
INVESTIGATE AND ANALYSIS OF DEEP

LEARNING AND MACHINE LEARNING

ALGORITHM FOR FACE MASK DETECTION

SYSTEM

MUHAMMAD EZZUDDEEN BIN SURATMAN

EA18017

B.ENG (HONS.) ELECTRICAL ENGINEERING
(ELECTRONICS)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MUHAMMAD EZZUDDEEN BIN SURATMAN

Date of Birth : 27 OCTOBER 1997

Title : INVESTIGATE AND ANALYSIS OF DEEP LEARNING AND

MACHINE LEARNING ALGORITHM FOR FACE MASK

DETECTION SYSTEM

Academic Session : SEMESTER 2 2021/2022

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

971027017649

New IC/Passport Number

Date:

 (Supervisor’s Signature)

PROF. MADYA IR. TS. DR

FAHMI BIN SAMSURI

Name of Supervisor

Date: 22-06-2022

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the Bachelor of Electrical

Engineering (Electronics) with Honours.

 (Supervisor’s Signature)

Full Name : PROF. MADYA IR. TS. DR FAHMI BIN SAMSURI

Position : SENIOR LECTURER

Date : 22-06-2022

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : MUHAMMAD EZZUDDEEN BIN SURATMAN

ID Number : EA18017

Date :

22-06-2022

INVESTIGATE AND ANALYSIS OF DEEP LEARNING AND MACHINE LEARNING

ALGORITHM FOR FACE MASK DETECTION SYSTEM

MUHAMMAD EZZUDDEEN BIN SURATMAN

Thesis submitted in fulfillment of the requirements

for the award of the

Bachelor of Electrical Engineering (Electronics) with Honours

College of Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2022

ii

ACKNOWLEDGEMENTS

Alhamdulillah, with his assistance and advice, I was able to complete the semester

successfully and the task of the Final Year Project 1 was successfully completed. I'd like

to express my gratitude to Prof. Madya Ir. TS. Dr Fahmi Bin Samsuri, my supervisor, for

his guidance and expertise in completing the study. I am quite appreciative for his

assistance, which he provided from the first week of my Final Year Project until the day

I completed it.

In addition, I'd want to convey my heartfelt gratitude to my parents for their unwavering

spiritual support and encouragement in helping me complete this final year assignment.

Their thoughts and prayers keep me going and make me believe that I can achieve it. I've

also recognised that performing this project will polish my skills. Finally, I'd like to

express my gratitude to all my friends that assisted me in completing my final year

project. I am grateful for all your assistance.

iii

ABSTRAK

Orang ramai pada masa kini cenderung memakai topeng muka pelindung kerana wabak

COVID-19 yang melanda dunia kita beberapa tahun lalu dan memakai topeng muka

pelindung telah menjadi kebiasaan baharu. Banyak tempat awam yang menyediakan

perkhidmatan tertentu mahu orang ramai memakai topeng dengan betul sebelum

memasuki tempat tersebut. Oleh itu, dengan membangunkan sistem pengesanan topeng

muka, ia cenderung untuk membantu masyarakat global menyedari persekitaran yang

dikelilingi oleh virus dan mencegah jangkitan. Walaupun vaksin telah dibangunkan,

orang ramai masih perlu sedar kerana segelintir masyarakat yang tidak mahukan vaksin.

Untuk membangunkan sistem ini, pembelajaran mesin dan pembelajaran mendalam

adalah kaedah terbaik untuk digunakan dengan menggunakan beberapa pakej

pembelajaran mesin asas seperti Tensorflow, Keras dan OpenCV. Kaedah ini mengesan

imej wajah seseorang daripada imej, video dan pemantauan masa nyata dengan betul dan

kemudian mengenal pasti ia mempunyai topeng muka atau tidak dan akan memaklumkan

pihak berkuasa jika tidak memakai topeng muka. Sistem ini boleh digunakan di premis

sebelum orang ramai memasuki tempat itu dan akan menghapuskan keperluan untuk

menempatkan pekerja untuk memantau orang yang masuk di pintu masuk dan

meminimumkan jangkitan.

iv

ABSTRACT

People nowadays tend to wear a protective facemask because of the pandemic COVID-

19 that strike our world few years ago and wear protective facemask has become a new

normal. Many public place that provides a certain service want people to wear mask

correctly before entering the place. Therefore, by developing the facemask detection

system, it tends to help a global society to aware the environment that surround by the

virus and to prevent the infections. Although vaccines have been developed, people still

need to be aware because of some society that stick not to wanting a vaccine. For develop

this system, machine learning and deep learning is the best method to use by using some

basic machine learning package such as Tensorflow, Keras and OpenCV. This method

detects the image of someone face from the image, video and real time monitoring

correctly and then identifies it has a facemask on it or not and will alert the authority if

not wearing a facemask. This system can be use at the premise before people entering the

place and would eliminate the need to place a worker to monitor the people coming in at

the entrance and minimize the infections.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statement 2

1.3 Objective of Project 2

1.4 Scopes of Project 2

1.5 Thesis Overview 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Machine Learning 4

2.2.1 Neural Network 5

2.2.2 Supervised Learning 6

2.3 Deep Learning 7

vi

2.3.1 Convolutional Neural Network 9

2.4 Object Detection algorithm model 10

2.4.1 YOLO 10

2.4.2 Single-Shot Detector 11

2.5 Image Pre-processing 12

2.5.1 Architecture of Deep Learning 13

2.5.2 COCO dataset 14

2.6 Face detector 15

CHAPTER 3 METHODOLOGY 18

3.1 Introduction 18

3.2 Flow diagram of the project 18

3.2.1 Dependencies 19

3.2.2 Dataset 20

3.2.3 Data Pre-processing 22

3.2.4 Train Model 24

3.2.5 Calculation of Performance 28

CHAPTER 4 RESULTS AND DISCUSSION 30

4.1 Introduction 30

4.2 Model Accuracy 30

4.3 Face mask detection performance 35

CHAPTER 5 CONCLUSION 39

5.1 Introduction 39

5.2 Recommendation for future development Error! Bookmark not defined.

vii

REFERENCES 41

APPENDIX A SAMPLE APPENDIX 1 43

APPENDIX B SAMPLE APPENDIX 2 45

viii

LIST OF TABLES

Table 2.1 CNN parameter 14

Table 4.1 Accuracy model of 5 neighbour 31

Table 4.2 Accuracy model of 7 neighbour 32

Table 4.3 Accuracy model of 9 neighbour 33

Table 4.4 Accuracy of SVM model 33

Table 4.5 Accuracy of Decision Tree model 34

Table 4.6 Accuracy of CNN model 34

ix

LIST OF FIGURES

Figure 2.1 Layers in ANNs 6

Figure 2.2 CNNs layer architecture 8

Figure 2.3 Intersection over union 11

Figure 2.4 MobilNet V2 convolutional block diagram 12

Figure 2.5 list of pre-trained object 15

Figure 2.6 Examples of haar feature 16

Figure 3.1.1 Flow diagram of the project to test the model accuracy 18

Figure 3.1.2 Deep learning required package for this system 19

Figure 3.1.3 Without face mask dataset 20

Figure 3.1.4 Wearing face mask dataset 21

Figure 3.1.5 Wearing face mask incorrect dataset 21

Figure 3.1.6 labelling an image for detect a mask 22

Figure 3.1.7 Sample coding 23

Figure 3.1.8 RGB to Grayscale 24

Figure 3.1.9 Classification to define hyperplane using SVM 25

Figure 3.1.10 Impurity of data in Decision Tree 26

Figure 3.1.11 Sample coding 26

Figure 3.1.12 Convolutional Neural Network architecture for the system 27

Figure 3.1.13 Sample coding 27

Figure 3.1.14 Sample coding 28

Figure 3.1.15 Confusion Matrix 29

Figure 4.1 KNN model 5 neighbour confusion matrix 31

Figure 4.2 KNN model 7 neighbour confusion matrix 32

Figure 4.3 KNN model 9 neigbour confusion matrix 33

Figure 4.4 CNN model flow diagram for face mask detection 34

Figure 4.5 File require to use DNN face detector 35

Figure 4.6 Training result for 3 different classes 36

Figure 4.7 Training result for 2 different classes 36

Figure 4.8 Real time camera detection for 3 different class 37

Figure 4.9 Real time camera detection for 2 different class 37

Figure 4.10 More person face mask detection 38

Figure 4.11 Low brighness to make a detection 38

file:///C:/Users/mezzu/Downloads/THESIS%20FYP2.docx%23_Toc106716972

x

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CNN Convolutional Neural Network

ANN Artificial Neural Network

KNN K-Nearest Neighbour

SVM Support Vector Machine

GUI Graphic User Interface

TP True Positive

FP False Positive

TN True Negative

FN False Negative

DNN Deep Neural Network

SSD Single Shot Detector

1

CHAPTER 1

INTRODUCTION

1.1 Project Background

For the past 2 years, the world has been strike by the new type of virus that called

COVID-19 and new norm have been implemented. Because of that, people have been

forced to wear a face mask and keep sanitize to prevent the virus spread.

Certain respiratory viral infections, such as COVID-19, necessitate the use of a

clinical mask. The general public should know if they should wear the mask for source

control or avoid COVID-19. Masks have the potential to reduce sensitivity to noxious

individuals during the "pre-symptomatic" stage, as well as stigmatize certain persons who

use masks to avoid virus spread.

The covid-19 virus has brought about a new normal existence in which social

distance and the use of face masks play an important part in restricting the virus's spread.

However, most people do not wear face masks in public place, which contributes to the

transmission of infections. To avoid such situations, we must sanitize and make people

aware about the importance of wearing face masks. Humans are not permitted to

participate in this process due to the risk of being affected by virus.

Face mask detection will determining whether or not someone is wearing a mask,

comparable to detecting any object in a scene and then determining whether or not it has

a mask on it. Many methods for object detection have been proposed, and deep learning

give the best result when come to detect the object.

2

1.2 Problem Statement

Some people are stubborn to wearing a face mask in public place and entering

certain premise. This problem will troublesome the premise and will increase the need to

place a worker to monitor the people coming in at the entrance to prevent the infections.

With this face mask detection system, it will detect if a person wears a face mask or not

before entering a building or premise by using real time camera. According to [1],

expression recognition, facial tracking, and position estimation are all required for face

detection. The aim is to identify the face in a single photograph given a single image.

Face identification is challenging since faces alter in size, shape, colour, and other

characteristics and are not immutable. When an opaque image is occluded by something

other than the camera, for example, the task becomes tough.

1.3 Objective of Project

This final year project has three main objectives that are related to the title. The

objectives must be met based on the four objectives listed below in order to develop and

ensure that this system runs smoothly and efficiently:

1. Determine the best machine learning and deep learning model for the

system.

2. To analyze the performance and accuracy each of the model.

3. Develop computer vision-based system focused on the real time

monitoring of people to detect the present of the face mask.

1.4 Scopes of Project

There are several project scopes that has been listed down. Most of these scopes

do recover the project objective as well as a project planning to accomplish this project:

1. To investigate and perform analysis to determine the appropriate deep

learning or machine learning algorithm that suits the system.

2. To investigate the different between machine learning and deep learning

algorithm.

3. The process will be done in Pycharm Software using python language.

3

1.5 Thesis Overview

The rest of this thesis is structured as follows:

Chapter 2 presents the literature review of research done by others field of face

mask detection, type of machine learning that suit for object detection and the architecture

of neural network. The object detection algorithm used for the system and how image

processing using architecture of CNN.

Chapter 3 discusses the research technique and algorithm utilised in this project's

face mask detection system.

Chapter 4 discuss about the performance of the project by carrying out analysis

on the results performance for each algorithm used.

Chapter 5 concludes thesis with summary of the contributions and suggestions of

the future research direction with regards to the issue

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review is an important part of this chapter because it helps to do

some research on journals and articles as well as determine the nature of the research.

Research is carried out by reading or researching journals on the topic of investigating

and analysing deep learning and machine learning algorithms for face mask detection

systems. Many journals were discovered that can be used as a reference and guide for

future work in the final year project. The purpose of this chapter is to review current

parameters in order to learn from earlier attempts on a discovery and to propose our

strategy or concept for improving the system under development. This section focuses on

how others analyse raw data or get excellent results. The different methods used by others

will be assessed to acquire information for a precise use in the development of the system.

This chapter characterizes ideas, key terms, and formulae for examination.

2.2 Machine Learning

Machine learning is an artificial intelligence discipline that is widely described as

a machine's capacity to emulate intelligent human behaviour. Artificial intelligence

systems are used to tackle complicated issues in the same way that people do. The

objective of artificial intelligence is to construct computer models that demonstrate

"intelligent behaviours" similar to humans. This refers to machines that can recognise a

visual picture, understand a natural language text, or perform a physical activity. Writing

a programme for the machine to follow, such as training a computer to recognise

photographs of various objects, takes time or is impossible. While humans may readily

5

do this activity, teaching a computer to do so is tough. Machine learning takes the idea of

letting computers to learn on their own.

Data, such as financial transactions, images of people or things, documents, and

so on, is the starting point for machine learning. The data is gathered and prepared for

use as training data, or information used to train the machine learning model. The more

data there is, the more effective the programme will be. The programmers then choose a

machine learning model to employ, supply the data, and let the computer model to train

itself to detect patterns or make predictions. The model may also be tweaked by a human

programmer over time, including modifying its parameters, to give more accurate results.

As a result of training on examples again and over, it can discover patterns and make

predictions about the future, developing the ability to reason. When a machine is fed a

vast quantity of data, it uses Machine Learning Algorithms to learn how to understand,

process, and analyse it. Because it is defined using labelled datasets to train algorithms

that reliably categorise data or predict outcomes, supervised learning is the appropriate

sort of machine learning for the system.

2.2.1 Neural Network

Neural networks are a type of machine learning algorithm that is widely used.

Artificial neural networks (ANNs) are based on the human brain and consist of thousands,

or millions of interconnected processing nodes organised into layers. Cells, or nodes, are

connected in an artificial neural network, with each cell processing inputs and producing

output that is sent to other neurons. Data that has been labelled moves through the nodes,

or cells, with each cell performing a different function. The different nodes in a neural

network trained to identify whether a picture contains a cat or not would assess the

information and arrive at an output that indicates whether a picture contains a cat or not.

6

Figure 2.1 Layers in ANNs

2.2.2 Supervised Learning

Supervised learning, often known as supervised machine learning, is a machine

learning and artificial intelligence subcategory. It is distinguished by the use of labelled

datasets to train algorithms that properly categorise data or predict outcomes. As input

data is fed into the model, the weights are adjusted until the model is well fitted, which

occurs as part of the cross-validation process. Supervised learning assists enterprises in

solving a wide range of real-world issues on a large scale, such as categorising spam in a

distinct folder from your email. In Supervised Learning, the dataset on which we train

our model is labelled. There is a clear and distinct mapping of input and output. When it

comes to data mining, supervised learning may be divided into two sorts of challenges.

1. Classification

An algorithm is used in classification to properly allocate test results to certain

groups. It detects certain entities in the dataset and attempts to form judgments about how

those things should be labelled or described. Linear classifiers, support vector machines

(SVM), decision trees, k-nearest neighbour, and random forest are examples of common

classification techniques.

2. Regression

Regression is a statistical method for determining the connection between

dependent and independent variables. It is widely used to produce forecasts, such as those

7

for a company's sales revenue. Popular regression techniques include linear regression,

logistic regression, and polynomial regression.

K-Nearest Neighbour (KNN)

The KNN algorithm assumes that similar things exist in close proximity . In other

words, similar things are near to each and hinges on this assumption being true enough

for the algorithm to be useful. KNN captures the idea of similarity (sometimes called

distance, proximity, or closeness) calculating the distance between points on a graph.

KNN is a computationally intensive approach since it calculates the distance

between each data point and every point in the training set and KNN algorithm requires

the entire dataset to make a prediction. This means that every time a prediction is

produced, the algorithm must wait for the provided data to be compared to each point. To

make a prediction, KNN also needs that the complete data set be stored into memory. It

is feasible to load the data into RAM in batches, but this is incredibly time intensive.

Support Vector Machine (SVM)

Support Vector Machines (SVM) are commonly employed for high-dimensional

data classification jobs and allow us to categorise data that does not have a linear

connection. When compared to KNN, SVM performs better with large dimensionality

features by producing a hyperplane to split the data with a straight line. The decision

boundary is a hyperplane that separates the classes of data on each side of the plane.

Decision Tree

 Feature tests represent each internal node to be like a flowchart structure. Class

label is like each leaf node and feature conjunction that led to class label is the branch.

This decision tree is used to predictive modelling in statistic and mining data.

2.3 Deep Learning

Deep Learning is a machine learning area[7] focused like a brain functionality

which is artificial neural networks algorithm. Raw input will be extract higher

8

information level from Multiple. layers in image processing, for example, may recognise

edges, whereas higher levels may identify human-relevant concepts like as numerals,

characters, or faces. The great majority of current deep learning models are constructed

on artificial neural networks, notably convolutional neural networks (CNNs)[8]. Deep

learning levels learn to turn incoming data into an abstract. The raw input could be a pixel

matrix when use recognition image the first layer could abstract the pixels and recognize

the edges. The second layer could compose the edge arrangements. The third layer could

recognize a nose and eyes and image contain person face will recognize in forth layer.

CNNs are used in Deep Learning research for Computer Vision applications like

as Image Classification and Object Recognition.[2]. Dataset of an images must be train

to predict the output from its learned patterns in order to recognise and classify the object.

This method is known as "Supervised Learning," and it requires an external dataset of

labelled images to predict the label of an unseen image. The primary distinction between

a typical Artificial Neural Network (ANN) and a CNN is that a CNN has just one

completely linked layer, as illustrated in Figure 2, whereas an ANN connects each neuron

to all other neurons. [2]. Because the size of the pictures often leads to over-fitting, ANNs

are not ideal for image processing. Because the size of the pictures often leads to over-

fitting, ANNs are not ideal for image processing, it will cause of the noise and inaccurate

value to the data. Consider whether the picture size is appropriate (32x32x3). This image

must be flattened into a vector with 3072 rows if it is to be fed into an ANN (32x32x3).

The ANN's first layer needs have 3072 weights in order to receive this input vector. It

generates a complicated vector (270,000 weights) for bigger photos, such as

(300x300x3), which needs the usage of a more capable CPU.[2].

Figure 2.2 CNNs layer architecture

9

2.3.1 Convolutional Neural Network

CNNs are a set of layers that combine to execute a mathematical operation on an

image. It takes in the raw pixel intensity rather than utilising typical feature extraction

approaches. A [30x30] colour picture, for example, will be sent to CNN's input layer as

a three-dimensional matrix. CNN learns complicated picture attributes automatically by

integrating the outputs of several layers with "learnable" filters to forecast the input

image's class or label probability.[2]

There are three types of layers in a Convolutional Neural Network (CNN), which

is:

• Convolutional (CONV)

This layer is where CNN applies filters to learn features from the input image, it

is the most important layer in any CNN architecture. Filters and feature maps make up

this layer[2].

• Pooling (POOL)

This layer serves as an intermediary in the network, compressing or down

sampling the incoming volume along spatial dimensions[2].

• Fully Connected (FC)

Similar to ANNs, FC layer has neuron that are fully connected to the neurons in

the previous layer. For multi-class classification problems, activation function “softmax”

have been used each of the layer to produce the output for another layer. The FC layer is

in charge of predicting the input image's final class or label. As a result, the output

dimension is [1x1xN], where N is the number of classes or labels that are considered for

classification[2].

10

2.4 Object Detection algorithm model

A real-time object detection model designed to run on non-GPU computers and

may benefit users of low-configuration computers. There are numerous improved object

detection algorithms available, including YOLO, Faster R-CNN, Fast R-CNN, R-CNN,

Mask R-CNN, R-FCN, SSD, RetinaNet, and others. YOLO is a Deep Neural Network

algorithm for object detection that is faster and more accurate than most others. YOLO

is intended for GPU-based computers with a graphics card that is larger than 12GB.

Object detection model are often divided into two type of architecture which is

single stage object detectors like YOLO and SSD and dual stage object detectors like R-

CNN etc. The primary distinction between this two is region of interest (ROI) is defined

first then subsequently conducted just on the region of interest. So, two-stage object

detection models are more accurate in compared to one-stage models, but they slower

and demand more higher computer specification.

2.4.1 YOLO

You Only Look Once (YOLO) was developed to provide a one-step approach that

included item detection and categorization. On GPU systems, YOLO achieves around 45

FPS, and a light version known as Tiny-YOLO manages roughly 244 FPS.[3]. YOLO

can predict the class and the appears of bounding boxes. The supplied picture is first

separate into S x S grids[3]. Second, each grid cell has B bounding boxes, each with an

associated confidence score. The chance that an object exists in each enclosing box is

defined as confidence.

𝐶 = Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑃𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ

Intersection over union (IOU) is an acronym for a measure of overlap between

two bounding boxes it must be between 0 and 1. As shown in Figure 3, the intersection

is the overlapped region between the predicted bounding box and the ground truth

(Object), and the union is the total area of the predicted and ground truth boxes. For

accurate detection, ground truth must closer to projected box bounding and the value of

IOU must near to value 1.

11

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

Figure 2.3 Intersection over union

2.4.2 Single-Shot Detector

There are two parts when using SSD which is backbone model and an SSD head.

As a feature extractor, the backbone model is often an images classification that have

been pre-trained. This is often a ResNet-trained network that has had the last fully linked

classification layer removed. As a result, a deep neural network that can extract semantic

meaning from an input image while keeping its spatial structure, although at a lesser

resolution. The backbone for ResNet34 produces 256 7x7 feature maps for an input

picture. More convolutional layer added to backbone is called SSD head with the outputs

read as bounding boxes and classifications of objects in the spatial position of the final

layer activations.

12

Figure 2.4 MobilNet V2 convolutional block diagram

There are two kinds of blocks in MobileNetV2. The first is stride 1 block that

refer to residual block and another option for shrinking is a block with a stride 2 block.

Each block contains 3 layers. Convolution 1x1 using ReLU6 is on 1st layer, depth wise

convolution is on 2nd layer and lastly convolution 1x1 with linearity on 3rd layer.

To develop the model, there is several frameworks or dependencies that need to

be install before running the algorithm such as:

• TensorFlow: It is a Google-developed deep learning framework that can

be used to design, build, and train models. However, it necessitates a

significant amount of GPU processing power and is Linux-friendly[4].

• OpenCV: It has a deep learning framework and was created by Intel. It

only works on CPUs, and it's simple to set up on Windows.

2.5 Image Pre-processing

The image is converted to grayscale during the pre-processing step because the

RGB colour image contains too much redundant information for face mask detection.

Each pixel in an RGB colour image is stored with a 24-bit value. The grayscale images

included adequate information for categorization and saved 8 bits for each pixel. To retain

the regularity of the input pictures to the architecture, the images were moulded into

(64x64) forms. The images are then normalised, and a pixel's value after normalisation

13

ranges from 0 to 1. To get the value, the data must be divided by 255 because it the rescale

image from 0-255. Normalization helps the learning algorithm in learning faster and more

efficiently.[5].

2.5.1 Architecture of Deep Learning

The deep learning architecture learns a variety of important nonlinear features.

The learned architecture is then used to predict previously unseen samples. Images from

various sources are collected to train deep learning architecture. The architecture of the

learning technique is heavily reliant on CNN[5].

2.5.1.1 Dataset Collection

The dataset can be obtained at the GitHub or Kaggle website because this

classification someone already made to reduce the time to produce dataset.

But dataset also can be own create if the classification is a new

classification that not already made.

2.5.1.2 Architecture of CNN

The learning model is based on CNN, a pattern recognition algorithm that

is very useful for images[6]. An input layer, several hidden layers, and an

output layer make up the network. Multiple convolution layers make up

the hidden layers, which learn appropriate filters for extracting important

features from the given samples. Multiple dense neural networks use the

features extracted by CNN for classification purposes. Table 2.1 shown

the architecture of develop network.

14

Table 2.1 CNN parameter

2.5.2 COCO dataset

Many objects detection, face detection and more have been using computer vision

application and COCO dataset. The COCO dataset by Microsoft is a large-scale object

recognition and segmentation tool. It is commonly used by Computer Vision and

Machine Learning engineers. Understanding visual scenes is a goal of computer vision.

This process involves identifying objects that are present and determining their

attributes. Figure 2.5 shown the pre-trained 80 objects are included in the COCO dataset

classes for object detection and tracking.

15

Figure 2.5 list of pre-trained object

2.6 Feature Extraction

Extraction of features is a method of removing extraneous data information,

lowering computing costs while retaining vital and relevant data. Additionally, the

decreased data aids in increasing the model's learning rate. Furthermore, for feature

extraction, real-time face mask identification employs machine learning and deep

learning algorithms. Deep learning relies on neural networks to extract characteristics

without the need for human involvement. Several backbones such as MobileNetv2 and

Xception will do the feature extraction of the input data[7]. Following that, the output is

sent to the classifier network, which categorises a person with or without a mask. Machine

Learning model that are useful to get the extraction are the algorithms such as histogram

of oriented gradients(HOG) and Principal Component Analysis(PAC).

2.7 Face detector

Other name of face detection is face recognition, function as computer technique

that searches for and recognises human faces in digital pictures using artificial

intelligence (AI). Also utilised in a multitude of industries such as personal safety,

biometrics and security, to offer real-time monitoring and tracking of individuals. There

is some face detector that commonly use such as:

a. Haar cascade classifier

This Haar feature is used to assess whether there is face present on the image.

Each haar characteristic has a value, which may be computed by summing the each of

rectangle area. The integral image notion made it simple to calculate the area of a

rectangle.

16

Figure 2.6 Examples of haar feature

This classifier computes the value of a feature using the rectangular integral. The

haar cascade classifier increases the weight of each rectangle by its area, and the

results are put together.

17

b. DNN Face Detector in OpenCV

OpenCV's most current version has a Deep Neural Network (DNN) module with

an excellent pre-trained face identification convolutional neural network (CNN). The new

model outperforms existing methods such as Haar in terms of face detection. Caffe is the

framework that will be utilised to train the new model. It contains out-of-the-box Haar

cascades, but a pre-trained deep learning face detector has been included from version

3.3. The SSD framework are include in DNN face detector which leverages a base

network like ResNet-10

c. HOG classifier

The Histogram of Oriented Gradients, or HOG, is a feature descriptor that is

frequently used to extract features from image data. It is widely used for object

detection in computer vision tasks. The HOG descriptor focuses on an object's

structure or shape. HOG is also capable of providing edge direction. The gradient

and orientation (magnitude and direction) of the edges are extracted in this way.

Furthermore, these orientations are computed in ‘localised’ portions. This means

that the entire image is divided into smaller regions, and the gradients and

orientation for each region are calculated before generating a histogram for each

of these regions separately. The gradients and orientations of the pixel values are

used to generate the histograms.

All this face detector has their pros and cons because certain face detector need

best CPU to run although it will take a long time to complete the running. By comparing

with other face classifier in term of accuracy, DNN face detector have a better accuracy

but low FPS and also easy to use because the require file has been made that contain the

weight and the network architecture. HOG classifier is the most popular nowadays and

have higher FPS but unable to detect face at odd angle and Haar Cascade classifier is

outdated classifier and give not a best result. So after make a research about best face

detector to use, this system used the DNN Face detector.

18

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter explains the methods and strategies that were used, as well as the

steps that must be considered when developing the system by gaining the information

form doing literature review. Firstly, the language that suitable for this project are by

using python language because it is the most popular programming language and have a

huge community support. Pycharm is a software used to create algorithm of the system.

The algorithm is based on the deep learning architecture that is commonly use in face and

object detection system.

3.2 Flow diagram of the project

Figure 3.1.1 Flow diagram of the project to test the model accuracy

19

Figure 3.1.1 show the flow diagram to determine the best model to used in face

mask detection system by showing the accuracy of each model. Certain dependecies

need to be install first to perform certain operation. Then to gain the dataset, because

the python community are bigger, the dataset can be get into certain website like github,

kaggle and etc to reduce the time gaining the dataset or create our own dataset if data is

a new data to be classify.

3.2.1 Dependencies

The dependencies (packages) or a framework must be installed. TensorFlow,

Keras, which covers TensorFlow's numerical calculation libraries and allows

you to design and train only a few lines of code, and OpenCV are the required

dependencies.

a. TensorFlow

TensorFlow, a programming interface for expressing machine learning

algorithms, is used to fabricate Machine Learning in a many science of

computer. TensorFlow is a complete open-source machine learning platform. It

includes a broad, huge number of tools, libraries, and community resources for

developing and deploying ML-powered applications, including data reshaping.

b. Keras

Keras provides critical thoughts and building blocks for quickly developing and

implementing machine learning arrangements. The scalability and cross-platform

capabilities of TensorFlow are fully utilised. Keras' core data structures are layers

and models. Keras is used to implement CNN all layers.

Figure 3.1.2 Deep learning required package for this system

20

c. OpenCV

OpenCV (Open-Source Computer Vision Library) is a computer vision and

machine learning software library that can be used to distinguish and recognise

faces, recognise objects, group movements in recordings, trace progressive

modules, follow eye gestures, track camera actions, expel red eyes from flash

photos, find comparative pictures from an image database, perceive landscape and

overlay it with enhanced reality, and so on. In the scaling and colour conversion

of data pictures, the suggested technique makes advantage of these OpenCV

capabilities.

3.2.2 Dataset

Dataset from the GitHub consist of 6000 images and has been classify into three

different classes which is image of people wearing facemask, without facemask and with

mask incorrect. All the image has many variations of size and resolution. Because of that

the image will be resize into 64x64 in data pre-proessing.

Figure 3.1.3 Without face mask dataset

21

Figure 3.1.4 Wearing face mask dataset

Figure 3.1.5 Wearing face mask incorrect dataset

When to create our own dataset, the data and image that have been capture need

to be labelling first before train because it’s used to identify the raw data. This labelling

images are called bounding box. The training data is then used to construct a computer

vision model that may be used to automatically classify pictures, determine item

position, identify important spots in an image, or image segment. Figure 3.1.6 show the

label image of person wearing the face mask. Huge number of label image needed

before train to

22

make the model learning the image that have been label. Because the more data to obtain,

the more time consume needed. Another alternative to obtain the data are by download

the dataset at the open-source website like GitHub and Kaggle.

Figure 3.1.6 labelling an image for detect a mask

3.2.3 Data Pre-processing

Pre-processing is the stage in which the image is resized. The image would be

enormous once captured hence it would be easy. Transforming the data and utilising it

into another process is called data pre-processing. These structured data may be used with

an information model or composition and record the relationships between multiple

entities. Pre-processing is the part where the resizing of the image is involved. The image

would be large once captured therefore it would be easy. Data pre-processing is the

process of converting the data and used it into another process. These organised data are

compatible with model information[7]. If the images were smaller than 80x80 pixels, and

the faces were even smaller, the image is scaled up by a factor of 2 or more. The image

is resized into (224x224) pixels to get the best result.

23

a. Visualised the data

Process to translate abstract data into meaningful representations for knowledge

exchange and insight finding. It is beneficial to investigate a certain trend in the

dataset[8].

Figure 3.1.7 Sample coding

The total number of images in the dataset is visualised in 'with mask', ‘with mask

incorrect’ and 'without mask' categories. The os.listdir(path) statement categorises the

list of directories in the specified data path. Then it will proceed with convert image to

grayscale and resizing the image. In this project, image size have been set to 64x64.

b. Conversion RGB to Grayscale

Modern descriptor-based image recognition systems routinely work on grayscale

images without delving into the method used to convert from RGB image to grayscale.

This is due to the fact that when using robust descriptors, the color-to-grayscale technique

has little effect. Non-essential data may increase the quantity of training data required for

exceptional performance. Grayscale is used to extract descriptors rather than working on

colour photographs straight immediately since it streamlines the process and

reduces computer requirements[9].

24

Figure 3.1.8 RGB to Grayscale

c. Reshaping Image

During image relegation, the input is a three-dimensional tensor with a prominent

unique pixel in each channel. All the images must be the same size and correspond to the

same 3D feature tensor[10]. However, neither images nor their corresponding feature

tensors are normally coextensive. Most CNNs can only accept images that have been

fine-tuned. This causes a number of issues during data collection and model

implementation. However, reconfiguring the input images before augmenting them in the

network can assist in overcoming this limitation.

3.2.4 Train Model

In this stage, certain parameter will be configured in KNN, SVM, Decision Tree

and CNN model to determine the accuracy best model suit for the system.

a. KNN

The number of neighbours and the kind of distance are the parameter

settings utilised in the KNN method. The number of neighbours must be an odd

number utilised as 5, 7 and 9 and the distance types are Minkowski. Minkowski

will measure designed for vector spaces with real values. Normed vector space

will give the result calculate for distance which refer to the space where distances

length must be positive.

(∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝 (1)

Equation (1) show the general form for Minkowski distance and different

distance can be get by manipulated the value of p. When set the value of p = 1

25

will give Manhattan distance and set p = 2 will give Euclidean distance. Because

using Python library SKlearn so the default setting is 5 neighbour and Euclidean

distance.

b. SVM

Optimum hyperplane can be determined by increase the distance between

the classes. The maximum distance between data items in each class is defined

as the distance between classes[11]. Figure 3.1.9 shown the illustration to

define hyperplane.

Figure 3.1.9 Classification to define hyperplane using SVM

When compared to KNN, SVM performs better with large dimensionality

features by producing a hyperplane to split data with a straight line. Red and Blue

dot indicate the classes of the data then SVM will strive to determine the optimal

dividing line boundary between the two sets of data and this is the process of

learning for SVM[11].

c. Decision Tree

For this model, decision tree is used to calculate the entropy and

information that have been gain. Computing the entropy yields the amount of

uncertainty in the data, whereas calculating the difference in the entropy yields

the information gain.

26

Figure 3.1.10 Impurity of data in Decision Tree

Entropy is a metric used in information theory that evaluates the impurity

or uncertainty in a set of data. It controls how a decision tree divides data.

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑖) log 𝑝(𝑥𝑖, 𝑦𝑖)

𝑥𝑖∈𝑋

(2)

The value of xi and yi is the probability of p(xi,yi) shown in equation (2).

d. CNN

SSD mobilNetV2 have been load into CNN which is a pre-trained model

for object detection. ReLU activation function and MaxPooling layers are added

after the first Convolution layer. The Convolution layer is taught by hundreds of

filters. Each of the filter is to determine the edge of the image object. The size of

the kernel can be set into certain size based on height and width convolution of

two dimensional. It should be aware of the predicted shape of the input, input

shape information must be sent to the first layer of the model. Following layers

are capable of conducting shape reckoning instinctively.

Figure 3.1.11 Sample coding

27

The Conv2D class's activation parameter is set to "relu." It depicts a nearly

linear function with all of the benefits of linear models, including the ease with

which gradient-descent methods may be used to optimise it. By choosing the Max

Pooling size of 7 x 7, the spatial dimensions can be lowered. The next convolution

layer has 100 filters, each of which is activated using the ReLU activation

function and is followed by another MaxPooling layer as illustrated in Figure

3.1.12.

Figure 3.1.12 Convolutional Neural Network architecture for the system

To avoid overfitting, a Dropout layer with a 50% probability of setting

inputs to zero is added to the model. A Dense layer of 64 neurons with a ReLu

activation function is then added. In the last layer (Dense), which has two outputs

for two categories, the Softmax activation function is applied.

The compile method must first be used to configure the learning process.

The "adam" optimizer is used here. As a loss function, categorical crossentropy,

also known as multiclass log loss, is employed (the objective that the model tries

to minimize). Because this is a classification problem, the metrics are set to

"accuracy" as shown in Figure 3.1.13.

Figure 3.1.13 Sample coding

28

e. Split the data into train and test

When generating a prediction, having a good model and a well-designed

train test split can help to get accurate results. The test size is set at 0.1, implying

that 90% of the data in the dataset is utilised for training and 10% for testing. The

sequential is then fitted to the pictures in the training and test sets. In this project,

20% of the training data is used for validation. The model is trained for 20 epochs

(iterations) in order to strike a compromise between accuracy and overfitting risk.

This will consist of what it thinks that the image is either people wearing

facemask, wearing mask incorrectly or not wearing a mask. It will actually consist

of probabilities, such as 70% for wearing facemask, 20% for not wearing and 10%

for wearing mask incorretly. This is where the error need to be reduced.

Figure 3.1.14 Sample coding

3.2.5 Calculation of Performance

In each model algorithm, performance testing has been calculate using

performance criteria employed include accuracy, precision, recall, and F1 score

by referring to the confusion matrix in Figure 3.1.15. The best performing parameter

in one algorithm will be chosen and compared to another model.

29

Figure 3.1.15 Confusion Matrix

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
(3)

Accuracy values is calculated using Equation (3). TP stand for true positive, and

FP stand for false positive which mean this is a positive class population while TN and

FN stand for true negative and false negative respectively which include them in negative

class population[11]. Then to calculate the precision is by using Equation (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4)

After that, next evaluation is Recall. The proportion of truth of the positive class

prediction relative to the entire data with an actual positive label is used to compute Recall

and the calculation can be compute using Equation (5).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5)

And lastly to calculate the F1-score is by using Equation (6)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
(4)

All this equation are included in the SKlearn library package Python. Just use the

function of classification report and the result will appear. But certain model will require

certain time to train and testing.

30

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter discussed the results obtained during the process of completing the

final year project. The performance result of certain model can be obtained by using the

Python library SKlearn and then the best model will be used to the system.. In order to

achieve the best detection in real-time video, the camera resolution must be high, and the

brightness must be standardized.

4.2 Model Accuracy

This is the performance value of each of the model after train and testing the

dataset of three different class which is wear face mask, wear face mask incorrect and not

wearing face mask by also showing confusion matrix and the value of accuracy,

precision, recall and F1-score by using the calculation method that have been proposed

before.

31

Figure 4.1 KNN model 5 neighbour confusion matrix

Table 4.1 Accuracy model of 5 neighbour

Precision Recall F1 score

wear mask incorrect 0.82 0.4 0.54

wear mask 0.76 0.85 0.81

not wear mask 0.66 0.89 0.67

Accuracy 0.72

32

Figure 4.2 KNN model 7 neighbour confusion matrix

Table 4.2 Accuracy model of 7 neighbour

Precision Recall F1 score

wear mask incorrect 0.82 0.44 0.57

wear mask 0.76 0.91 0.83

not wear mask 0.71 0.88 0.79

Accuracy 0.75

33

Figure 4.3 KNN model 9 neigbour confusion matrix

Table 4.3 Accuracy model of 9 neighbour

Precision Recall F1 score

wear mask incorrect 0.87 0.47 0.61

wear mask 0.8 0.92 0.85

not wear mask 0.72 0.9 0.8

Accuracy 0.77

Table 4.4 Accuracy of SVM model

Precision Recall F1 score

wear mask incorrect 0.68 0.68 0.68

wear mask 0.93 0.96 0.95

not wear mask 0.5 0.11 0.68

Accuracy 0.9

34

Table 4.5 Accuracy of Decision Tree model

Precision Recall F1 score

wear mask incorrect 0.83 0.85 0.83

wear mask 0.92 0.94 0.93

not wear mask 0.87 0.85 0.86

Accuracy 0.87

Table 4.6 Accuracy of CNN model

Precision Recall F1 score

wear mask incorrect 0.94 0.97 0.95

wear mask 0.99 0.98 0.99

not wear mask 0.98 0.95 0.97

Accuracy 0.97

By refer to the result, CNN have the higher model accuracy compared to others

with 97% accuracy while KNN give the lowest accuracy with 72% but with the value of

neighbours increase the accuracy also increase. So, CNN are the best model to this

system. Figure 24 shown the flow diagram of the system using CNN model.

Figure 4.4 CNN model flow diagram for face mask detection

35

After train the CNN model, the data need to be loaded into face detector model

which is DNN face detector model using OpenCV package. To utilise the DNN face

detector with OpenCV, download the Caffe file which contain two type of file which is

“deploy.prototxt” and “res10_300x300_ssd_iter_140000.cafffemodel”

Figure 4.5 File require to use DNN face detector

4.3 Face mask detection performance

Figure 4.6 illustrates that after training, validating, and testing the model on

the datasets, the technique achieves up to 99 percent accuracy for three separate classes.

One of the key reasons for obtaining this degree of precision is MaxPooling. It provides

basic internal representation while minimising the number of parameters that the model

must learn. By down sampling the input picture representation, this sample-

based discretization approach decreases its dimensionality. The initial epoch set for this

training is 20 but with the error reduced close to zero value, it stops at epoch 13. The

main purpose for training the model is to reduce the error close to zero as possible.

By increase the number of epoch iteration, the error will be reduced, and the

accuracy of training will increase.

When cover a face with mask or a hand, the system can recognise partially

obscured faces with excellent accuracy. To eliminate between annotated mask and hand-

covered face, it examines the degree of occlusion of four places – nose, mouth, chin, and

eye. As a result, the model will only regard a mask that totally covers the face, including

the nose and chin, as "with mask." The method's key issues include shifting perspectives

and a lack of clarity. The unclear shifting faces in the live feed make it much more

challenging.

36

Figure 4.6 Training result for 3 different classes

Figure 4.7 Training result for 2 different classes

For Figure 4.7, same initial epoch set with 3 different classes (20 epoch). The iteration

stops at epoch 6 because the error has been reduced to very minimum value. Figure

4.8 show the output camera for detection of 3 different class.

37

Figure 4.8 Real time camera detection for 3 different class

The output shows not as expected because the detection to detect the mask are not

accurate such as the person not wearing a face mask, but the detection show “face with

mask incorrect” and the accuracy of person with wearing a face mask are lower which is

around 70%-80%. This expected output and accuracy are very different with the CNN

model that have been train before.

Figure 4.9 Real time camera detection for 2 different class

As shown in Figure 4.9, detection of 2 different class give the best output

for detection because the accuracy for detect a face mask and not wearing a face

mask is higher and the detection also can detect two or more person in one frame like

shown in Figure 4.10.

38

Figure 4.10 More person face mask detection

Brightness also needs to be considered for detection, because the system

cannot detect the object if the light is too low as shown in Figure 4.11.

Figure 4.11 Low brighness to make a detection

For KNN model, the value of neighbour can be manipulated to increase the

accuracy of model, the time compute for the model to compute is 1.78 seconds for 5

neighbour, 2 seconds for 7 neighbour and lastly 1.85 seconds for 9 neighbours. Here to

remember that KNN cannot read large amount of data because it will lead to noise of the

data. That comes with SVM model to overcome the drawback of KNN. Face detector are

used to detect the face of people within the camera frame. The system could detect faced

based on the brightness of the video.

39

CHAPTER 5

CONCLUSION

5.1 Introduction

As a conclusion, the artificial intelligence techniques known as the techniques

that were used increasingly to model environmental systems. The techniques covered are

machine learning, deep learning, artificial neural networks, convolutional neural network

and also supervised learning. This algorithm is well-suited to serve as a face detector in

a face mask detection system before displaying the final result of whether or not people

are wearing masks. The Python language, in conjunction with the Pycharm software,

proved to be extremely useful, as it handled all of the process and because of it have a

huge community support, to make an algorithm is easy by referring to many open sources

site. Artificial intelligence is excellent for a wide range of system development,

particularly image detection and recognition, but it requires additional training and

troubleshooting to achieve high accuracy in the final result. The application created with

the proper model will undoubtedly make all users accessible and everyone's life more

convenient.

5.2 Recommendation for future development

The present built programme can recognise people faces as well as face masks.

This application may be improved further by:

1. Troubleshooting the algorithm of detection for 3 different classes which is

wearing face mask, not wearing face mask and wearing face mask incorrect. With this,

more detection can be made.

40

2. Make the system of door automatically open for a certain premise when

someone wearing a face mask or not wearing face mask properly. This requires camera

and certain board such as Raspberry Pi and Arduino to operate. Camera will automated

detect the present of face mask. If someone wear mask properly, the door will open and

vice versa.

3. Make a Graphic User Interface (GUI) for more interactive system function

5.3 Impact to Society

Because of the intriguing feature of artificial intelligence, this application will

undoubtedly have a large influence on each individual, where it is able to detect a face mask

present on the face because wearing face mask have become a new norm to our society.

Although the restriction to wear a face mask is now loose in public, the application can be

use inside certain premise and industry place for safety user. This will make sure the safety

environment when people wearing a face mask to entering certain place.

41

REFERENCES

[1] A. Malge, H. M. Dhaduk, and P. M. Mallikarjuna Shastry, “An approach to face

detection and recognition using viola jones,” Int. J. Eng. Adv. Technol., vol. 8,

no. 5 Special Issue, pp. 52–56, 2019.

[2] I. Gogul and V. S. Kumar, “Flower species recognition system using convolution

neural networks and transfer learning,” 2017 4th Int. Conf. Signal Process.

Commun. Networking, ICSCN 2017, no. March, 2017, doi:

10.1109/ICSCN.2017.8085675.

[3] G. Plastiras, C. Kyrkou, and T. Theocharides, “Efficient convnet-based object

detection for unmanned aerial vehicles by selective tile processing,” ACM Int.

Conf. Proceeding Ser., 2018, doi: 10.1145/3243394.3243692.

[4] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems,” 2016, [Online]. Available:

http://arxiv.org/abs/1603.04467.

[5] M. M. Rahman, M. M. H. Manik, M. M. Islam, S. Mahmud, and J. H. Kim, “An

automated system to limit COVID-19 using facial mask detection in smart city

network,” IEMTRONICS 2020 - Int. IOT, Electron. Mechatronics Conf. Proc.,

2020, doi: 10.1109/IEMTRONICS51293.2020.9216386.

[6] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, A survey of the recent

architectures of deep convolutional neural networks, vol. 53, no. 8. Springer

Netherlands, 2020.

[7] B. Suvarnamukhi and M. Seshashayee, “Big Data Concepts and Techniques in

Data Processing,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, pp. 712–714, 2018,

doi: 10.26438/ijcse/v6i10.712714.

[8] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual Analytics in Deep

Learning: An Interrogative Survey for the Next Frontiers,” IEEE Trans. Vis.

Comput. Graph., vol. 25, no. 8, pp. 2674–2693, 2019, doi:

10.1109/TVCG.2018.2843369.

[9] C. Kanan and G. W. Cottrell, “Color-to-grayscale: Does the method matter in

image recognition?,” PLoS One, vol. 7, no. 1, 2012, doi:

10.1371/journal.pone.0029740.

[10] M. Hashemi, “Enlarging smaller images before inputting into convolutional

neural network: zero-padding vs. interpolation,” J. Big Data, vol. 6, no. 1, 2019,

42

doi: 10.1186/s40537-019-0263-7.

[11] M. Nur and Y. Utomo, “Face Mask-e Wearing Detection Using Soft-Margin

Support Vector Machine (SVM),” vol. 10, no. 2, pp. 72–81, 2021, doi:

10.14421/ijid.2021.3038.

[16] P. Viola and Michael Jones, “Rapid Object Detection using a Boosted Cascade of

Simple Features,” 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput.

ICECDS 2017, pp. 1193–1197, 2001, doi: 10.1109/ICECDS.2017.8389630.

[17] M. Mohanty and R. Sikka, “Android application to detect drowsiness during

driving vehicle,” Mater. Today Proc., no. xxxx, pp. 2–4, 2021, doi:

10.1016/j.matpr.2021.03.202.

[18] L. Cai, J. Zhu, H. Zeng, J. Chen, C. Cai, and K. K. Ma, “HOG-assisted deep

feature learning for pedestrian gender recognition,” J. Franklin Inst., vol. 355,

no. 4, pp. 1991–2008, 2018, doi: 10.1016/j.jfranklin.2017.09.003.

[19] Y. Wei, Q. Tian, J. Guo, W. Huang, and J. Cao, “Multi-vehicle detection

algorithm through combining Harr and HOG features,” Math. Comput. Simul.,

vol. 155, pp. 130–145, 2019, doi: 10.1016/j.matcom.2017.12.011.

[20] A. Raghunandan, Mohana, P. Raghav, and H. V. R. Aradhya, “Object Detection

Algorithms for Video Surveillance Applications,” Proc. 2018 IEEE Int. Conf.

Commun. Signal Process. ICCSP 2018, pp. 563–568, 2018, doi:

10.1109/ICCSP.2018.8524461.

43

APPENDIX A

SAMPLE APPENDIX 1

Datasets of 3 different classes that obtain from the GitHub and Kaggle.

1. Not wear a mask

2. Wear a face mask

44

3. Wear an incorrect face mask

45

APPENDIX B

SAMPLE APPENDIX 2

1. Code for Data Pre-processing

#import libraries

from sklearn.model_selection import train_test_split

import numpy as np

import os

import PIL

import cv2

import pickle

DIRECTORY = "C:data/" # Windows/PC

CATEGORIES = ['face_no_mask', 'face_with_mask_correct',

'face_with_mask_incorrect']

IMG_SIZE = 64 # IMG_SIZE = 224 alternative size

data

X = []

labels(0,1,2)

y = []

def create_data():

 for category in CATEGORIES:

 path = os.path.join(DIRECTORY, category)

 class_num_label = CATEGORIES.index(category)

 for img in os.listdir(path):

 try:

 img_array = cv2.imread(os.path.join(path, img),

cv2.IMREAD_GRAYSCALE)

 img_array = cv2.resize(img_array, (IMG_SIZE,

IMG_SIZE))

 X.append(img_array)

 y.append(class_num_label)

 except:

 pass

create_data()

SAMPLE_SIZE = len(y)

data = np.array(X).flatten().reshape(SAMPLE_SIZE, IMG_SIZE*IMG_SIZE) #

pixel-features

Turn X and y into numpy arrays

X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE) # images

y = np.array(y) # target

print("Features, X shape: ", X.shape)

print("Target, y shape: ", y.shape)

print("Data shape: ", data.shape)

#Saves us from having to regenerate our data by saving our data

pickle_out = open("X.pickle", "wb")

pickle.dump(X, pickle_out)

pickle_out.close()

pickle_out = open("y.pickle", "wb")

46

pickle.dump(y, pickle_out)

pickle_out.close()

pickle_out = open("data.pickle", "wb")

pickle.dump(data, pickle_out)

pickle_out.close()

pickle_in = open("X.pickle", "rb")

X = pickle.load(pickle_in)

pickle_in = open("y.pickle", "rb")

y = pickle.load(pickle_in)

pickle_in = open("data.pickle", "rb")

data = pickle.load(pickle_in)

print('# of Samples:', len(y))

print('# of face_no_mask:', (y == 0).sum())

print('# of face_with_mask_correct:', (y == 1).sum())

print('# of face_with_mask_incorrect:', (y == 2).sum())

Split our data into testing and training.

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=45)

Print the length and width of our testing data.

print('Length of our Training data: ',len(X_train), '\nLength of our

Testing data: ',len(X_test))

2. code for KNN model

import packages

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

import seaborn as sns # for confusion matrix

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt # to plot image, graph

import pickle

import time # for computation time assessment

from time import time

start = time()

pickle_in = open("X.pickle", "rb")

X = pickle.load(pickle_in)

pickle_in = open("y.pickle", "rb")

y = pickle.load(pickle_in)

pickle_in = open("data.pickle", "rb")

data = pickle.load(pickle_in) # Data Matrix will serve as X

print('# of Samples:', len(y))

print('# of face_no_mask:', (y == 0).sum())

print('# of face_with_mask_correct:', (y == 1).sum())

print('# of face_with_mask_incorrect:', (y == 2).sum())

47

Get Column Names

cols = []

for i in range(0, len(data[0])):

 cols.append("P" + str(i))

Convert to Dataframe

numpy_data = data

X = pd.DataFrame(data=numpy_data, columns=[cols])

print(X.head())

y = pd.DataFrame(data=y, columns=["Mask_Target"])

print(y.head())

Shape

print('\nImage Data Shape:', X.shape)

print('Image Data Shape Features:', data.shape)

print('Image Data Shape Target:', y.shape)

Normalize the pixel values (0-255)

X = X / 255.0

Split our data into testing and training.

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=45)

Print the length and width of our testing data.

print('Length of our Training data: ', len(X_train), '\nLength of our

Testing data: ', len(X_test))

Initialize KNN model

knn = KNeighborsClassifier(n_neighbors=7)

Use training data to fit KNN model

knn.fit(X_train, y_train.values.ravel())

make prediction on entire test data

predictions_set1 = knn.predict(X_test)

Calculate Confusion Matrix

cm = confusion_matrix(y_test, predictions_set1)

Calculate accuracy

accuracy = accuracy_score(y_test, predictions_set1)

print('Model accuracy is: ', accuracy)

print("Time compute: ", time()-start)

print("\nClassification Report KNN\n", classification_report(y_test,

predictions_set1))

#plot confusion matrix knn

from sklearn.metrics import plot_confusion_matrix

class_name = ['no_mask', 'mask_correct', 'mask_incorrect']

disp = plot_confusion_matrix(knn, X_test, y_test,

display_labels=class_name, cmap=plt.cm.Blues)

plt.ylabel('Actual label')

plt.xlabel('\nPredicted label')

disp.ax_.set_title('Confusion Matrix for KNN Model')

plt.show()

48

3. Code for SVM model

For data management

import pickle

from sklearn import svm

from sklearn import metrics

from sklearn.model_selection import train_test_split

For plotting

import matplotlib.pyplot as plt

pickle_in = open("X.pickle", "rb")

X = pickle.load(pickle_in)

pickle_in = open("y.pickle", "rb")

y = pickle.load(pickle_in)

pickle_in = open("data.pickle", "rb")

data = pickle.load(pickle_in)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.25)

svm = svm.SVC()

svm.fit(X_train, y_train)

y_pred = svm.predict(X_test)

accuracy = svm.score(X_test, y_test)

print("Accuracy %f" % accuracy)

metrics.accuracy_score(y_true=y_test, y_pred=y_pred)

print(metrics.classification_report(y_test, y_pred))

4. Code for Decision Tree

Import Metrics, Classifier and Graphing Packages

from sklearn.metrics import accuracy_score, classification_report

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import plot_confusion_matrix

import seaborn as sns # for confusion matrix

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt # to plot image, graph

import pickle

import time # for computation time assessment

from time import time

pickle_in = open("X.pickle", "rb")

X = pickle.load(pickle_in) # 3D Feature set

pickle_in = open("y.pickle", "rb")

y = pickle.load(pickle_in) # 1D Target set

pickle_in = open("data.pickle", "rb")

data = pickle.load(pickle_in) # 2-D Feature Set, Data matrix will

serve as X

49

print('# of Samples:', len(y))

print('# of face_no_mask:', (y == 0).sum())

print('# of face_with_mask_correct:', (y == 1).sum())

print('# of face_with_mask_incorrect:', (y == 2).sum())

Get Column Names

cols = []

for i in range(0, len(data[0])):

 cols.append("P" + str(i))

Convert to Dataframe

numpy_data = data

X = pd.DataFrame(data=numpy_data, columns=[cols])

print(X.head())

y = pd.DataFrame(data=y, columns=["Mask_Target"])

print(y.head())

print('\nImage Data Shape:', X.shape)

print('Image Data Shape Features:', data.shape)

print('Image Data Shape Target:', y.shape)

Normalize the pixel values

X = X / 255.0

Split our data into testing and training.

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=45)

Print the length and width of our testing data.

print('Length of our Training data: ', len(X_train), '\nLength of our

Testing data: ', len(X_test))

Initialize Decision Trees model

decision_trees = DecisionTreeClassifier()

Use training data to fit Decision Trees model

decision_trees.fit(X_train, y_train.values.ravel())

Predict Train Data Labels

predictions_set = decision_trees.predict(X_test)

pickle_out = open("predictions_set1_dt.pickle", "wb")

pickle.dump(predictions_set, pickle_out)

pickle_out.close()

Calculate accuracy

accuracy = accuracy_score(y_test, predictions_set)

print('Model accuracy is: ', accuracy)

print("\nClassification Report DT\n", classification_report(y_test,

predictions_set))

50

5. Code for CNN model

Import Libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report

import tensorflow

import sklearn

from sklearn.model_selection import train_test_split

import cv2

import seaborn as sns

import pickle

import os

filename = r"D:\BACKUP\IPTA\UMP\SEM 7\psm\conda faskmask

detection\Decision Tree model\X.pickle"

pickle_in = open(filename, 'rb')

X = pickle.load(pickle_in)

filename = r"D:\BACKUP\IPTA\UMP\SEM 7\psm\conda faskmask

detection\Decision Tree model\y.pickle"

pickle_in = open(filename, 'rb')

y = pickle.load(pickle_in)

CATEGORIES = ['face_no_mask', 'face_with_mask_correct',

'face_with_mask_incorrect']

double check to see the types of the loaded files

print('Type of X:', type(X))

print('Type of y:', type(y))

print('Shape of X:', X.shape)

print('Shape of y:', y.shape)

resized_X = []

for img in X:

 resized_X.append(cv2.resize(img, (64, 64)))

X = np.asarray(resized_X)

X = X.reshape(-1, 64, 64, 1)

print(X.shape)

normalize the pixel values

X = X / 255.0

IMG_DIM = X.shape[1]

print('IMG_DIM:',IMG_DIM)

Split dataset into Training and Testing

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

print('Training Size:', len(X_train))

print('Testing Size:', len(X_test))

cnn_model = tensorflow.keras.models.Sequential()

Start of Convolution Layers & Maxpooling

cnn_model.add(tensorflow.keras.layers.Conv2D(filters=64,

kernel_size=3, activation='relu',

 input_shape=(IMG_DIM,

51

IMG_DIM, 1)))

cnn_model.add(tensorflow.keras.layers.Conv2D(filters=64,

kernel_size=3, activation='relu'))

cnn_model.add(tensorflow.keras.layers.MaxPool2D())

cnn_model.add(tensorflow.keras.layers.Conv2D(filters=64,

kernel_size=3, activation='relu'))

cnn_model.add(tensorflow.keras.layers.Conv2D(filters=64,

kernel_size=3, activation='relu'))

cnn_model.add(tensorflow.keras.layers.MaxPool2D())

cnn_model.add(tensorflow.keras.layers.Conv2D(filters=64,

kernel_size=3, activation='relu',

 input_shape=(IMG_DIM,

IMG_DIM, 1)))

cnn_model.add(tensorflow.keras.layers.Conv2D(filters=64,

kernel_size=3, activation='relu'))

cnn_model.add(tensorflow.keras.layers.MaxPool2D())

Start of Neural Nets

cnn_model.add(tensorflow.keras.layers.Flatten())

cnn_model.add(tensorflow.keras.layers.Dense(512, activation='relu'))

cnn_model.add(tensorflow.keras.layers.Dropout(0.3))

cnn_model.add(tensorflow.keras.layers.Dense(512, activation='relu'))

cnn_model.add(tensorflow.keras.layers.Dropout(0.3))

cnn_model.add(tensorflow.keras.layers.Dense(256, activation='relu'))

cnn_model.add(tensorflow.keras.layers.Dense(128, activation='relu'))

cnn_model.add(tensorflow.keras.layers.Dense(3, activation='softmax'))

cnn_model.summary()

Compile the Model

cnn_model.compile(optimizer=tensorflow.keras.optimizers.Adam(),

 loss='sparse_categorical_crossentropy',

metrics=['acc'])

Train Model

epochs = 13

H = cnn_model.fit(X_train, y_train, epochs=epochs,

validation_split=0.2)

Evaluate performance

cnn_model.evaluate(X_test, y_test)

y_pred = np.argmax(cnn_model.predict(X_test), axis=-1)

Calculate Confusion Matrix

cm = confusion_matrix(y_test, y_pred)

Calculate accuracy

accuracy = accuracy_score(y_test, y_pred)

print('Model accuracy is: ', accuracy)

print("\nClassification Report CNN\n", classification_report(y_test,

y_pred))

cm = sklearn.metrics.confusion_matrix(y_test, y_pred)

plt.figure(figsize=(9, 9))

sns.heatmap(cm, annot=True, fmt='.0f', square=True, linewidths=.5,

cmap='Blues_r')

plt.ylabel('Actual Label')

plt.xlabel('\nPredicted Label')

print(sklearn.metrics.classification_report(y_test, y_pred))

52

