max 10) and Arduino

Uno R3 with the suitable sensors (Temperature and Humidity Sensor,

Barometric Sensor, GPS, Accelerometer) and wireless communication

system.

ii. To monitor and gather real-time telemetry data by the CanSat from a

ground station.

iii. To analyze the telemetry data from different locations and altitudes below

1km.

 15

1.4 Significance

According to previous studies, there are many types of Ariel monitoring and

Surveillance system. In comparison to the writing project, these methods are essential.

The author did some research for the last journal and research as a blogger.

The study on Angel Colin and Manuel Jimenez (2017) [2]. The use of CanSat

technology to monitor the climate in tiny areas at altitudes below 1 km reveals that the

project is based on the same concept as the previous one. The previous project used an

Arduino Pro mini 328 microcontroller as the main unit [2], while the author used Arduino

Uno R3 Microcontroller and FPGA Altera Max 10 to speed up the processing.

1.5 Project Scope

The focus of this study is the system development for ariel monitoring and

surveillance by using the nanosatellite CanSat. The scope of this project is:

i. Using FPGA DE10-Lite Development board and Arduino Uno R3 as the

main unit.

ii. Integration between FPGA DE10-Lite Development Board, Arduino Uno

R3 with all the sensors and send the telemetry data using wireless

communication to ground station.

iii. Real-time processing data.

iv. Collect and process telemetry data from different locations and altitudes

below 1km.

1.6 Thesis Outline

The following is a summary of each of the study's chapters. The dissertation is

organized into four chapters, which are as follows:

i. Chapter 2: Literature review

 16

Provide an in-depth analysis of a similar subject on a previous researcher's project.

Journals, books, and articles are used as a source of information. An overview of aerial

surveillance as Unmanned Aerial System (UAS) is the first topic discussed. The

introduction and comparison of FPGA and microprocessors are then discussed. The

design approach includes an overview of the CanSat nanosatellites from previous projects

or studies. The chapter ended with a review of the CanSat design with different methods.

ii. Chapter 3: Methodology

The methods used to design the CanSat nanosatellites The flow of methodology

is the first topic discussed. Block diagrams for I/O are then discussed. Furthermore,

briefly discussed the list of components and software used in this project. The flowchart

of the system is then discussed with two flowcharts, one for the deployment of the CanSat

flowchart and another one for the system flowchart. In addition, this chapter is will be

discussed briefly about circuit development, and cost estimation and the chapter ended

with a summary of the method used and development.

iii. Chapter 4: Result and discussion

The results and discussion of data collected from the CanSat and transmitted to

the PC by the ground station. First, the hardware architecture is presented, followed by

telemetry data collected at various altitudes and locations. Following that, the DE10-Lite

Development Board's output is presented utilizing 6 seven segments for GPS coordinates

and LEDs for Accelerometer data. Furthermore, the Arduino output is monitored using a

serial monitor before being converted to Microsoft Excel using the PLX-DAQ Data

Acquisition program. After that, the data will be examined.

iv. Chapter 5: Conclusion

This chapter aims to provide a high-level summary of the study's principal

findings as well as an explanation of the study's contributions and limitations. In addition,

as part of project management, this chapter will compute the entire cost of the project.

 17

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The journal review aims to provide an in-depth analysis of a similar subject on a

previous researcher's project. Journals, books, and articles are used as a source of

information. This development also involved the operation of circuits, software, and

hardware. This chapter also gives insight into the project's device and hardware

components. Based on the concept that has been applied, this project can be composed of

the previous project to increase efficiency and operability.

2.2 Unmanned Aerial System (UAS)

In recent years, the name Unmanned Aerial System (UAS) has been superseded

by (UA), which stands for Unmanned Aircraft. The term Unmanned Aircraft System

(UAS) was used to emphasize that a UA is part of a broader system that includes ground

stations, launch mechanisms, and other components [3]. A system that contains the

necessary hardware, communications and humans to operate an unmanned aircraft is

referred to as UAS [4].

Unmanned Aircraft Systems (UAS), sometimes known as Unmanned Aerial

Systems (UAS), are components of aircraft and related equipment that operate without

the presence of a human operator. It can fly autonomously or remotely, and all equipment,

including the command, control, and communications (C3) system and personnel

required to control the unmanned aircraft, must be evaluated in the context of the system.

[5][6][7]. An unmanned aircraft system (UAS) is made up of three main components, as

shown in Figure 2.1.

 18

Figure 2. 1 Unmanned Aerial System Model[8]

Unmanned Aircraft Systems (UAS) have recently been deployed for military and

civilian purposes. It has recently been acknowledged for its importance and benefits in

search and rescue, real-time surveillance, reconnaissance operations, traffic monitoring,

hazardous site inspection, and range extension. Furthermore, UAS is appropriate for

circumstances when direct human surveillance is too dangerous. UAS is a rapidly

expanding field in the unmanned aviation community. "UAS" is a broad phrase that refers

to "the entire system, which includes aircraft, control stations, and data linkages."

[9][10][11].

Besides the use of unmanned aerial systems (UAS) to collect data for

environmental monitoring is becoming increasingly significant [12]. Unmanned Aerial

Systems (UAS) have become a critical aspect of environmental monitoring as drone

technology has advanced over the last decade, bridging the gap between traditional field

research and satellite remote sensing [12]. UAS is a low-cost method of collecting visual

data on a broad temporal scale over the electromagnetic spectrum, making it a great tool

for monitoring dynamic environmental processes [12].

2.3 Field Programmable Gate Array (FPGA)

FPGAs (Field Programmable Gate Arrays) are programmable logic devices [13].

It has configurable connectivity and adjustable logic blocks [14]. FPGAs (Field

 19

Programmable Gate Arrays) are programmable logic devices [13]. It has configurable

connectivity and adjustable logic blocks [14]. Custom digital electrical circuits can be

implemented on the device thanks to the programmable logic, which allows the circuit

design to be modified for a specific application. A circuit can be designed, called a netlist,

which can then be synthesized and programmed onto the FPGA. These circuits can be

simple as glue logic: simple logic functions to interface chips together or as complex as

an entire microprocessor. Before an FPGA can be programmed, the design must be

described to a Computer-Aided Design (CAD) program, which takes it and translates it

into bits to program the FPGA.

HDL is the language used to describe the design. The two HDL languages

commonly used are Verilog and VHSIC Hardware Description Language (VHDL).

Similar to software and software libraries, hardware descriptions can be reused and

packaged in the form of Intellectual Property (IP) cores. These cores range from Digital

Signal Processing (DSP) and arithmetic cores to chip interfaces such as Serial Peripheral

Interface (SPI), to processor cores such as the 8051 [15] and OpenSPARC T1 processor

[16]. FPGAs allow the custom design of a chip that can be similar in functionality to an

ASIC, which would cost overwise cost millions to make [17]. One must take a design, let

the software synthesize it, and then program it onto the FPGA. Synthesis is one of the

steps done by the FPGA CAD software in implementing an FPGA design.

2.3.1 FPGA Workflow

This section will provide a brief description of the stages required in producing a

design from the HDL input to programming the FPGA in order to describe how it is

implemented on an FPGA [18]. Figure 2.2 illustrates the typical design workflow. The

design steps are as follows:

 20

Figure 2. 2 FPGA Workflow[18]

Design Entry - The first step describes the hardware to be implemented using

HDL such as Verilog or VHDL. This process is similar to a software programmer writing

code. Depending on the CAD tools used, the design can also be created visually by

connecting blocks in a schematic diagram [18].

Synthesis - The next step lets the CAD software interpret the HDL code and create

a Register-Transfer Level (RTL) netlist. The lines of HDL code are translated into

combinational Logic Elements (LEs), latches and registers [18]. The designer can also

verify the design by visually examining the netlist to see the CAD software interpretation

of the design described by the HDL code [18].

Functional Simulation - The functionality of the design is verified through

simulation and test benches [18]. These test benches are written using HDL and specify

the input waveforms for the design, and the simulation produces the corresponding output

waveforms. This task uses specialized CAD software, such as ModelSim [18].

 21

Fitting - The components of the RTL design are fitted into LEs in the FPGA

through placement and routing [18]. The routing step determines the connections between

individual LEs and, therefore, the length of each wire.

Timing Analysis - The length of each wire and the functionality of each LE

determine the timing of the FPGA. The timing is important as it determines the fastest

clock speed the design can handle. The timing simulation also helps determine if there

might be any glitches that might happen due to the timing of various I/O changing states

in the design [18].

Programming - The final step in the CAD workflow is to generate a bitstream and

program the FPGA. The bitstream contains each routing switch and Logic Element (LE)

configuration in an FPGA. The bits in the bitstream are then shifted into the FPGA, which

programs the design onto the FPGA, implementing the HDL code in hardware [18].

2.3.2 Comparison between Microprocessors, FPGAs and ASICs

Another type of integrated circuit is the ASICs, a dedicated chip designed to

perform a specific set of tasks. The advantages of ASICs over microprocessors are faster

and much more efficient. Instead of fetching and following software instructions to

complete a task, ASICs have predefined circuitry to complete the task. FPGAs provide a

low-cost alternative to dedicated ASIC chips [17]. A design can be customized for a

specific purpose and then programmed onto the FPGA, unlike an ASIC where the design

is "hardware" and cannot be changed.

Progressing from the microcontroller to FPGA to ASIC, each gets more

application-specific, therefore, more efficient [17]. A microcontroller can have many

peripherals, such as an ADC and voltage comparators, allowing them to interact with

other analog devices. These peripherals and software flexibility allows one kind of

microcontroller to be used in many applications. An FPGA, on the other hand, consists

of simple logic elements, which can be combined to implement the peripherals previously

mentioned, but only interact with most other digital electronics [17]. With an ASIC, the

logic elements of an FPGA are replaced with actual logic gates made of transistors, which

are sometimes manually laid out. They represent the most optimized design and can be

 22

combined with analog electronics. Figure 2.3 shows the summary for the comparison

between ASIC, Microprocessors and FPGA.

Figure 2. 3 Comparison of Technologies[18]

2.4 CanSat Nanosatellite

2.4.1 CanSat Concept

Prof. Robert Twiggs of Stanford University [19] first proposed the CanSat

concept in 1999, demonstrating that the device's electronics could be designed to fit

within a soda can.

A CanSat can be designed with commercial components that can be implemented

to achieve its mission. For instance, the Terminal Node Controller (TNC) can be a

commercial microcontroller. The ground station, a laptop computer with a connected

antenna, acts as a transmitter for the up-link input signals to the TNC. On the other hand,

the TNC also prepares the output data collected by the onboard sensors to be sent and

downlinked by telemetry [2].

 23

Figure 2. 4 Cansat[2]

2.4.2 CANSAT Design

In CanSat design, the microprocessor and power supply are the main elements

used in every CanSat. The microprocessor is the robot's brain. It is in charge of receiving

signals from external sensors and processing them so that they operate properly. The

majority of microprocessors have or may have an internal memory for data storage, which

is important for storing data from multiple sensors during flight. The Arduino

Microcontroller, Mbed Microcontroller, and Raspberry Pi are common microprocessors

that are used [19][2][20][21]. The power supply is critical for any robot or electronic

system since it provides electricity for all robot systems to operate. Lithium polymer

batteries are the most often utilized because of their performance and current-weight ratio

(LiPo). Aside from the elements described, more may be added by the task with which it

has been assigned, such as using a temperature sensor, GPS, accelerometer, and camera.

2.4.3 Type of CANSAT

There are mainly three types of CanSat, Telemetry CanSat, Comeback CanSat

and Open Class CanSat. The major goal of Telemetry CanSat is to gather and send data

from the flight and weather conditions in real-time to a ground station for processing.

[20]. Because its objective is to collect data rather than land at a specific location, CanSat

 24

does not use a steering mechanism in this category. A barometric sensor, temperature and

humidity sensor, GPS, and camera are the most frequent components utilized in the

systems detailed in the previous sections [19].

Meanwhile, CanSat's main purpose is to land as close to a target indicated by GPS

coordinates as possible in order to make a comeback. GPS or an Inertial Navigation

System (INS) can guide these devices [21]. This information is sent to the

microprocessor, which analyzes the target's location to process data to determine the

angle at which it should turn to approach the target and delivers the necessary commands

to the steering system. CanSat relies on two primary types of satellites: those with a

parachute or glider, and those with a rotor and wings.

CanSat with a parachute or glider commonly has a steering system made up of

asymmetrically moving threads that generate a difference in longitudinal axis lift, causing

the CanSat to rotate in one direction or the other. It makes use of rather simple mechanics.

These devices are difficult to handle due to the slow rate of fall and the large surface area

that elevates them [22]. Meanwhile, unlike CanSat with parachutes or gliders, CanSat has

a rotor and wings, which are mechanically more sophisticated and less subject to weather

conditions [23]. Because of their faster fall rate, these devices are significantly more

difficult to manage and necessitate an electronic system capable of performing many

more corrections per second.

Finally, an Open Class CanSat is any robot that does not fit into either of the

preceding two categories and can be submitted. The majority of CanSat in this category

are robots that are testing new technologies or designs that have never been tested before

(technology demonstrators)[24].

 25

2.5 Comparison between different approaches of CanSat

Table 2. 1 Comparison between different approaches

The study Title Method Results

M. Ostaszewski, K. Dzierżek

and L. Magnuszewski (2018)

“Analysis of data

collected while

CanSat mission”[25]

Microcontroller with 2.4GHz transceiver

STM32F103C8T6

The probe's main job is to transmit and retain data

collected by sensors throughout the mission

(Telemetry CanSat).

The ground control station, which uses a rocket as a

launcher, has a laptop attached to a receiving module.

Almost all of CanSat's modules were

functional. The GPS readings are simply

too irregular to trust the data from the GPS

during the flight. It may be beneficial to

locate CanSat's landing zone after landing.

M. E. Umit, M. Tetlow, W.

Cabanas, H. Akiyama, S.

Yamaura, S. Olaleye (2011)

“Development of a

fly-back CANSAT in

3 weeks”[21]

The microcontroller Mbed is the main onboard

avionic. It has a microprocessor that runs at 100 MHz.

Use a rocket as the primary launch vehicle and a

balloon for testing. Comeback CanSat mission –

requires a complex algorithm to navigate

The ground station is communicated using an XBee

pro modem. This modem is used to process all sensor

data, bundle it in Mbed, and send it to the ground

station.

The CanSat's first iteration was made of

aluminum. However, the glider's weight

was too much for it to raise itself.

Due to the earthquake, tests with the final

design of the CanSat could not be

performed. On March 11, 2011, something

happened in Japan.

R. P. Ramadhan, A. R.

Ramadhan, S. A. Putri, M. I.

C. Latukolan, Edwa,

Kusmadi (2019)

“Prototype of CanSat

with Auto-gyro

Payload for Small

Satellite Education”

[26]

The main unit is an Arduino Nano Microcontroller.

At an altitude of 670 to 725 meters, the CanSat

payload will measure atmospheric parameters.

CanSat mission for telemetry

The sensor data will be collected and transferred to the

Ground Control Station through XBEEPRO S1 (GCS).

When CanSat was launched, the data was

gathered. The data from the pressure,

altitude, temperature and tilt sensors is

displayed in the GUI.

All sensors function well, but the descent

time is slowed due to vibration. affected the

sensors (not properly attached to the

header)

 26

Table 2. 1 Comparison between different approaches (Continue)

The study Title Method Results

M. Çelebi, S. Ay, M. E. Aydemir, L.

H. J. D. K. Fernando, M. K. Ibrahim,

M. Bensaada, H Akiyama, S.

Yamaura (2011)

“Design and

Navigation Control of

an Advanced Level

CANSAT”[23]

Mbed Microcontroller, pressure, and temperature

sensors; 3-axis accelerometer, 3-axis gyro, camera,

GPS, infrared distance measurement sensor, and RF

communication module for communication with the

ground station PC [24].

Comeback The mission of the CanSat is to launch

and land the satellite at a predetermined location.

As a launcher, an amateur rocket was used.

MATLAB was used to create the ground station

software.

Strong winds induce failed

recovery, necessitating a simple

aerodynamics calculation to assure

minimal drift.

During firmware development,

pressure and GPS sensors are tested

successfully.

Due to the earthquake that

devastated Japan on March 11,

2011, and the resulting tsunami and

nuclear leakage, the advanced level

CanSat launch was canceled.

M. E. Aydemir, R. C. Dursun, M.

Pehlevan (2013)

“Ground Station

Design Procedures For

CanSat”[27]

The core unit is an Arduino Uno microcontroller with

GPS and a pressure sensor.

For a simple Arduino interface, use the Xbee and the

Xbee-Shield.

The ground station GUI is designed using the C#

programming language and Visual Studio as a

development environment.

The device was tested outside, and

the data flow was found to be

smooth and accurate.

For the GUI to start, the serial port

must be available. The program

looks for all accessible serial ports,

the user picks one, and the GUI

appears.

E. B. Linares, E. A. M. Gonzales, M.

H. Cortez, E. A. N. Martinez, J. M.

Castillo

“Design of an

Advanced Telemetry

Mission using

CanSat”[20]

As a flight computer, the Arduino Nano is used.

Advance telemetry mission - to measure the

qualifiers of air pollution in the zone, such as carbon

monoxide, methane, benzene, and butane, as well as

the fundamental telemetry variables of the pollutants

in the air that will be measured.

The CanSat type telemetry based on

a Hardware and Software free to

monitor pressure variables and

temperature is the outcome of the

prototype's lone success.

 27

Table 2. 1 Comparison between different approaches (Continue)

The study Title Method Results

M. A. Arais, M. E., A. Mohammed,

M. E. M, B. Abdelmoteleb, A.

Hatem, A.B. Mohamed, A. Ramy, K.

Walid, M. E. Fiky, A. Darwish

(2015)

“Approaching a nano-

satellite using

CANSAT

systems.”[22]

Along with three webcams utilized to live-stream the

movies and captures during running time, the

Arduino Uno V3, Raspberry Pi v.2, humidity,

temperature, pressure, and GPS sensors were

employed.

The Zigbee protocol and a 3G World-wide-web

network make up the communication system.

CanSat mission for telemetry

The C# desktop application is used to create a ground

station.

The launcher was a water rocket mechanism.

Humidity, temperature, pressure,

GPS, and three cameras all capture

and communicate movies,

photographs, and sensor

information to the ground station

via communication protocols.

Live streaming of the

communication system through the

internet and 3G coverage built in

the satellite.

Angel Colin, Manuel Jimenez-

Lizárraga (2015)

“The CanSat

Technology For

Climate Monitoring In

Small Regions At

Altitudes Below 1

Km”[2]

The primary unit consists of an Arduino Pro mini 328

microcontroller, a photo/video camera, a 3.37 Volt

LiPo battery, an accelerometer, a gyroscope, GPS,

and temperature/humidity sensors, as well as an

accelerometer, a gyroscope, and GPS.

Telemetry for the CanSat mission is transmitted via

an XBee antenna mounted on the device's top.

The CanSat will be elevated and released using a

hexacopter.

The CanSat is released from the

center of the balloon's structure by

a UAV at heights below 1km.

During the parachute drop, the

CanSat captures and transmits data

to the ground station through

telemetry, which is then sent to a

laptop for analysis.

 28

2.6 Summary

The project's past, previous, and current work or projects have all been collected

in this chapter. The journals in this chapter were used as a guide for this project. They all

included similar aerial monitoring systems and sensors to measure relevant parameters

such as temperature, accelerometer, altitude, atmospheric pressure, and humidity of the

environment. Even though the data processing method is different such as Arduino,

Raspberry Pi and Mbed microcontrollers, the implemented concept operation can be used

as a reference to improve the creation of aerial surveillance and monitoring applications

using the CanSat nanosatellite. Refer to Figure 2.5 shows the summary of the literature

review.

Figure 2. 5 Summary of literature review

 29

CHAPTER 3

METHODOLOGY

3.1 Introduction

The third chapter will further discuss how the process in this project, especially

in choosing the method of solution and design development. The whole CanSat nano-

satellite system was divided into three parts: Ground-Station, Communication System,

and Satellite body which is the CanSat [2]. Flowcharts are a helpful tool for streamlining

procedures. Before beginning any project, the first thing to consider before beginning any

project is planning, since the planning process will obtain a positive result. The block

diagram, simulation software, hardware component, the flow chart, the connection, code

development, the design layout and charges are all included after that. The rationale for

each chosen component and hardware will be briefly explained.

3.2 Flow of Methodology

Refer to Figure 3.1 below, the project's proposed solution flow. Before starting

any project, the Aerial Surveillance system and nanosatellite as the main ideas must be

understood first, how they work, and the methods used to perform aerial monitoring and

surveillance system on previous studies for references. Then, with the chosen method,

the progress starts to design and program the systems, followed by choosing the suitable

sensors for the task and objective in this project. The code for both the FPGA DE10-Lite

Development board and the Arduino Uno R3 is then developed, and the chosen method

is then tested. Lastly, the telemetry data gathered or collected was analyzed.

 30

Figure 3. 1 Flow of Methodology

3.3 Block Diagram for Input/Output

Figure 3. 2 Block Diagram

A block diagram shown in Figure 3.2 is a visual illustration of how a project will

operate. Readers will get a general idea of how the workflow works from input to

procedure to output. The temperature and humidity sensor, altitude and atmospheric

pressure, GPS and accelerometer are the types of sensors used in this project's input block

 31

(Hardware List). This sensor will act as the device health monitoring and environmental

monitoring system. The output from the sensor will be processed through the FPGA

DE10-Lite Development Board and Arduino Uno R3 Microcontroller to determine if all

sensors are working correctly. The FPGA DE10-Lite Development Board output will be

displayed on the 7 segments and LED meanwhile Arduino Uno R3 Microcontroller

output is transmitted to the ground station/PC for the data collected by the sensors through

the wireless communication module. After that, the telemetry data that is collected will

be converted to Microsoft Excel through serial communication.

3.4 Lists of Software

3.4.1 Quartus Prime 18.1 Lite Edition

Figure 3. 3 Quartus Prime 18.1 Lite Edition Software Logo

 32

Figure 3. 4 Quartus Prime Design Software Interface[28]

Before Intel acquired Altera, the tool was Altera Quartus Prime, and before that,

Altera Quartus II. Quartus Prime allows developers to compile their designs, perform

timing analysis, analyze RTL diagrams, simulate a design's reaction to various stimuli,

and configure the target device with the programmer. VHDL and Verilog

implementations are included in Quartus Prime for hardware description, visual editing

of logic circuits, and vector waveform simulation. [29]. The Intel Quartus Prime software

for FPGA, CPLD, and SoC designs is groundbreaking in terms of performance and

productivity, allowing you to quickly turn a concept into reality. Third-party synthesis

tools, static timing analysis, board-level simulation, signal integrity analysis, and formal

verification are all supported by the Intel Quartus Prime software [30]. It performs

numerous tasks, including the construction of designs using HDL or schematics, the

creation of systems using the Platform Designer graphical interface, and the generation

and editing of constraints (timing, pin placements, physical location on die, and I/O

voltage levels) [30].

It also performs synthesis of a high-level language into an FPGA netlist, FPGA

place and route, formally known as fitting, generation of a design image used to program

 33

an FPGA, formally known as assembly, timing analysis, and programming of the design

image into FPGA hardware, formally known as programming [30].

3.4.2 Arduino IDE 1.8.19

Figure 3. 5 Arduino IDE 1.8.19 Software Logo

Figure 3. 6 Arduino IDE 1.8.19 Software Interface[31]

The IDE (Integrated Development Environment) is an official Arduino.cc

software that is primarily used for editing, compiling, and uploading code to the Arduino

device. The Arduino IDE is free software that allows to write and compile code for the

Arduino Module. Almost all Arduino modules are compatible with this open-source

 34

software, which is simple to install and begin compiling code on the go. It is official

Arduino software that makes code compilation so simple that even a non-technical person

may get their feet wet with the learning process. It operates on the Java Platform and is

compatible with operating systems such as MAC, Windows, and Linux [31]. Besides, it

includes built-in functions and commands that aid in debugging, modifying, and

compiling code in the environment.

Arduino Uno, Arduino Mega, Arduino Leonardo, Arduino Micro, and many other

Arduino modules are available [31]. On the board of each of them is a microcontroller

that has been programmed and accepts data in the form of code. The core code, also

known as a sketch, written on the IDE platform will eventually generate a Hex File, which

will be copied and uploaded to the board's controller [31]. The IDE environment is made

up of two parts: an editor and a compiler. The editor is used to write the required code,

while the compiler is used to compile and upload the code to the Arduino Module. Both

C and C++ languages are supported in this environment [31].

3.4.3 Parallax Data Acquisition tool (PLX-DAQ) Software

Figure 3. 7 PLX-DAQ Software Interface[32]

 35

The Parallax Data Acquisition Tool (PLX-DAQ) software add-in for Microsoft

Excel collects up to 26 channels of data from any Parallax microcontroller and sorts it

into columns [32]. PLX-DAQ allows for simple spreadsheet analysis of field data,

laboratory sensor analysis, and real-time equipment monitoring. Any microcontroller

linked to a sensor and connected to a PC's serial connection can now send data directly

to Excel [32]. PLX-DAQ includes the following features: plot or graph data in real-time

using Microsoft Excel, record up to 26 columns of data, and more [32]. Read/write any

cell on a worksheet, read/set any of four checkboxes on the control the interface, Baud

rates up to 128K, and supports Com1-15[32].

3.5 Lists of Component

3.5.1 DE10-Lite Development Board (Altera FPGA MAX10)

Figure 3. 8 DE10-Lite Development Board

Based on the Altera MAX 10 FPGA, the DE10-Lite is a reliable hardware design

platform. The MAX 10 FPGA is well-suited for low-cost, single-chip control plane or

data path applications, as well as industry-leading programmable logic for maximum

design flexibility. The MAX 10 FPGA can reduce power consumption and costs while

increasing performance. [33]. Protocol bridging, motor control drive, analog-to-digital

 36

conversion, image processing, and handheld devices are all good candidates for the MAX

10 FPGA.

The DE10-Lite development board includes hardware such as an onboard USB

Blaster, a 3-axis accelerometer, video support, and more. Exploiting all of these features

is ideal for demonstrating, assessing, and prototyping the Altera MAX 10 FPGA's true

potential and is sufficient for this project [33]. The configuration of the board is shown

in Figure 3.8, along with the positioning of the connectors and critical components. This

board has several features that allow users to build a variety of designed circuits, ranging

from simple circuits to various multimedia applications.

Dual ADCs are included in the FPGA device. One dedicated analog input, eight

dual function pins, 50K programmable logic elements, 1,638 Kbits of M9K memory,

5,888 Kbits of user flash memory, 144 18 18 multipliers, and four PLLs are all included

in each ADC. The board includes a USB blaster with a standard type B USB connector.

The board also has a memory device which is 64MB SDRAM, x16 bits data bus. Besides,

the board consists of a 2x20 GPIO Header and Arduino Uno R3 Connector, including six

ADC channels. It also has 10 LEDs, ten slide switches, two pushbuttons with debounced

and 6 seven-segments. The board's power supply is a 5V DC input from a USB or an

external power socket [33].

3.5.2 Arduino Uno R3 Microcontroller

Figure 3. 9 Arduino Uno R3 Microcontroller Board[34]

 37

The Arduino Uno is an ATmega328-based microcontroller board. A 16 MHz

resonator, a USB connection, a power jack, an in-circuit system programming (ICSP)

header, and a reset button are among the 20 digital input/output pins (of which 6 can be

used as PWM outputs and 6 can be used as analog inputs) [34].

The Uno is unique in that it does not employ the FTDI USB-to-serial driver chip

found on previous boards. Instead, it uses an ATmega16U2 that has been designed to

function as a USB-to-serial converter [34]. The USB bootloader on this supplementary

microcontroller allows advanced users to modify it [34]. The Arduino Uno R3 is the third

and most recent iteration.

3.5.3 DHT22 Temperature and Humidity Sensor

Figure 3. 10 DHT22 Temperature and Humidity Sensor[35]

The DHT22 is the more expensive version when compared to the DHT11, but it

has better specifications. It has a temperature range of -40 to +125°C with +-0.5°C

accuracy [35], whereas the DHT11 has a temperature range of 0 to 50°C with +-2°C

accuracy [36]. In addition, the DHT22 sensor has a wider humidity measuring range,

ranging from 0 to 100% with 2-5% accuracy [35], compared to 20 to 80% with 5%

accuracy for the DHT11 [36].

DHT22 is a low-cost humidity and temperature measuring sensor. The fact that it

can get data in two seconds is a feature that makes it more valuable than other sensors. It

is divided into two sections. One is used to measure temperature, while the other is used

to measure humidity. It also has an IC that allows data to be sent to a microcontroller

[35]. For humidity measurement, it uses the humidity measurement component, which

 38

consists of two electrodes separated by a moisture-holding substrate [35]. Meanwhile,

this sensor uses an NTC temperature sensor or a Thermistor to measure temperature [35].

3.5.4 The built-in accelerometer in DE10-Lite Development Board (ADXL345)

Figure 3. 11 Connection between the accelerometer sensor and FPGA

The ADXL345 is a three-axis accelerometer with a high resolution (13-bit) that

can measure up to 16g in a small, thin, ultralow-power package. [37]. The 16-bit two's

complement digital output data is encoded and can be accessed through an I2C or SPI (3-

or 4-wire) interface [37]. For mobile device applications, the ADXL345 is a great option.

Tilt-sensing applications monitor the performance of both gravity's static acceleration

and the dynamic acceleration produced by motion or shock. It can measure inclination

fluctuations of less than 1.0° due to its high resolution (3.9 mg/LSB) [37].

The ADXL345 is in I2C mode when the GSENSOR_CS_N signal is high. The

device's 7-bit I2C address is 0x1D, followed by the R/W bit when the GSENSOR_SDO

signal is high [33]. This corresponds to a write of 0x3A and a read of 0x3B. Give a low

signal to the GSENSOR_SDO will select an alternate I2C address of 0x53 (followed by

the R/W bit). This corresponds to a write of 0xA6 and a read of 0xA7 [37].

 39

3.5.5 GPS NEO-7M Module.

Figure 3. 12 GPS NEO-7M Module[38]

The GPS-NEO-7M module is a high-performance GPS module with an active

antenna that enables UART communication. Any microcontroller may simply interface

with it. This module comes with a rechargeable battery and can be directly connected to

a computer using a USB to TTL converter [38].

This module can receive data and calculate the geographical position quickly and

accurately. The module contains internal memory to save settings and supports BeiDou,

Galileo, GLONASS, and GPS / QZSS [38].

3.5.6 BMP280 Barometric Pressure Sensor

Figure 3. 13 BMP280 Barometric Pressure Sensor [39]

Bosch Sensortec's BMP280 is a pressure, humidity, temperature, and approximate

altitude sensor. It is best suited for environmental applications, but it can also be utilized

in Prosthetics applications where pressure is a key parameter to work with. It's also useful

in drones, where pressure, temperature, and altitude may be monitored and used to make

 40

further observations. The BMP280 is made up of a Piezo-resistive sensing element that

is connected to an A/D converter [39]. This converter delivers conversion results with

appropriate sensor compensation, as well as a digital interface and a built-in IIR filter to

reduce output data disruptions. [39].

I2C and SPI are the two protocols that can be used to connect to the BMP280. It

can monitor pressure with a 1% accuracy from 300 to 1100 hPa, temperature with a 1%

accuracy from -40 to +85°C, and approximate altitude with some calculations [39]. The

sensor's operational voltage ranges from 1.2V to 3.6V with current consumption of 0.1uA

in sleep mode, making it ideal for low-power applications in embedded devices [39].

3.5.7 RF transceiver module (2.4GHz, NRF24L01+ with PA and LNA)

Figure 3. 14 RF NRF24L01+ transceiver module[40]

This module is based on the Nordic nRF24L01+, which has a 1,000-meter range

and contains a built-in Power Amplifier (PA) and Low-Noise Amplifier (LNA) [40]. This

module can use 125 different channels which gives a possibility to have a network of 125

independently working modems in one place. Each channel can have up to 6 addresses,

or each unit can communicate with up to 6 other units at the same time. Keep an 8-pin

interface on this module and use the SPI interface to control it while transferring data

[41][40]. Three of these pins have SPI communication and they need to be connected to

the SPI pins.

The nRF24L01+ module transmits data using GFSK modulation and operates in

the 2.4 GHz global ISM frequency range. 250kbps, 1Mbps, and 2Mbps data transfer rates

 41

are all available [40]. All settings, including frequency channel (125 selectable channels),

output power (0 dBm, -6 dBm, -12 dBm, or -18 dBm), and data rate, can be configured

using the SPI interface (250kbps, 1Mbps, or 2Mbps).

3.6 Flowchart of the system

A flowchart is a diagram that displays the flow of information, steps and decisions

that must be made to complete a procedure. There will be two flowcharts for this project:

the deployment flowchart and the testing process flowchart.

Figure 3. 15 Deployment flowchart

A flowchart is a diagram that depicts the movement of data. Figure 3.11 depicts

the deployment of CanSat in this project. The flow starts and all sensors read the initiate

all I/O commands. The CanSat will be deployed using a drone and moved to the target

locations or altitude for this project for the next flow. If the drone arrived at the target

locations, the CanSat would start reading the input from all the sensors. The collected

data will transmit the telemetry data to be processed by the Ground station PC. The

CanSat will move to other locations or altitudes to collect more data and compare it to

 42

another. If the CanSat collects enough data, the CanSat will descend to the ground.

During the descent by a parachute, the CanSat collects and transmits data by telemetry to

the ground station, transmitting those data to the laptop to be analyzed. After the whole

phase has been completed, the flow will end.

Figure 3. 16 System flowchart

Refer Figure 3.12 depicts the deployment of CanSat in this project. The flow

begins with initializing all input and output, and the system design integrates the DE10-

Lite development board and Arduino Uno with all the sensors (barometric sensor,

temperature and humidity sensor, GPS and accelerometer). The serial baud rate is set to

9600 and starts with all the sensors. Also, set up the channel, PA level and data rate for

the wireless communication module. In the decision stage, the sensor's output will be

processed by a DE10-Lite Development board, testing the output data gathered from the

sensors.

The flow will return to system design if the sensors are not working correctly. If

yes, the process will proceed to the next flow which is to read the telemetry data through

 43

serial communication and test the system's capability in wireless communication. When

the system can transmit and receive the data, the next flow monitors all the data gathered

and processes it by ground station to the laptop. The next step of the procedure is that

with all the data collected from the CanSat, the ground station will process the data to the

laptop using data acquisition software to receive the data in excel format. The telemetry

data then will be analyzed and compared to the expected results. After the whole phase

has been completed, the flow will end.

3.7 Design Development

Figure 3. 17 CanSat Circuit Design

Figure 3.17 shows the circuit design for the CanSat. For the BMP280 sensor

connection, the I2C protocol involves using two lines to send and receive data: a serial

clock pin (SCL) that the Arduino Controller board pulses at a regular interval, and a serial

data pin (SDA) over which data is sent between the two devices. Next, the NEO-7M GPS

module uses a UART interface for the data transfer on the both DE10-Lite Development

Board and Arduino Uno R3 Microcontroller. UART stands for Universal Asynchronous

Receiver/Transmitter. It is a hardware device (or circuit) used for serial communication

between two devices. The nRF24L01+ communicates over a 4-pin SPI (Serial Peripheral

Interface) with a maximum data rate of 10Mbps. The SPI bus uses the concept of a master

 44

and a slave. In this project, the Arduino is the master and the nRF24L01+ module is the

slave. Unlike the I2C bus, the SPI bus has a limited number of slaves. The details pinout

for each connection will be brief in the next subtopic.

Figure 3. 18 Circuit Design on Ground Station

Figure 3.18 shows the circuit design for the Ground station. The nRF24L01+

communicates over a 4-pin SPI (Serial Peripheral Interface) with a maximum data rate

of 10Mbps. The SPI bus uses the concept of a master and a slave. In this project, the

Arduino is the master and the nRF24L01+ module is the slave. Unlike the I2C bus, the

SPI bus has a limited number of slaves. After that, the telemetry data are collected through

serial communication and converted to Microsoft Excel using PLX-DAQ Data

Acquisition Software to easily analyze the data.

 45

3.7.1 FPGA DE10-lite Development Board Connection

Figure 3. 19 DE10-Lite Development Board circuit connection

Refer to Figure 3.19 shows the connection between the DE10-Lite Development

Board and GPS NEO-7M. The VCC and GND of the GPS module are connected to the

3.3V and GND of the DE10-Lite Development Board. The Tx pin on the GPS module is

connected to the GPIO_[35] and the Rx pin is connected to the GPIO_[34]. The NMEA

protocol and the UART interface were combined for this project, and just one NMEA

message, GPGLL (Geographic Position Latitude/Longitude), was processed. The most

widely used text-based data transmission protocol is NMEA (8-bit ASCII cricking). Only

six seven-segment indicators were utilized on the board, three of which represented the

latitude coordinate and the other three the longitude coordinate. NMEA 0183 is a standard

defining a text-based communication protocol for navigation equipment, especially

popular in GPS receiver modules. NMEA 0183 message format:

1. “$" - message start marker

2. A 5-letter message identifier that identifies the type of message being

transmitted:

i. The first two letters are the identifier of the source of the message, in the

case of the GPS module it is always "GP"

ii. Last three letters - message type

 46

3. A list of message data. The amount and format of this data depend on the

message, but the following characteristics are required for the information

transmitted:

i. All data is separated by commas - ","

ii. If there is no data in the message, commas are still put (possible

situations like ",,,") - the number of commas in a certain type of message

is constant and does not depend on the data, this is done to simplify the

process of processing the message

4. "*" - checksum start marker

5. 2 checksum symbols - the checksum is counted as the XOR sum of all

symbols between "$" and "*" not inclusive. The resulting amount is

represented in hexadecimal form in two ASCII characters (letters are

transmitted in uppercase)

6. "<CR> <LF>" - 2 characters marking the end of the message:

i. <CR> - ASCII carriage return, hexadecimal value - 0D

ii. < LF> - ASCII line feed, hexadecimal value - 0A

3.7.2 Development Of a Message Processing Module from A GPS Module

To process messages from the GPS module, a simple state machine was

developed.

 47

Figure 3. 20 State Diagram for Message Processing Module

Starting state (rest state) - the machine waits for a signal from the UART module,

reporting that the data has been received and upon the arrival of this signal checks the

data, if the "$" has come - goes into the following state:

The state saves the data received from the UART to an NMEA array [23:0] until

it encounters ",". When the machine encounters a comma, it checks the NMEA condition

== "GLL", i.e., whether the necessary command has arrived and if the condition is met,

it goes to the next state. If another command came from the GPS module, the machine

returns to its starting state. only the last three bytes received from the UART are stored

in the NMEA array because they determine the message type, and the rest of the

information is not required.

 48

This state processes the latitude coordinate. It writes the first three ASCII bytes

with coordinates to the LAT array [23:0]. As soon as this state is met with a comma

character, it moves to the next state.

In this state, you can handle the north/south latitude value. The board used has

only 6 seven-segment indicators, 3 of which displayed the latitude coordinate, and the

other 3 - the longitude coordinate - so the values of north/ south latitude and east/ west of

longitude were not processed, because there is nowhere to display them. For this case,

this state just waited for "," and went into the following state:

This state handles the longitude coordinate-the principle of operation is the same

as that of the latitude coordinate handler. As soon as there is a line break symbol - there

is a transition to the starting state - the data that goes further we are not interested in.

 49

In this case, only the first three bytes of latitude and longitude coordinates were

processed for technical reasons, but it is quite simple to increase the accuracy of

processing - for this, it is necessary to increase the variable "precision" to the required

accuracy value. Increase the dimension of the LAT and LON arrays -you need one byte

for each accuracy digit. And fix the filling of these arrays in the states "Read LAT" and

"Read LON". The full Verilog code with the module used is attached in Appendix C.

3.7.3 Module for displaying information on a seven-segment indicator

To display hexadecimal values on the seven-segment indicator, the "hex7seg"

module was used:

Therefore, we transmitted only the second half of each byte of the coordinate to

the seven-segment indicator, since it was the second half that contained the information

necessary for output, and the first half of the byte was always stored 0x3 (in the case

when the byte represented a digit):

 50

3.7.4 Built-in DE10-lite Accelerometer Sensor

Figure 3. 21 Accelerometer Connection with LEDs

The accelerometer is controlled via a 3-wire SPI in this project. The controller

sets 1 on the SPI bit in the Register 0x31 –DATA FORMAT register before reading any

data from the accelerometer [33]. To calculate the board's tilt, the 3-wire SPI Controller

block reads the digital accelerometer's X-axis value. The LEDs are lit up and float to the

top of the board like a bubble. The digital accelerometer detects and shows tilting

movement on the LEDs as the board is tilted from left to right and right to left.

 51

3.7.5 Arduino Uno R3 Microcontroller connection

Figure 3. 22 Arduino Uno R3 Circuit on CanSat

Refer to Figure 3.22 shows the circuit connection on the CanSat. For the

nRF24L01+ module, the VCC pin on the module is connected to 3.3V, and the GND pin

is to ground on the Arduino. The Chip Enable (CE) and Chip Select Not (CSN) are

connected to digital pins #7 and #8 respectively. MOSI, MISO, and Serial Clock (SCK)

are connected to the SPI pins #11, #12, and #13 respectively. After the data from all the

sensors is collected, the data package is sent through the nRF24L01+ module to another

nRF24L01+ module on the Ground station.

Furthermore, the VCC pin on the BMP280 module is connected to 5V and the

GND pin to the ground on the Arduino. The SDA and SCL pins are connected to I2C

pins #A4 and #A5 respectively. Next, for the GPS NEO-7M module, the VCC pin on the

module is connected to 3.3V and the GND pin is to ground on the Arduino. The TX and

RX pins are connected to digital pins #3 and #4 respectively. Lastly, the VCC pin on the

module is connected to 5V and the GND pin to the ground on the Arduino meanwhile the

DATA pin is connected to the digital pin #2.

 52

Figure 3. 23 Arduino Uno R3 Circuit Connection on Ground Station

Refer to Figure 3.23 shows the circuit connection on the ground station. For the

nRF24L01+ module, the VCC pin on the module is connected to 3.3V and the GND pin

is to ground on the Arduino. The CE and CSK are connected to digital pins #7 and #8

respectively. MOSI, MISO and SCK are connected to the SPI pins #11, #12 and #13

respectively. Lastly, the data package from the CanSat is received through the

nRF24L01+ module.

3.8 Chapter Summary

For this chapter, all subtopics were explained briefly, and each chosen rationale

was explained. Each component chosen for this project is well studied to ensure it is

suitable. A reader can relate to the whole system from this topic's block diagram, flow

chart and in-circuit development.

 53

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The planned project outcome of the aerial surveillance and monitoring system

devices will be addressed in this section. It will explain the system's working system from

the start to the end. The result outcome and discussion for this project were presented in

this chapter. Throughout the stage, the result will be implemented based on the project’s

objective.

4.2 Hardware Design

Figure 4. 1 Hardware Design

 54

Figure 4. 2 Dimension of the enclosure

Refer to Figure 4.1 depicts the CanSat design, which is made up of a circuit that

uses a breadboard and a jumper wire to link all the sensors. Before the circuit is adjusted

and put into the shell, the data is obtained simply using the circuit. The objective of this

is to ensure that all the sensors and systems are functioning properly. For this project's

data collecting and analysis, several sites and altitudes are taken. The DE10-Lite

Development Board, Arduino Uno R3 Microcontroller, and all the sensors required in

this project are then placed in the plastic cuboid enclosure. The purpose of using a plastic

shell is to make the CanSat as light as feasible, as the drone will be carrying the CanSat

for an environmental surveillance application in specific areas. As indicated in figure 4.2,

the case's dimensions are 12cm x 12cm x 16cm.

 55

4.3 Telemetry data collection from different Altitude and locations

Figure 4. 3 Faculty of Computer 1st and 2nd floor

Figure 4. 4 Faculty of Computer 3rd and 4th floor

To test the CanSat whole system, the telemetry data are collected from the

different altitudes and locations. For the first test, the data is collected in the Faculty of

Computers at Universiti Malaysia Pahang. Refer to Figure 4.3 and Figure 4.4 shows the

telemetry data collected from the 1st floor, 2nd floor, 3rd floor, and 4th floor respectively

in the Faculty of Computers. Each floor collected 100 rows package of telemetry data.

All data collected are converted to Microsoft Excel to make it easy for data analysis. After

 56

testing in the open area, data is collected from the indoor area to test the GPS and wireless

communication.

4.4 GPS reading and Accelerometer Output

Figure 4. 5 GPS and Accelerometer output displayed

Figure 4. 6 GPS coordinate website

The reading for a GPS coordinate is shown in Figure 4.5 using six seven-segment

displays. Only six seven-segment indicators were utilized on the board, three of which

indicated the latitude coordinate and three of which displayed the longitude coordinate.

The first three seven segments show the longitude value of 103, whereas the other three

 57

seven segments show the latitude value of 3.3. The ground station will also receive the

whole GPS coordinate via a wireless connection. This project also compared the GPS

reading with the GPS coordinator online on gpscoordinate.net in Figure 4.6 to verify the

GPS coordinate. The LEDs represented the beginning point of the accelerometer reading

when the surface was flat or when the CanSat was in balance.

Figure 4. 7 Accelerometer output display on the LEDs

Refer to Figure 4.7 shows how the LEDs light up like a bubble and float above

the board. As the board tilts from left to right, the digital accelerometer detects and

displays tilting movement on the LEDs. To see the effect on the LEDs, tilt the DE10-Lite

board from side - to - side. The tilt of the board is determined by reading the digital

accelerometer's X-axis value.

 58

4.5 Arduino Uno Serial monitor on the Ground Station

Figure 4. 8 Arduino IDE Serial Monitor

Refer Figure 4.8 displays the output from an Arduino IDE serial monitor, with

data from the CanSat received via package. The value of humidity (percent), temperature

(°C), atmospheric pressure (hPa), altitude (meter), and GPS coordinates for longitude and

altitude are all included in each package. For this project, the Baud Rate is 9600. In a

communication channel, the baud rate is the pace at which data is conveyed. When

discussing serial communication circuits, the term "baud rate" is frequently used. "9600

baud" in the context of a serial port signifies that the serial port can send a maximum of

9600 bits per second, which is sufficient for this project.

 59

4.6 Telemetry data in Microsoft Excel on the Ground Station

Figure 4. 9 Telemetry data in Microsoft Excel

Refer to Figure 4.9 illustrates the data generated from the PLX-DAQ Data

Acquisition Software in Microsoft Excel. PLX-DAQ can now send data directly to Excel

from any microcontroller connected to a sensor and connected to a PC's serial port. The

PLX-DAQ specifications are covered in the Methodology chapter. The first and second

columns show the date of the observation and the time each data was received,

respectively. The humidity value in percent and the temperature of the environment in

degrees Celsius are displayed in the third and fourth columns from the DHT22

temperature and humidity sensor. The BMP280 barometer sensor displays the air

pressure in hectopascals (hPa) and altitude in meters in the fifth and sixth columns,

respectively. Finally, in the 8th and 9th columns, the GPS coordinates from the GPS-7M-

NEO module are displayed. The data collected from various heights and locations will

then be processed, and a graph will be created.

 60

4.7 Data analysis in data collection

Figure 4. 10 Altitude vs Atmospheric pressure graph

Figure 4. 11 Temperature vs Humidity graph

 61

Figure 4. 12 GPS time taken graph

Refer to Figures 4.10 show pressure and altitude readings, Figures 4.11 show

temperature and humidity readings, and Figure 4.12 shows GPS Latitude and Longitude

readings. All sensors function properly, but the effect of shaking when traveling to each

level has harmed the sensors (not properly attached to the header). Another reason for not

being able to send all the telemetry data is a poor antenna pointing from the Ground

station. Because of the low visibility, binoculars and sunglasses are required to overcome

the visual limits, especially during the day. The GPS has a rechargeable battery that helps

retain clock data, the latest position data (GNSS orbit data), and module configuration in

RAM. This allows much faster position locks. Without the battery the GPS always cold-

start and needs to acquire information from the satellites, so the initial GPS lock takes

more time and will take more time in the indoor area.

 62

CHAPTER 5

CONCLUSION

5.1 Introduction

This chapter focused primarily on the conclusions drawn from this research.

Furthermore, it suggests future research in aerial surveillance and monitoring systems.

5.2 Conclusion

The Telemetry CanSat was successfully designed utilizing FPGA and Arduino

Uno in this project. Furthermore, all essential subsystems contained in CanSat, such as

the main unit, sensors, and communication system module, were successfully fitted into

the smallest possible volume. Because several sensors used in this project require a

module to utilize in the FPGA alone, Telemetry CanSat is created utilizing an FPGA

DE10-Lite Development board and Arduino Uno as the primary unit.

CanSat technology is a foundational topic in space engineering education. It has

only been utilized for educational purposes until now, but its incorporation in a scientific

endeavor will show that it can be used for both scientific and technological goals. CanSat

is well suited for satellite modeling in education and research since it can simply reflect

how the satellite's systems work. For example, telemetry data collected by sensors were

utilized to monitor atmospheric conditions. Due to a technical issue with obtaining a

drone to attach to the CanSat, the final design could not be tested.

 63

5.3 Project Management

5.3.1 Cost of Project

For the project management of this project, I need to use hardware component for

this project and their prices are listed in table 5.1 below. I spent RM162.30 on this study

because of Intel Microelectronics (M) Sdn. Bhd. sponsored the DE10-Lite Development

Board during my internship with this company.

Table 5. 1 Cost of Project

No Item Unit Price/Unit

1 DE10-Lite Development Kit 1 RM 448.56

2 Arduino Uno R3 Microcontroller 2 RM 59.80

3 DHT22 Module 1 RM 14.90

4 GPS NEO-7M Module 1 RM 41.50

5 40 ways Male to Male Jumper 1 RM 6.00

6 BMP280 Barometric Sensor Module 1 RM 9.50

7 NRF24L01+ with PA and LNA Module 2 RM 17.60

8 Cable Sleeve (5 meter) 1 RM 5.00

9 Case 1 RM 8.00

 Total RM 610.86

5.4 Future Recommendation

The module for each sensor can be constructed in the future so that this project

can solely utilize FPGA because FPGA has several advantages over microcontrollers,

one of which is the ability to execute On-Board Processing. For the next upgraded version

of CanSat, it is recommended that you use a 3D printed machine with advanced features

or choose a new technique of construction.

 64

REFERENCES

[1] Z. Zaheer, A. Usmani, E. Khan, and M. A. Qadeer, “Aerial surveillance system using

UAV,” IFIP Int. Conf. Wirel. Opt. Commun. Networks, WOCN, vol. 2016-Novem, 2016,

doi: 10.1109/WOCN.2016.7759885.

[2] A. Colin and M. Jimenez-Lizárraga, “The Cansat Technology for Climate Monitoring in

Small Regions at Altitudes Below 1km,” IAAA Clim. Chang. Disaster Manag. Conf., no.

September 2015, pp. 1–10, 2017.

[3] P. Rudol, Increasing Autonomy of Unmanned Aircraft Systems Through the Use of

Imaging Sensors, no. 1510. 2011.

[4] S. W. Walker, U. S. A. F. Academy, and C. Springs, “INTEGRATING DEPARTMENT

OF DEFENSE UNMANNED AERIAL SYSTEMS INTO THE NATIONAL

AIRSPACE STRUCTURE A thesis presented to the Faculty of the U . S . Army

Command and General Staff College in partial fulfillment of the requirements for the

degree by Master ’ s ,” Methodology, 2010.

[5] sezer çoban and tuğrul oktay, “Legal and Ethical Issues of Unmanned Aerial Vehicles,”

J. Aviat., no. June, 2018, doi: 10.30518/jav.421644.

[6] U.S. Army, “Unmanned Aircraft Systems Roadmap 2010-2035,” Fed. Am. Sci., pp. 1–

140, 2010.

[7] J. Oliver, Autonomus Flying Robot, vol. 53, no. 9. 2013.

[8] S. G. Gupta, M. Ghonge, and P. M. Jawandhiya, “Review of Unmanned Aircraft System

(UAS),” SSRN Electron. J., no. April, 2019, doi: 10.2139/ssrn.3451039.

[9] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial vehicles: A

survey,” Int. J. Control. Autom. Syst., vol. 8, no. 1, pp. 36–44, 2010, doi:

10.1007/s12555-010-0105-z.

[10] J. a. Winnefeld and F. Kendall, “Unmanned Systems integrated roadmap: FY 2011-

2036,” pp. 1–74, 2010.

[11] D. D. Weatherington, “UAS Planning Task Force,” 2007.

[12] U. A. Systems, “UAS-based Environmental Monitoring.”

[13] P. Catalog, “Intel ® Cover TBD Product.”

[14] Xilinx Inc., “Introduction to FPGA Design with Vivado High-Level Synthesis UG998,”

Ug998, vol. UG998, pp. 1–89, 2019, [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-

design-hls.pdf.

[15] M. H. Mickle, “Product Summary,” IEEE Micro, vol. 7, no. 2, pp. 100–101, 1987, doi:

10.1109/MM.1987.304862.

[16] S. Microsystems, “OpenSPARC T1 Microarchitecture Specification,” no. 819, 2009.

 65

[17] I. Kuon and J. Rose, Quantifying and exploring the gap between FPGAs and ASICs:

Measuring and exploring. 2010.

[18] T. Thai, “Applications for FPGAs on Nanosatellites,” no. April, 2014.

[19] S. Yamaura, H. Akiyama, and R. Kawashima, “Report of CanSat leader training

program,” RAST 2011 - Proc. 5th Int. Conf. Recent Adv. Sp. Technol., pp. 856–860,

2011, doi: 10.1109/RAST.2011.5966964.

[20] E. Bautista-linares et al., “CanSat,” pp. 0–3, 2015.

[21] M. E. Umit, W. Cabanas, M. Tetlow, H. Akiyama, S. Yamaura, and S. Olaleye,

“Development of a fly-back CANSAT in 3 weeks,” RAST 2011 - Proc. 5th Int. Conf.

Recent Adv. Sp. Technol., pp. 804–807, 2011, doi: 10.1109/RAST.2011.5966953.

[22] M. Abo-arais et al., “Approaching a nano-satellite using CAN-SAT systems,” pp. 813–

817, 2015.

[23] M. Celebi et al., “Design and navigation control of an advanced level CANSAT,” RAST

2011 - Proc. 5th Int. Conf. Recent Adv. Sp. Technol., pp. 752–757, 2011, doi:

10.1109/RAST.2011.5966942.

[24] Y. Miyazaki and M. Yamazaki, “A practical education of space engineering by using

CanSat and pico-satellite - Fruitful collaboration with UNISEC for success of student

satellite program - Fruitful c,” RAST 2013 - Proc. 6th Int. Conf. Recent Adv. Sp.

Technol., pp. 1081–1086, 2013, doi: 10.1109/RAST.2013.6581163.

[25] M. Ostaszewski, K. Dzierzek, and Ł. Magnuszewski, “Analysis of data collected while

CanSat mission,” Proc. 2018 19th Int. Carpathian Control Conf. ICCC 2018, pp. 1–4,

2018, doi: 10.1109/CarpathianCC.2018.8399591.

[26] R. P. Ramadhan, A. R. Ramadhan, S. A. Putri, M. I. C. Latukolan, Edwar, and Kusmadi,

“Prototype of CanSat with Auto-gyro Payload for Small Satellite Education,” TSSA

2019 - 13th Int. Conf. Telecommun. Syst. Serv. Appl. Proc., pp. 243–248, 2019, doi:

10.1109/TSSA48701.2019.8985514.

[27] M. E. Aydemir, R. C. Dursun, and M. Pehlevan, “Ground station design procedures for

CANSAT,” RAST 2013 - Proc. 6th Int. Conf. Recent Adv. Sp. Technol., no. 1, pp. 909–

912, 2013, doi: 10.1109/RAST.2013.6581343.

[28] Q. P. Lite, “Introduction to FPGA Simulation and Debug,” 2018.

[29] S. Feedback and S. Jose, “Quartus Prime Standard Edition Handbook Volume 3:

Verification,” vol. 3, 2016.

[30] T. Office, “INTRO TO INTEL ® FPGAS AND INTEL ® QUARTUS ® PRIME,”

2018.

[31] M. Fezari and A. Al Dahoud, “Integrated Development Environment ‘ IDE ’ For

Arduino,” ResearchGate, no. October, pp. 1–12, 2018, [Online]. Available:

https://www.researchgate.net/publication/328615543%0AIntegrated.

[32] T. E. Ui et al., “Beginners Guide to PLX DAQ v2 by Net Devil The Excel UI part,” no.

 66

Revision 1, pp. 1–12, 2016.

[33] E. Dist and H. City, “DE10-Lite Board,” no. 176.

[34] P. R. Manual, “Arduino ® UNO R3 Target areas : Arduino ® UNO R3 Features,” pp. 1–

13, 2021.

[35] T. Liu, “Digital-output relative humidity & temperature sensor/module DHT22,” New

York Aosong Electron., vol. 22, pp. 1–10, 2015, [Online]. Available:

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf.

[36] D. Srivastava, A. Kesarwani, and S. Dubey, “Measurement of Temperature and

Humidity by using Arduino Tool and DHT11,” Int. Res. J. Eng. Technol., vol. 05, no.

12, pp. 876–878, 2018.

[37] T. Mmaq, “Digital Accelerometer,” pp. 1–47, 2011.

[38] U-blox, “NEO-7 - Data Sheet Document,” pp. 1–26, 2014, [Online]. Available:

https://www.u-blox.com/sites/default/files/products/documents/NEO-

7_DataSheet_%28UBX-13003830%29.pdf.

[39] Bosch, “BMP280: Datasheet,” Digit. Presusure Sens., p. 49, 2015, [Online]. Available:

https://cdn-shop.adafruit.com/datasheets/BST-BMP280-DS001-11.pdf.

[40] N. Simicondutor, “Preliminary Product Specification v1.0,” no. March, pp. 1–75, 2008,

[Online]. Available:

https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_

Product_Specification_v1_0.pdf.

[41] R. Rittenberry, “Hands-on technology.,” Occup. Health Saf., vol. 74, no. 2, p. 24, 2005.

 67

APPENDICES

Appendix A Gantt Chart

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Final presentation 2

Report and logbook submission to supervisor 2

Submission to PSM2 Cordinantor

Interface connection between FPGA board amd other components

Project Coding

Software simulation in Intel Quartus Prime Software

Hardware tesing

Progress presentation to SV 2

Presentation slide submission to panel/supervisor 2

Learn basic concept of FPGA board

Hardware component selection

Determine the best method for project

Progress presentation to SV

Analytical review

Presentation slide submission to panel/supervisor

Final presentation

Report and logbook submission to supervisor

Submission to PSM1 Cordinantor

Learn basic concept of FPGA board

Report and logbook submission to supervisor

Submission to PSM1 Cordinantor

Selection of software for simulation

PSM1 PSM2

Week/Task

Meeting with a subject coordinator -PSM briefing session

PSM Titles realaease

ApprovAL FYP title

PSM Register Title

Meeting with supervisor

Study of problem

Identify the project objecttive and expected results

 68

Appendix B Arduino IDE coding

Arduino coding for Ground Station

#include <SPI.h>

#include "RF24.h"

RF24 myRadio (7, 8);

byte addrs[][6] = {"T"};

struct package { // Items and order must match packet being sent by

'Boss'

 int pktNo = 0;

 float hum = 0;

 float temp = 0;

 float prs = 0;

 float al = 0;

 float lt = 0;

 float ln = 0;

 //char msg[50] ="_";

};

typedef struct package Package;

Package data1; // Package named data1 contains pktNo, rawPot, perPot,

perCent & msg

void setup() {

 Serial.begin(9600); // Start Serial Monitor

 delay(1000);

 myRadio.begin(); // Start radio

 myRadio.setChannel(100);

 myRadio.setPALevel(RF24_PA_MIN); // radios are close together

 myRadio.setDataRate(RF24_250KBPS);

 myRadio.openReadingPipe(1, addrs[0]); // Read from pipe called "T"

 myRadio.startListening(); // Listen for signal from

Boss

 Initialize_PlxDaq();

}

void loop() {

 if (myRadio.available()) {

 while (myRadio.available()) { // Picked up transmission

from Boss

 myRadio.read(&data1, sizeof(data1)); // Get the values from

radio buffer

 }

 // Print package contents to Monitor for checking

 Serial.print("\nPackage Received:");

 Serial.println(data1.pktNo);

 Serial.print("Humidity(%): ");

 Serial.println(data1.hum);

 Serial.print("Temperature(°C): ");

 Serial.println(data1.temp);

 Serial.print("Pressure(hPa): ");

 Serial.println(data1.prs);

 Serial.print("Altitude(meter): ");

 69

 Serial.println(data1.al);

 Serial.print("Position: ");

 Serial.print("Latitude: ");

 Serial.print(data1.lt,6);

 Serial.print("; ");

 Serial.print("Longitude: ");

 Serial.println(data1.ln,6);

 Write_PlxDaq();

 delay(800);

 }

}

void Initialize_PlxDaq()

{

Serial.println("CLEARDATA"); //clears up any data left from previous

projects

Serial.println("LABEL,Date,Time,Package

No.,Humidity(%),Temperature(*C),Pressure(hPa),Altitude(meter),Latitude

,Longitude"); //always write LABEL, to indicate it as first line

}

void Write_PlxDaq()

 {

 Serial.print("DATA"); //always write "DATA" to Inidicate the

following as Data

 Serial.print(","); //Move to next column using a ","

 Serial.print("DATE"); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print("TIME"); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.pktNo); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.hum); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.temp); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.prs); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.al); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.lt,6); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.print(data1.ln,6); //Store date on Excel

 Serial.print(","); //Move to next column using a ","

 Serial.println(); //End of Row move to next row

 }

 70

Arduino coding for CanSat

#include <SPI.h>

#include <Wire.h>

#include <Adafruit_GFX.h>

//#include <Adafruit_SSD1306.h>

#include <Adafruit_BMP280.h>

#include "DHT.h"

#include "RF24.h"

#include <SoftwareSerial.h>

#include <TinyGPS.h>

Adafruit_BMP280 bmp; // I2C

float lat = 0.00,lon = 0.00; //create variable for latitude and

longitude object

SoftwareSerial gpsSerial(3,4);//rx,tx

TinyGPS gps; // create gps object

#define DHTPIN 2

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

DHT dht(DHTPIN, DHTTYPE);

float humi;

float tempC;

float tempF;

float pres;

float alt;

RF24 myRadio (7, 8); // These can be changed CE CSN

byte addrs[][6] = {"T"}; // Single data1 pipe to send on

struct package { // Define the data1 packet contents

 int pktNo = 0; // Count and identify packets sent

 float hum = 0; // 0 .. 1023 from 10K Ohm potentiometer

 float temp = 0.0; // floating point value

 float prs = 0;

 float al = 0;

 float lt = 0;

 float ln = 0;

 //char msg[50] = ""; // Text string - Not changing

};

typedef struct package Package;

Package data1; // Package named data1 contains pktNo, hum, temp,

prs, al, lt, ln, msg

void setup() {

 Serial.begin(9600); // Start Serial Monitor

 dht.begin();

 bmp.begin();

 gpsSerial.begin(9600); // connect gps sensor

 myRadio.begin(); // Start radio

 myRadio.setChannel(100); // Could be changed 1 ... 125

 71

 myRadio.setPALevel(RF24_PA_MIN); // Power level minimum -

radios are close together

 myRadio.setDataRate(RF24_250KBPS);

 myRadio.openWritingPipe(addrs[0]); // Write to pipe called "T"

 delay(750);

 /* Default settings from datasheet. */

 bmp.setSampling(Adafruit_BMP280::MODE_NORMAL, /* Operating Mode.

*/

 Adafruit_BMP280::SAMPLING_X2, /* Temp.

oversampling */

 Adafruit_BMP280::SAMPLING_X16, /* Pressure

oversampling */

 Adafruit_BMP280::FILTER_X16, /* Filtering. */

 Adafruit_BMP280::STANDBY_MS_500); /* Standby time.

*/

}

void loop() {

 // Wait a few seconds between measurements.

 delay(1000);

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very

slow sensor)

 humi = dht.readHumidity();

 // Read temperature as Celsius (the default)

 tempC = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 tempF = dht.readTemperature(true);

 pres = bmp.readPressure()/100;

 alt = bmp.readAltitude(1019.66);

 while(gpsSerial.available()){ // check for gps data

 if(gps.encode(gpsSerial.read()))// encode gps data

 {

 gps.f_get_position(&lat,&lon); // get latitude and longitude

 }

 }

 data1.hum = humi;

 data1.temp = tempC;

 data1.prs = pres;

 data1.al = alt;

 data1.lt = lat;

 data1.ln = lon;

 data1.pktNo = data1.pktNo + 1;

 // Send the packet of data called data1 to Subordinate

 myRadio.write(&data1, sizeof(data1));

 // Report sent values to Monitor

 Serial.print("\nPackage Sent:");

 Serial.println(data1.pktNo);

 Serial.print("Humidity(%): ");

 Serial.println(data1.hum);

 Serial.print("Temperature(°C): ");

 Serial.println(data1.temp);

 72

 Serial.print("Pressure(hPa): ");

 Serial.println(data1.prs);

 Serial.print("Altitude(meter): ");

 Serial.println(data1.al);

 Serial.print("Position: ");

 Serial.print("Latitude: ");

 Serial.print(data1.lt,6);

 Serial.print("; ");

 Serial.print("Longitude: ");

 Serial.println(data1.ln,6);

 delay(800);

}

 73

Appendix C Quartus Prime Code (Verilog)

DE10_LITE_Golden_Top,v

`define ENABLE_ADC_CLOCK

`define ENABLE_CLOCK1

`define ENABLE_CLOCK2

`define ENABLE_SDRAM

`define ENABLE_HEX0

`define ENABLE_HEX1

`define ENABLE_HEX2

`define ENABLE_HEX3

`define ENABLE_HEX4

`define ENABLE_HEX5

`define ENABLE_KEY

`define ENABLE_LED

`define ENABLE_SW

`define ENABLE_VGA

`define ENABLE_ACCELEROMETER

`define ENABLE_ARDUINO

`define ENABLE_GPIO

module DE10_LITE_Golden_Top(

 //////////// ADC CLOCK: 3.3-V LVTTL //////////

`ifdef ENABLE_ADC_CLOCK

 input ADC_CLK_10,

`endif

 //////////// CLOCK 1: 3.3-V LVTTL //////////

`ifdef ENABLE_CLOCK1

 input MAX10_CLK1_50,

`endif

 //////////// CLOCK 2: 3.3-V LVTTL //////////

`ifdef ENABLE_CLOCK2

 input MAX10_CLK2_50,

`endif

 //////////// SDRAM: 3.3-V LVTTL //////////

`ifdef ENABLE_SDRAM

 output [12:0] DRAM_ADDR,

 output [1:0] DRAM_BA,

 output DRAM_CAS_N,

 output DRAM_CKE,

 output DRAM_CLK,

 output DRAM_CS_N,

 inout [15:0] DRAM_DQ,

 output DRAM_LDQM,

 output DRAM_RAS_N,

 output DRAM_UDQM,

 output DRAM_WE_N,

`endif

 //////////// SEG7: 3.3-V LVTTL //////////

`ifdef ENABLE_HEX0

 74

 output [7:0] HEX0,

`endif

`ifdef ENABLE_HEX1

 output [7:0] HEX1,

`endif

`ifdef ENABLE_HEX2

 output [7:0] HEX2,

`endif

`ifdef ENABLE_HEX3

 output [7:0] HEX3,

`endif

`ifdef ENABLE_HEX4

 output [7:0] HEX4,

`endif

`ifdef ENABLE_HEX5

 output [7:0] HEX5,

`endif

 //////////// KEY: 3.3 V SCHMITT TRIGGER //////////

`ifdef ENABLE_KEY

 input [1:0] KEY,

`endif

 //////////// LED: 3.3-V LVTTL //////////

`ifdef ENABLE_LED

 output [9:0] LEDR,

`endif

 //////////// SW: 3.3-V LVTTL //////////

`ifdef ENABLE_SW

 input [9:0] SW,

`endif

 //////////// VGA: 3.3-V LVTTL //////////

`ifdef ENABLE_VGA

 output [3:0] VGA_B,

 output [3:0] VGA_G,

 output VGA_HS,

 output [3:0] VGA_R,

 output VGA_VS,

`endif

 //////////// Accelerometer: 3.3-V LVTTL //////////

`ifdef ENABLE_ACCELEROMETER

 output GSENSOR_CS_N,

 input [2:1] GSENSOR_INT,

 output GSENSOR_SCLK,

 inout GSENSOR_SDI,

 inout GSENSOR_SDO,

`endif

 //////////// Arduino: 3.3-V LVTTL //////////

`ifdef ENABLE_ARDUINO

 inout [15:0] ARDUINO_IO,

 inout ARDUINO_RESET_N,

`endif

 //////////// GPIO, GPIO connect to GPIO Default: 3.3-V LVTTL

//////////

`ifdef ENABLE_GPIO

 inout [35:0] GPIO

`endif

 75

);

// GPS

reg [7:0] txData;

reg txLoad = 1'b0;

wire [7:0] rxData;

reg flag = 1'b1;

wire txReset = 1'b1;

wire rxReset = 1'b1;

reg [3:0] hex_info [5:0];

wire txIdle;

wire txReady;

wire rxIdle;

wire rxReady;

parameter ClkFrequency = 50000000;

parameter Baud = 9600;

wire RxD_data_ready;

wire [7:0] RxD_data;

// Accelerometer - SPI

wire dly_rst;

wire spi_clk, spi_clk_out;

wire [15:0] data_x;

// GPS

async_receiver GPS(.clk(MAX10_CLK1_50),

 .rst(1'b0),

 .RxD(GPIO[35]),

 .RxD_data_ready(rxReady),

 .RxD_data(rxData));

// Accelerometer

// Reset

reset_delay u_reset_delay (

 .iRSTN(KEY[0]),

 .iCLK(MAX10_CLK1_50),

 .oRST(dly_rst));

// PLL

spi_pll u_spi_pll (

 .areset(dly_rst),

 .inclk0(MAX10_CLK1_50),

 .c0(spi_clk), // 2MHz

 .c1(spi_clk_out)); // 2MHz phase shift

// Initial Setting and Data Read Back

spi_ee_config u_spi_ee_config (

 .iRSTN(!dly_rst),

 .iSPI_CLK(spi_clk),

 .iSPI_CLK_OUT(spi_clk_out),

 .iG_INT2(GSENSOR_INT[1]),

 .oDATA_L(data_x[7:0]),

 .oDATA_H(data_x[15:8]),

 .SPI_SDIO(GSENSOR_SDI),

 .oSPI_CSN(GSENSOR_CS_N),

 .oSPI_CLK(GSENSOR_SCLK));

 76

// LED

led_driver u_led_driver (

 .iRSTN(!dly_rst),

 .iCLK(MAX10_CLK1_50),

 .iDIG(data_x[9:0]),

 .iG_INT2(GSENSOR_INT[1]),

 .oLED(LEDR));

// GPS

defparam GPS.ClkFrequency=ClkFrequency;

defparam GPS.Baud=Baud;

hex7seg h0(LAT[3:0], HEX0);

hex7seg h1(LAT[11:8], HEX1);

hex7seg h2(LAT[19:16], HEX2);

hex7seg h3(LON[3:0], HEX3);

hex7seg h4(LON[11:8], HEX4);

hex7seg h5(LON[19:16], HEX5);

integer precision = 3;

reg [2:0] STATE=0;

reg [23:0] NMEA=0;

reg [23:0] LAT=0;

reg [23:0] LON=0;

integer prec_cnt = 0;

always @(posedge MAX10_CLK1_50) begin

 case(STATE)

 0: begin //Search for '$'

 if(rxReady && rxData=="$")begin// '$': Start of

frame

 STATE<=STATE+1;

 end

 end

 1: begin //Check Tag, if not the proper tag go back

 if(rxReady) begin

 if(rxData==",")begin

 if(NMEA=="GLL")begin

 STATE<=STATE+1;

 end

 else begin

 STATE<=0;

 end

 end

 else begin //Grab the NMEA Message Type

 NMEA[23:8]<=NMEA[15:0];

 NMEA[7:0]<=rxData; //Grab the tag info

 end

 end

 end

 2: begin //Parse the latitude

 if(rxReady) begin

 if(rxData==",")begin

 STATE<=STATE+1;

 prec_cnt = 0;

 77

 end

 else if (prec_cnt < precision) begin //grab

only 3 first LAT values, because we have only 3 HEX available

 prec_cnt = prec_cnt + 1;

 LAT[23:8]<=LAT[15:0];

 LAT[7:0]<=rxData;

 end

 end

 end

 3: begin //Parse letter

 if(rxReady) begin

 if(rxData==",")begin

 STATE<=STATE+1;

 end

 end

 end

 4: begin //Parse the longitude

 if(rxReady) begin

 if(rxData==10)begin //LF: Line Feed, end of

message, go to idle state

 STATE<=0;

 prec_cnt = 0;

 end

 else if (prec_cnt < precision)begin //grab

only 3 first LON values, because we have only 3 HEX available

 prec_cnt = prec_cnt + 1;

 LON[23:8]<=LON[15:0];

 LON[7:0]<=rxData;

 end

 end

 end

 default: begin

 STATE<=0;

 end

 endcase

end

endmodule

 78

Quartus Prime module file

hex7seg.v

module hex7seg (hex, display);

input [3:0] hex;

output [0:6] display;

reg [0:6] display;

/*

* – 0 –

* 5 | | 1

* – 6 –

* 4 | | 2

* – 3 –

*/

always @ (hex)

case (hex)

4'h0: display = 7'b1000000;

4'h1: display = 7'b1111001;

4'h2: display = 7'b0100100;

4'h3: display = 7'b0110000;

4'h4: display = 7'b0011001;

4'h5: display = 7'b0010010;

4'h6: display = 7'b0000010;

4'h7: display = 7'b1111000;

4'h8: display = 7'b0000000;

4'h9: display = 7'b0011000;

4'hA: display = 7'b0001000;

4'hb: display = 7'b0000011;

4'hC: display = 7'b1000110;

4'hd: display = 7'b0100001;

4'hE: display = 7'b0000110;

4'hF: display = 7'b0001110;

endcase

endmodule

 79

async_receiver.v

module async_receiver(clk,

 rst,

 RxD, //rx pin

 RxD_data_ready,

 RxD_data,

 RxD_endofpacket,

 RxD_idle);

input clk, rst, RxD;

output RxD_data_ready; // one clock pulse when RxD_data is valid

output [7:0] RxD_data;

parameter ClkFrequency = 24000000; // 24MHz

parameter Baud = 115200;

// We also detect if a gap occurs in the received stream of

characters

// That can be useful if multiple characters are sent in a burst

// so that multiple characters can be treated as a "packet"

output RxD_endofpacket; // one clock pulse, when no more data is

received (RxD_idle is going high)

output RxD_idle; // no data is being received

// Baud generator (we use 8 times oversampling)

parameter Baud8 = Baud*8;

parameter Baud8GeneratorAccWidth = 16;

wire [Baud8GeneratorAccWidth:0] Baud8GeneratorInc =

((Baud8<<(Baud8GeneratorAccWidth-

7))+(ClkFrequency>>8))/(ClkFrequency>>7);

reg [Baud8GeneratorAccWidth:0] Baud8GeneratorAcc;

always @(posedge clk or posedge rst) if(rst) Baud8GeneratorAcc<=0;

else Baud8GeneratorAcc <= Baud8GeneratorAcc[Baud8GeneratorAccWidth-

1:0] + Baud8GeneratorInc;

wire Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];

////////////////////////////

reg [1:0] RxD_sync_inv;

always @(posedge clk or posedge rst) if(rst) RxD_sync_inv<=0; else

if(Baud8Tick) RxD_sync_inv <= {RxD_sync_inv[0], ~RxD};

// we invert RxD, so that the idle becomes "0", to prevent a

phantom character to be received at startup

reg [1:0] RxD_cnt_inv;

reg RxD_bit_inv;

always @(posedge clk or posedge rst)

if(rst)

 RxD_cnt_inv <= 0;

else

if(Baud8Tick)

begin

 if(RxD_sync_inv[1] && RxD_cnt_inv!=2'b11) RxD_cnt_inv <=

RxD_cnt_inv + 2'h1;

 else

 if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00) RxD_cnt_inv <=

RxD_cnt_inv - 2'h1;

 if(RxD_cnt_inv==2'b00) RxD_bit_inv <= 1'b0;

 else

 if(RxD_cnt_inv==2'b11) RxD_bit_inv <= 1'b1;

end

 80

reg [3:0] state;

reg [3:0] bit_spacing;

// "next_bit" controls when the data sampling occurs

// depending on how noisy the RxD is, different values might work

better

// with a clean connection, values from 8 to 11 work

wire next_bit = (bit_spacing==4'd10);

always @(posedge clk or posedge rst)

if(rst)

 bit_spacing <= 4'b0000;

else

if(state==0)

 bit_spacing <= 4'b0000;

else

if(Baud8Tick)

 bit_spacing <= {bit_spacing[2:0] + 4'b0001} |

{bit_spacing[3], 3'b000};

always @(posedge clk or posedge rst)

if(rst)

 state <= 4'b0000;

else

if(Baud8Tick)

case(state)

 4'b0000: if(RxD_bit_inv) state <= 4'b1000; // start bit

found?

 4'b1000: if(next_bit) state <= 4'b1001; // bit 0

 4'b1001: if(next_bit) state <= 4'b1010; // bit 1

 4'b1010: if(next_bit) state <= 4'b1011; // bit 2

 4'b1011: if(next_bit) state <= 4'b1100; // bit 3

 4'b1100: if(next_bit) state <= 4'b1101; // bit 4

 4'b1101: if(next_bit) state <= 4'b1110; // bit 5

 4'b1110: if(next_bit) state <= 4'b1111; // bit 6

 4'b1111: if(next_bit) state <= 4'b0001; // bit 7

 4'b0001: if(next_bit) state <= 4'b0000; // stop bit

 default: state <= 4'b0000;

endcase

reg [7:0] RxD_data;

always @(posedge clk or posedge rst)

if(rst)

 RxD_data <= 0;

else

if(Baud8Tick && next_bit && state[3])

 RxD_data <= {~RxD_bit_inv, RxD_data[7:1]};

reg RxD_data_ready, RxD_data_error;

always @(posedge clk or posedge rst)

if(rst)

begin

 RxD_data_ready <= 0;

 RxD_data_error <= 0;

end

else

begin

 RxD_data_ready <= (Baud8Tick && next_bit && state==4'b0001 &&

~RxD_bit_inv); // ready only if the stop bit is received

 81

 RxD_data_error <= (Baud8Tick && next_bit && state==4'b0001 &&

RxD_bit_inv); // error if the stop bit is not received

end

reg [4:0] gap_count;

always @(posedge clk or posedge rst) if(rst) gap_count<=0; else if

(state!=0) gap_count<=5'h00; else if(Baud8Tick & ~gap_count[4])

gap_count <= gap_count + 5'h01;

assign RxD_idle = gap_count[4];

reg RxD_endofpacket;

always @(posedge clk or posedge rst) if(rst) RxD_endofpacket<=0;

else RxD_endofpacket <= Baud8Tick & (gap_count==5'h0F);

endmodule

 82

led_driver.v

module led_driver (iRSTN, iCLK, iDIG, iG_INT2, oLED);

input iRSTN;

input iCLK;

input [9:0] iDIG;

input iG_INT2;

output [9:0] oLED;

//===

// REG/WIRE declarations

//===

wire [4:0] select_data;

wire signed_bit;

wire [3:0] abs_select_high;

reg [1:0] int2_d;

reg [23:0] int2_count;

reg int2_count_en;

//===

// Structural coding

//===

assign select_data = iG_INT2 ? iDIG[9:5] : // +-2g resolution :

10-bit

(iDIG[9]?(iDIG[8]?iDIG[8:4]:5'h10):(iDIG[8]?5'hf:iDIG[8:4])); // +-

g resolution : 9-bit

assign signed_bit = select_data[4];

assign abs_select_high = signed_bit ? ~select_data[3:0] :

select_data[3:0];//the negitive number here is the 2's complement-1

assign oLED = int2_count[23] ? ((abs_select_high[3:0] == 3'h0) ?

10'h030 :

(abs_select_high[3:0] == 3'h1) ? (signed_bit?10'h020:10'h010) :

(abs_select_high[3:0] == 3'h2) ? (signed_bit?10'h060:10'h018) :

(abs_select_high[3:0] == 3'h3) ? (signed_bit?10'h040:10'h8) :

(abs_select_high[3:0] == 3'h4) ? (signed_bit?10'h0C0:10'hC) :

(abs_select_high[3:0] == 3'h5) ? (signed_bit?10'h080:10'h4) :

(abs_select_high[3:0] == 3'h6) ? (signed_bit?10'h180:10'h6) :

(abs_select_high[3:0] == 3'h7) ? (signed_bit?10'h100:10'h2) :

(abs_select_high[3:0] == 3'h8) ? (signed_bit?10'h300:10'h3) :

(signed_bit?10'h200:10'h1)):

 (int2_count[20] ?

10'h0 : 10'h3ff); // Activity

 83

always@(posedge iCLK or negedge iRSTN)

 if (!iRSTN)

 begin

 int2_count_en <= 1'b0;

 int2_count <= 24'h800000;

 end

 else

 begin

 int2_d <= {int2_d[0], iG_INT2};

 if (!int2_d[1] && int2_d[0])

 begin

 int2_count_en <= 1'b1;

 int2_count <= 24'h0;

 end

 else if (int2_count[23])

 int2_count_en <= 1'b0;

 else

 int2_count <= int2_count + 1;

 end

endmodule

 84

reset_delay.v

module reset_delay(iRSTN, iCLK, oRST);

input iRSTN;

input iCLK;

output reg oRST;

reg [20:0] cont;

always @(posedge iCLK or negedge iRSTN)

 if (!iRSTN)

 begin

 cont <= 21'b0;

 oRST <= 1'b1;

 end

 else if (!cont[20])

 begin

 cont <= cont + 21'b1;

 oRST <= 1'b1;

 end

 else

 oRST <= 1'b0;

endmodule

 85

spi_controller.v

module spi_controller (

 iRSTN,

 iSPI_CLK,

 iSPI_CLK_OUT,

 iP2S_DATA,

 iSPI_GO,

 oSPI_END,

 oS2P_DATA,

 SPI_SDIO,

 oSPI_CSN,

 oSPI_CLK);

`include "spi_param.h"

//===

// PORT declarations

//===

// Host Side

input iRSTN;

input iSPI_CLK;

input iSPI_CLK_OUT;

input [SI_DataL:0] iP2S_DATA;

input iSPI_GO;

output oSPI_END;

output reg [SO_DataL:0] oS2P_DATA;

// SPI Side

inout SPI_SDIO;

output oSPI_CSN;

output oSPI_CLK;

//===

// REG/WIRE declarations

//===

wire read_mode, write_address;

reg spi_count_en;

reg [3:0] spi_count;

//===

// Structural coding

//===

assign read_mode = iP2S_DATA[SI_DataL];

assign write_address = spi_count[3];

assign oSPI_END = ~|spi_count;

assign oSPI_CSN = ~iSPI_GO;

assign oSPI_CLK = spi_count_en ? iSPI_CLK_OUT : 1'b1;

assign SPI_SDIO = spi_count_en && (!read_mode || write_address) ?

iP2S_DATA[spi_count] : 1'bz;

always @ (posedge iSPI_CLK or negedge iRSTN)

 if (!iRSTN)

 86

 begin

 spi_count_en <= 1'b0;

 spi_count <= 4'hf;

 end

 else

 begin

 if (oSPI_END)

 spi_count_en <= 1'b0;

 else if (iSPI_GO)

 spi_count_en <= 1'b1;

 if (!spi_count_en)

 spi_count <= 4'hf;

 else

 spi_count <= spi_count - 4'b1;

 if (read_mode && !write_address)

 oS2P_DATA <= {oS2P_DATA[SO_DataL-1:0], SPI_SDIO};

 end

endmodule

 87

spi_ee_config.v

module spi_ee_config (

 iRSTN,

 iSPI_CLK,

 iSPI_CLK_OUT,

 iG_INT2,

 oDATA_L,

 oDATA_H,

 SPI_SDIO,

 oSPI_CSN,

 oSPI_CLK);

`include "spi_param.h"

//===

// PORT declarations

//===

// Host Side

input iRSTN;

input iSPI_CLK, iSPI_CLK_OUT;

input iG_INT2;

output reg [SO_DataL:0] oDATA_L;

output reg [SO_DataL:0] oDATA_H;

// SPI Side

inout SPI_SDIO;

output oSPI_CSN;

output oSPI_CLK;

//===

// REG/WIRE declarations

//===

reg [3:0] ini_index;

reg [SI_DataL-2:0] write_data;

reg [SI_DataL:0] p2s_data;

reg spi_go;

wire spi_end;

wire [SO_DataL:0] s2p_data;

reg [SO_DataL:0] low_byte_data;

reg spi_state;

reg high_byte; // indicate to read the high or

low byte

reg read_back; // indicate to read back data

reg clear_status, read_ready;

reg [3:0] clear_status_d;

reg high_byte_d, read_back_d;

reg [IDLE_MSB:0] read_idle_count; // reducing the reading

rate

//===

 88

// Sub-module

//===

spi_controller u_spi_controller (

 .iRSTN(iRSTN),

 .iSPI_CLK(iSPI_CLK),

 .iSPI_CLK_OUT(iSPI_CLK_OUT),

 .iP2S_DATA(p2s_data),

 .iSPI_GO(spi_go),

 .oSPI_END(spi_end),

 .oS2P_DATA(s2p_data),

 .SPI_SDIO(SPI_SDIO),

 .oSPI_CSN(oSPI_CSN),

 .oSPI_CLK(oSPI_CLK));

//===

// Structural coding

//===

// Initial Setting Table

always @ (ini_index)

 case (ini_index)

 0 : write_data = {THRESH_ACT,8'h20};

 1 : write_data = {THRESH_INACT,8'h03};

 2 : write_data = {TIME_INACT,8'h01};

 3 : write_data = {ACT_INACT_CTL,8'h7f};

 4 : write_data = {THRESH_FF,8'h09};

 5 : write_data = {TIME_FF,8'h46};

 6 : write_data = {BW_RATE,8'h09}; // output data rate : 50

Hz

 7 : write_data = {INT_ENABLE,8'h10};

 8 : write_data = {INT_MAP,8'h10};

 9 : write_data = {DATA_FORMAT,8'h40};

 default: write_data = {POWER_CONTROL,8'h08};

 endcase

always@(posedge iSPI_CLK or negedge iRSTN)

 if(!iRSTN)

 begin

 ini_index <= 4'b0;

 spi_go <= 1'b0;

 spi_state <= IDLE;

 read_idle_count <= 0; // read mode only

 high_byte <= 1'b0; // read mode only

 read_back <= 1'b0; // read mode only

 clear_status <= 1'b0;

 end

 // initial setting (write mode)

 else if(ini_index < INI_NUMBER)

 case(spi_state)

 IDLE : begin

 p2s_data <= {WRITE_MODE, write_data};

 spi_go <= 1'b1;

 89

 spi_state <= TRANSFER;

 end

 TRANSFER : begin

 if (spi_end)

 begin

 ini_index <= ini_index + 4'b1;

 spi_go <= 1'b0;

 spi_state <= IDLE;

 end

 end

 endcase

 // read data and clear interrupt (read mode)

 else

 case(spi_state)

 IDLE : begin

 read_idle_count <= read_idle_count + 1;

 if (high_byte) // multiple-byte read

 begin

 p2s_data[15:8] <= {READ_MODE, X_HB};

 read_back <= 1'b1;

 end

 else if (read_ready)

 begin

 p2s_data[15:8] <= {READ_MODE, X_LB};

 read_back <= 1'b1;

 end

 else if (!clear_status_d[3]&&iG_INT2 ||

read_idle_count[IDLE_MSB])

 begin

 p2s_data[15:8] <= {READ_MODE,

INT_SOURCE};

 clear_status <= 1'b1;

 end

 if (high_byte || read_ready || read_idle_count[IDLE_MSB]

|| !clear_status_d[3]&&iG_INT2)

 begin

 spi_go <= 1'b1;

 spi_state <= TRANSFER;

 end

 if (read_back_d) // update the read back

data

 begin

 if (high_byte_d)

 begin

 oDATA_H <= s2p_data;

 oDATA_L <= low_byte_data;

 end

 else

 90

 low_byte_data <= s2p_data;

 end

 end

 TRANSFER : begin

 if (spi_end)

 begin

 spi_go <= 1'b0;

 spi_state <= IDLE;

 if (read_back)

 begin

 read_back <= 1'b0;

 high_byte <= !high_byte;

 read_ready <= 1'b0;

 end

 else

 begin

 clear_status <= 1'b0;

 read_ready <= s2p_data[6];

 read_idle_count <= 0;

 end

 end

 end

 endcase

always@(posedge iSPI_CLK or negedge iRSTN)

 if(!iRSTN)

 begin

 high_byte_d <= 1'b0;

 read_back_d <= 1'b0;

 clear_status_d <= 4'b0;

 end

 else

 begin

 high_byte_d <= high_byte;

 read_back_d <= read_back;

 clear_status_d <= {clear_status_d[2:0], clear_status};

 end

endmodule

