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ABSTRAK 

Algoritma metaheuristik semakin popular di kalangan penyelidik kerana keupayaannya 
untuk menyelesaikan masalah pengoptimuman bukan linear serta keupayaan untuk 
disesuaikan untuk menyelesaikan pelbagai masalah.Terdapat lonjakan metaeuristik novel 
yang dicadangkan baru-baru ini, namun tidak pasti sama ada ia sesuai untuk pelaksanaan 
FPGA. Di samping itu, terdapat pelbagai metodologi reka bentuk perlaksanaan 
metaheuristik FPGA yang boleh meningkatkan keupayaannya. Projek ini dimulakan 
dengan meneliti dan mengenal pasti metaheuristik yang sesuai untuk pelaksanaan FPGA. 
Metaeuristik yang dipilih ialah Simulated Kalman Filter (SKF) yang mencadangkan 
algoritma yang rendah kerumitan dan menggunakan bilang langkah yang kecil. 
Kemudian SKF Diskret telah disesuaikan daripada metaheuristik asal dengan 
membundarkan semua nilai titik terapung kepada nombor bulat serta menetapkan 
keuntungan Kalman tetap 0.5. SKF Diskret kemudiannya dimodelkan menggunakan 
pemodelan tingkah laku untuk menghasilkan SKF Binari yang kemudiannya 
dilaksanakan pada FPGA. Reka bentuk telah dibuat secara modular dengan menghasilkan 
modul berasingan yang menguruskan bahagian metaheuristik yang berbeza dan juga 
melaksanakan konfigurasi port Selari-Dalam-Selari-Keluar yang meningkatkan 
keupayaannya. SKF Diskret kemudiannya disimulasikan pada MATLAB manakala SKF 
Binari dilaksanakan pada FPGA dan keupayaannya diukur berdasarkan penggunaan cip, 
kelajuan pemprosesan dan ketepatan keputusan. SKF Binari menghasilkan peningkatan 
kelajuan sehingga 69 kali lebih pantas berbanding dengan simulasi SKF Diskret. 
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ABSTRACT 

Metaheuristic algorithms are gaining popularity amongst researchers due to their ability 
to solve nonlinear optimization problems as well as the ability to be adapted to solve a 
variety of problems. There is a surge of novel metaheuristics proposed recently, however 
it is uncertain whether they are suitable for FPGA implementation. In addition, there 
exists a variety of design methodologies to implement metaheuristics upon FPGA which 
may improve the performance of the implementation. The project begins by researching 
and identifying metaheuristics which are suitable for FPGA implementation. The selected 
metaheuristic was the Simulated Kalman Filter (SKF) which proposed an algorithm that 
was low in complexity and used a small number of steps. Then the Discrete SKF was 
adapted from the original metaheuristic by rounding all floating-point values to integers 
as well as setting a fixed Kalman gain of 0.5. The Discrete SKF was then modelled using 
behavioural modelling to produce the Binary SKF which was then implemented onto 
FPGA. The design was made modular by producing separate modules that managed 
different parts of the metaheuristic and also implemented Parallel-In-Parallel-Out 
configuration of ports. The Discrete SKF was then simulated on MATLAB meanwhile 
the Binary SKF was implemented onto FPGA and their performance were measured 
based on chip utilization, processing speed, and accuracy of results. The Binary SKF 
produced speed increment of up to 69 times faster than the Discrete SKF simulation. 

 



v 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF ABBREVIATIONS xii 

CHAPTER 1 INTRODUCTION 1 

1.1 Project Background 1 

1.2 Problem Statement 1 

1.3 Objectives 2 

1.4 Scope of Project 2 

1.5 Thesis Outline 3 

CHAPTER 2 LITERATURE REVIEW 4 

2.1 Introduction 4 

2.2 Novel Optimization Algorithms 4 

2.2.1 Single-Agent Finite Impulse Response Optimizer 4 

2.2.2 Barnacles Mating Optimization 5 

2.2.3 Orca Predation Algorithm 5 



vi 

2.2.4 Simulated Kalman Filter 6 

2.2.5 Single-solution Simulated Kalman Filter 7 

2.2.6 Particle Swarm Optimization 7 

2.2.7 Variants of Particle Swarm Optimization 8 

2.2.8 Binary Ant Colony Optimization 9 

2.2.9 Hybrid Binary Bat Enhanced Particle Swarm Optimization 

Algorithm 9 

2.3 FPGA Implementation Optimization Techniques 10 

2.3.1 Parallel Implementation of Particle Swarm Optimization 10 

2.3.2 Pipeline Architecture of Particle Swarm Optimization 11 

2.3.3 FPGA Realization of Particle Swarm Optimization Algorithm 

using Floating Point Arithmetic 12 

CHAPTER 3 METHODOLOGY 13 

3.1 Introduction 13 

3.2 Simulated Kalman Filter 13 

3.3 Discrete Simulated Kalman Filter Adaptation 17 

3.4 Binary Simulated Kalman Filter Behavioural Modelling 19 

3.4.1 Parallel-In-Parallel-Out Configuration of Modules 19 

3.4.2 Pseudo Random Number Generator (RNG) 20 

3.4.3 Random-Access Memory (RAM) 21 

3.4.4 Activation Function 22 

3.4.5 2-bit Pseudo Random Number Generator 22 

3.4.6 Measure 23 

3.4.7 Estimate 24 

3.4.8 Finite State Machine Controller 25 

3.4.9 Testbench Verification 29 



vii 

3.5 Hardware Components 30 

3.6 Software Components 31 

3.7 Performance Parameters 31 

3.7.1 Chip Utilization 32 

3.7.2 Processing Speed 32 

3.7.3 Accuracy of Result 32 

CHAPTER 4 RESULTS & DISCUSSION 33 

4.1 Introduction 33 

4.2 Experimental Setup 33 

4.3 Simulation and Implementation Results 33 

4.3.1 MATLAB Simulation of Discrete Simulated Kalman Filter 34 

4.3.2 FPGA Implementation of Binary Simulated Kalman Filter 35 

4.4 Chip Utilization 37 

4.5 Processing Speed 38 

4.6 Accuracy of Result 39 

4.7 Approximating the Time Taken by FPGA to Complete Run 40 

CHAPTER 5 CONCLUSION 41 

5.1 Discrete Simulated Kalman Filter 41 

5.2 Implementation of Binary Simulated Kalman Filter 41 

5.3 Project Limitations 42 

5.4 Suggestions and Future Work 42 

5.4.1 Improving Accuracy of Results 42 

5.4.2 Implementation of Pipeline Structure 42 

5.4.3 Implementation of CEC2014 Benchmark Functions 43 



viii 

5.4.4 Physical Synthesis to Improve Timing and Accuracy of Results 43 

5.4.5 Utilizing Phase-Locked Loop to Increase Clock Frequency 43 

REFERENCES 44 

 

  



ix 

LIST OF TABLES 

Table 1 Compiled result of simulation and FPGA implementation 33 

Table 2 Comparison of chip utilization 37 

Table 3 Comparison of processing speed 38 

Table 4 Comparison of accuracy of result 39 

Table 5 Approximating time taken by FPGA to complete run 40 

 

 

 



x 

LIST OF FIGURES 

Figure 1 Flowchart for Single-agent Finite Impulse Response Optimizer 4 

Figure 2 Flowchart for Barnacles Mating Optimizer 5 

Figure 3 Flowchart for Orca Predation Algorithm 6 

Figure 4 Flowchart for Simulated Kalman Filter 6 

Figure 5 Flowchart for Single-solution Simulated Kalman Filter 7 

Figure 6 Flowchart for Particle Swarm Optimization 8 

Figure 7 Parallel Implementation of Particle Modules 10 

Figure 8 Data path between registers 11 

Figure 9 Pipeline structure 12 

Figure 10 Simulated Kalman Filter flowchart 14 

Figure 11 Generation of population and fitness evaluation of agent for SKF 15 

Figure 12 Generation of population and fitness evaluation of agent for Discrete 
SKF 17 

Figure 13 Progression of Kalman gain in original SKF 18 

Figure 14 2s complement binary representation of Binary SKF 18 

Figure 15 Stacked random number generator modules 20 

Figure 16 Random-Access Memory module 21 

Figure 17 Activation Function module 22 

Figure 18 2-bit Pseudo Random Number Generator 22 

Figure 19 Measure module 23 

Figure 20 Estimate module 24 

Figure 21 Simplified state diagram of finite state machine controller 25 

Figure 22 State s0 Reset 26 

Figure 23 State s1 Generate population 26 

Figure 24 State s2 Fitness evaluation and comparison 27 

Figure 25 State s3 Measure 27 

Figure 26 State s4 Estimate 28 

Figure 27 Waveform generated by a testbench with parameters N = 50, D = 
10, maxrun = 2, tmax  = 50. 29 

Figure 28 DE10 – Lite System Builder application 30 

Figure 29 Quartus Prime Lite Edition 18.1 31 

Figure 30 Performance parameters 32 

Figure 31 MATLAB simulation result for D = 5 34 

Figure 32 MATLAB simulation result for D = 10 34 



xi 

Figure 33 MATLAB simulation result for D = 20 34 

Figure 34 FPGA implementation result for D = 5 35 

Figure 35 FPGA implementation result for D = 10 35 

Figure 36 FPGA implementation result for D = 20 35 

Figure 37 FPGA implementation chip utilization for D = 5 36 

Figure 38  FPGA implementation chip utilization for D = 10 36 

Figure 39  FPGA implementation chip utilization for D = 20 36 

 
  



xii 

LIST OF ABBREVIATIONS 

FPGA Field Programmable Gate Array 

SKF Simulated Kalman Filter 

FSM Finite State Machine 

RNG Random Number Generator 

RAM Random-Access Memory 

PIPO Parallel-In-Parallel-Out 

SISO Serial-In-Serial-Out 

CPU Central Processing Unit 

LFSR Linear Feedback Shift Register 

PLL Phase-Locked Loop 



1 

CHAPTER 1 

 

 

INTRODUCTION 

1.1 Project Background 

A metaheuristic algorithm is an optimization method that is used to solve complex 

nonlinear and multimodal problems [1] .In addition, metaheuristic algorithms are flexible 

due to their ability to be adapted to solve a wide range of optimization problems. In recent 

times, some metaheuristics have risen to popularity due to their flexibility and capability 

in solving a wide scale and variety of optimization problems. A few examples of these 

metaheuristics are such as Genetic Algorithm, Grey Wolf Optimizer, Particle Swarm 

Optimization, and Simulated Kalman Filter.  

Implementation of a metaheuristic onto a field programmable gate array (FPGA) 

is a straightforward process. The metaheuristic equations are implemented according to 

the flowchart and with the assistance of the pseudocode into a description hardware 

language such as System Verilog which will then be programmed onto an FPGA. 

However, the design methodology of the implementation can significantly affect the 

performance of the metaheuristics on the hardware.  

1.2 Problem Statement 

Lately, a large influx of novel metaheuristic algorithms has been proposed such 

as Barnacles Mating Optimizer, Orca Predation Algorithm, and Single-Agent Finite 

Impulse Response Optimizer. Furthermore, researchers have also worked on existing 

metaheuristics to produce variants of the original work such as Transitional Particle 

Swarm Optimization, Binary Particle Swarm Optimization, and Single-solution 

Simulated Kalman Filter.  
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The increasing interest of developing new or variants of metaheuristic algorithms 

is because each metaheuristic can achieve a different performance in terms of their 

exploration and exploitation process [2]. This would lead to varying performance 

difference in solving different kind of optimization problems. However, these novel 

metaheuristics are typically designed with numerous and complex steps that may be 

difficult to implement on a FPGA. 

In recent times, edge computing has been a growing trend as it contends against 

its alternative cloud computing. Instead of transmitting raw data from the source to a 

central data centre for analysis and processing, some of the work is shifted to the source 

itself. However, this method of computing requires reliable yet cost effective hardware 

to be equipped at the front end. 

1.3 Objectives 

The objectives of this project are listed below: 

i. To study, explore and modify Simulated Kalman Filter algorithm for 

hardware implementation 

ii. To investigate, design & implement binary Simulated Kalman Filter 

iii. To evaluate the performance of the structure in terms of accuracy, speed, and 

cost 

1.4 Scope of Project 

This project will only consider metaheuristic algorithms for numerical 

optimization. The hardware used for the implementation will be the DE10 - Lite board 

(10M50DAF474G) and the performance of the project will be dependent on its 

capabilities. In addition, the performance of the implementation will be measured using 

one activation function only. 
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1.5 Thesis Outline 

This thesis is composed of five main chapters which are the introduction, 

literature review, methodology, results and discussion, and conclusion.  

Chapter 1 introduces the background of project, the problem statement, 

objectives, and scope of the project. This chapter is dedicated to enable the reader to grasp 

the essential topics of the project such as the definition of metaheuristic and its 

utilizations. It also elaborates the aim and limitations of the project so that readers are 

more aware of what the project tries to achieve within the given scope. 

Chapter 2 is the literature review where articles written by experts of the field of 

metaheuristics and the implementation of metaheuristics into FPGA are reviewed. In the 

literature review, the thesis looks into a variety of novel optimization algorithms that have 

been recently introduced. Then a list of design methodologies of FPGA implementation 

is also reviewed to understand the effects of different design methodologies can have 

upon the performance of the metaheuristic. 

Chapter 3 describes the adaptation of the original Simulated Kalman Filter into 

the Discrete Simulated Kalman Filter that is more suitable for implementation into digital 

systems. Then the Discrete Simulated Kalman Filter is then modelled using System 

Verilog through behavioural modelling to generate the necessary modules to operate the 

Binary Simulated Kalman Filter. The design of the finite state machine controller is also 

described in detail in this chapter. Next, the software and hardware components are 

briefly described. Lastly, the performance parameters which will be used to verify the 

performance of the implementation is discussed. 

Chapter 4 presents the results of the FPGA implementation of the Binary 

Simulated Kalman Filter and the MATLAB simulation of the Discrete Simulated Kalman 

Filter. The chapter then continues to analyse the performance of both methods in terms 

of the performance parameters. 

Chapter 5 concludes the project by summing up results of the project. Then the 

limitations of the project were identified. This is followed by the suggestions and future 

work that should be implemented to further improve the performance of the 

implementation. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

The first objective of the project is to study different metaheuristic algorithms and 

to identify suitable metaheuristics for hardware implementation. The project begins by 

studying a variety of novel optimization algorithms. 

2.2 Novel Optimization Algorithms 

2.2.1 Single-Agent Finite Impulse Response Optimizer 

The metaheuristic proposed is a single-agent metaheuristics that is inspired by the 

unbiased finite impulse response filter. It proposes an algorithm that optimizes a single 

solution iteratively until a stopping condition is met. It boasts a great performance in 

exploration and exploitation which enables it to search a wide range of possible solutions 

and lastly produce a near optimum solution [1]. Its process is described in the flowchart 

as shown in Figure 1. 

 
Figure 1 Flowchart for Single-agent Finite Impulse Response Optimizer 
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2.2.2 Barnacles Mating Optimization 

The proposed algorithm is a novel multi-agent optimization algorithm which 

mimics the mating behaviours of barnacles as described in Figure 2. It involves a 

sequence where barnacles are randomly selected, and the reproduction process occurs to 

a set population of barnacles. Then, the barnacles may only mate with the surrounding 

barnacles based on the length of their penis which is set prior to simulation. The offspring 

of the barnacles will then inherit the characteristics from its parents [2]. 

 
Figure 2 Flowchart for Barnacles Mating Optimizer 

 

2.2.3 Orca Predation Algorithm 

A novel multi-agent bio-inspired metaheuristic which mimics the hunting 

behaviour of orcas. The metaheuristic introduces a sequence where orcas drive, encircle, 

and attack a school of fish. The algorithm emphasises on different stages of the sequence 

such as driving and encircling to effectively adjust its exploration and exploitation 

respectively. This enables the algorithm to solve a large variety of problems as it was 

implemented onto several engineering optimization problems which showed great 

performance [3]. The metaheuristic is described using a complex flowchart as seen in 

Figure 3. 
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Figure 3 Flowchart for Orca Predation Algorithm 

 

2.2.4 Simulated Kalman Filter 

A multi-agent metaheuristic where each search agent acts as a Kalman Filter 

which is a state estimation method popularized in the year 1960. Each search agent then 

estimates the optimum solution to the fitness function through several steps such as 

predict, measure, and estimate to consequently produce the best-so-far solution as shown 

in Figure 4 [4]. 

 
Figure 4 Flowchart for Simulated Kalman Filter 
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2.2.5 Single-solution Simulated Kalman Filter 

This algorithm is a variant of the original Simulated Kalman Filter metaheuristic 

which is a multi-agent metaheuristic. This variant is adapted to become a single-agent 

metaheuristic where there is only one search agent acting as a Kalman Filter. The 

proposed algorithm boasts simplified equations since it only uses one agent [5]. Its 

flowchart is described in Figure 5. 

 
Figure 5 Flowchart for Single-solution Simulated Kalman Filter 

 

2.2.6 Particle Swarm Optimization 

A multi-agent metaheuristic inspired by the movement of flock of birds such as 

scattering and regrouping in search of food. Each agent also known as a particle is a 

candidate solution which moves around the search space during each iteration in search 

of improvements to the solution. The position and velocity are influenced by each 

particle’s best-known position as well as the best-known position of other particles as 

well [6]. The flowchart for Particle Swarm Optimization is illustrated in Figure 6. 
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Figure 6 Flowchart for Particle Swarm Optimization 

 

2.2.7 Variants of Particle Swarm Optimization 

Due to the popularity of the original Particle Swarm Optimization algorithm, a 

large variety of its variants were proposed to improve upon the algorithm in different 

aspects. The Binary Particle Swarm Optimization was introduced to adapt the original 

algorithm into a discrete search space which overcomes the problems faced by the 

original algorithm which was designed to be used in a continuous search space. In this 

variant, the particles represent its position in binary meanwhile its velocity is defined as 

the probability that it will change its state. The structure of the variant is like the original 

algorithm however it utilizes a separate set of equations since it is adapted to work in 

binary [7]. 

The Random Time-Varying Particle Swarm Optimization algorithm was 

introduced to enable the algorithm to reduce its processing time and evaluate positions of 

real-time locating systems with reasonable accuracy. The variant employs a smaller 

number of particles and fewer iterations to reduce the processing time to fulfil the rigid 

real-time conditions. In addition, the variant was adapted to produce quick and accurate 

solutions from a dynamic search space. The variant was also implemented on hardware 

which further improved its performance through simultaneous computations [8]. 
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The Transitional Particle Swarm Optimization implements a transition in the 

original algorithm from asynchronous update at the start of the search and transitions to 

synchronous iteration towards the end of the run. This is because asynchronous iteration 

enables a better exploration meanwhile synchronous iteration enables a better 

exploitation of the search space. Synchronous iteration is done by evaluating the entire 

population then identifying the individual particle’s and the population’s best solution. In 

comparison, asynchronous iteration is done by immediately updating the particle’s and 

population’s best solution immediately upon completing its own fitness evaluation [9]. 

2.2.8 Binary Ant Colony Optimization 

In the year 1991, the original Ant Colony Optimization metaheuristic was 

introduced. This paper implements the original metaheuristic into a binary solution 

domain such that the solution search space is represented in a binary format. Then its 

performance was verified through a binary function optimization problem opposed to the 

typical continuous function optimization problem [10]. 

2.2.9 Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm 

This metaheuristic combines two variants of the original Bat optimization and 

Particle Swarm Optimization to form a hybrid metaheuristic namely a combination of 

binary Bat metaheuristic and binary Particle Swarm Optimization to form the Hybrid 

Binary Bat Enhanced Particle Swarm Optimization Algorithm. It is claimed that the 

binary variants of metaheuristics are capable of producing superior results.  

The binary Bat metaheuristic applies a binary map onto the solution found since 

the solution search space is continuous. Meanwhile the Binary Particle Swarm 

Optimization converts continuous values into binary values. The results shows that the 

hybrid metaheuristic is capable of producing better results than other binary variants of 

other metaheuristics such as binary Genetic Algorithm, binary Particle Swarm 

Optimization, binary Greywolf, binary Bat, and binary Dragonfly. The hybrid 

combination of both binary Bat and binary Particle Swarm Optimization produced better 

solutions than the individual metaheuristics [11]. 
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2.3 FPGA Implementation Optimization Techniques 

The performance of a metaheuristics on FPGA is dependent upon its design 

methodology. A typical implementation of a metaheuristic may vary in comparison to the 

implementation with different design methodology such as parallel implementations, 

pipeline architectures, and implementation of floating-point arithmetic modules. 

2.3.1 Parallel Implementation of Particle Swarm Optimization 

This implementation optimization technique was implemented to accelerate the 

processing speed of the algorithm. It was designed to process large volumes of data from 

processes such as Big Data and Mining of Massive Datasets. This was achieved through 

the implementation of several particle modules in parallel to concurrently compare the 

best fitness value of all particles as shown in Figure 7. Despite the increment of particle 

modules to enable parallel computing of the particles, the results of the hardware costs 

showed that it used less registers and Look Up Tables in comparison to similar works 

from the literature [12]. 

 
Figure 7 Parallel Implementation of Particle Modules 
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2.3.2 Pipeline Architecture of Particle Swarm Optimization 

The paper works upon the previously mentioned variant of the Particle Swarm 

Optimization with random time-varying inertia weight and acceleration coefficients and 

its existing serial architecture implemented on hardware. The improvements proposed in 

this paper includes simplifications of the hardware architecture such as changing the 

control mechanism from a complicated distributed style into a simple centralized style to 

improve the stability of the hardware system as shown in Figure 8. This was done to 

overcome the calculation error that occurred in the previous implementation. Next, the 

performance of the implementation was improved by introducing registers and 

reconfiguration of the state transitions.  

The implementation was able to successfully run 6 concurrent operations through 

a pipeline architecture as shown in Figure 9. In addition, the simplification of hardware 

architecture was able to successfully reduce errors and improve the rate of available 

results. The results reported showed a significant improvement in terms of performance. 

However, an increment in chip usage was observed [13]. 

 
Figure 8 Data path between registers 
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Figure 9 Pipeline structure 

 

2.3.3 FPGA Realization of Particle Swarm Optimization Algorithm using 

Floating Point Arithmetic 

The paper introduces the implementation of the original Particle Swarm 

Optimization algorithm with a modification upon its arithmetic modules. The arithmetic 

modules were replaced with floating-point arithmetic modules to further improve the 

accuracy of each particle results. This is because floating-point arithmetic used such as 

the single precision and double precision floating point arithmetic module enables the 

implementation to calculate to more decimal points. However, this resulted in extremely 

high chip usage. The implementation of the double precision floating point arithmetic 

module exceeded the total hardware available. The hardware cost was reduced by further 

implementing resource sharing for multiplication and addition operations which managed 

to free up some Look Up Tables [14]. 

During the review of the paper, it was noted that the paper did not reveal any 

results in the terms of accuracy despite the implementation of the floating-point 

arithmetic module was intended to improve the accuracy of results. However, it did 

successfully evaluate the hardware costs of implementing the floating-point arithmetic 

module and the effect of swarm size upon hardware costs. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In this chapter, the process of adapting the original Simulated Kalman Filter 

metaheuristic into Discrete Simulated Kalman Filter is described. Then the Discrete 

Simulated Kalman Filter is then modelled using System Verilog through behavioural 

modelling to produce the Binary Simulated Kalman Filter which is then implemented 

into the FPGA. The individual modules are initially designed modularly and then 

integrated into a finite state machine to handle timing and interconnection of modules. 

Test benches were also produced to test the functionality of each individual module as 

well as the finite state machine prior to implementation into FPGA. Lastly, the 

performance parameter which is used to verify the performance of the implementation is 

discussed. 

3.2 Simulated Kalman Filter 

Through the process of elimination, the metaheuristic chosen for FPGA 

implementation was the Simulated Kalman Filter (SKF). The bio-inspired metaheuristics 

Barnacles Mating Optimizer and Orca Predation Algorithm proposed steps that were too 

complex and numerous. This would result in a difficult implementation of the algorithm 

as it may incur high costs to implement all the different states and modules of the 

algorithm. The Single-Agent Finite Impulse Response Optimizer proposes an iterative 

process with a sub-iterative process which introduces the same problem as mentioned 

above. 
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Figure 10 Simulated Kalman Filter flowchart 

 

The SKF metaheuristic is composed of 4 major components namely the 

population generation, fitness evaluation of agents, fitness evaluation comparison and 

storage, and the Kalman Filter components which are the predict, measure, and estimate 

steps as shown in Figure 10. These steps are carried out iteratively until a stopping 

condition is met which is typically the maximum number of iterations. There are several 

variables of the Kalman Filter components which are significant such as the initial error 

covariance estimate, P(0), process noise, Q, measurement noise, R, and the Kalman gain, 

K. 
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Figure 11 Generation of population and fitness evaluation of agent for SKF 

Before the first iteration starts, several parameters need to be defined such as the 

number of agents, N, number of dimensions, D, and maximum number of iterations, tmax. 

Then the initial generation of population is done by generating a random floating-point 

value between the range of -100 to 100 and loading it into a multidimensional array X 

which has N columns and D rows.  

Then the evaluation step is proceeded by evaluating the fitness of the agents 

through the activation function. The activation function of the original SKF metaheuristic 

utilizes the CEC2014 benchmark function which contains a set of 30 activation functions. 

Figure 11 illustrates the generation of population and fitness evaluation using the sphere 

activation function. The sphere activation function is described in Equation 3.1. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹) = �𝑋𝑋(𝐹𝐹)2
𝐷𝐷

𝑛𝑛=1

 3.1 

After all agents have their fitness evaluated, all the fitness evaluation values are 

compared and the agent with the best fitness evaluation for the current iteration is selected 

as the Xbest(t). The selection process for Xbest(t) depends on whether it is a minimization 

problem or maximization problem. Equation 3.2 is used to determine Xbest(t) if it is a 

minimization problem and Equation 3.3 is used if it is a maximization problem. The 

Xbest(t) is then used to update the best-so-far solution of the run, Xtrue by replacing the 
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best-so-far solution with the Xbest(t) value if Xbest(t) < Xtrue for minimization problems 

and Xbest(t) > Xtrue for maximization problems. 

𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝐹𝐹𝐹𝐹𝑖𝑖∈1,….,𝑛𝑛𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖�𝑋𝑋(𝐹𝐹)� 3.2 

𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈1,….,𝑛𝑛𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖�𝑋𝑋(𝐹𝐹)� 3.3 

In the first iteration, the predict step is carried out by setting the initial error 

covariance to 1000, P(0) = 1000, the process noise is set to 0.5, Q = 0.5, and the 

measurement noise is set to 0.5, R = 0.5. Then the error covariance is calculated using 

Equation 3.4. 

𝑃𝑃 = 𝑃𝑃 + 𝑄𝑄 3.4 

Then the measurement step is carried out using Equation 3.5. where the X is the 

position of the agents and Y is the measured value of the agents. 

Y = 𝑋𝑋 +  �𝐹𝐹𝐹𝐹𝐹𝐹(𝑟𝑟𝑚𝑚𝐹𝐹𝑟𝑟(𝐹𝐹, 1)  × 2 ×  𝜋𝜋)�  × 𝑚𝑚𝑎𝑎𝐹𝐹(𝑋𝑋 − 𝑋𝑋_𝐹𝐹𝑟𝑟𝑡𝑡𝐹𝐹) 3.5 

Then the estimate step is proceeded to calculate the Kalman gain value as shown 

in Equation 3.6. Then the position of agents is updated using the Equation 3.7 and lastly 

the new error covariance is updated through the Equation 3.8. 

𝐾𝐾 =
𝑃𝑃

(𝑃𝑃 + 𝑅𝑅) 3.6 

𝑋𝑋 = 𝑋𝑋 + 𝐾𝐾 × (𝑌𝑌 − 𝑋𝑋) 3.7 

𝑃𝑃 =  (1 − 𝐾𝐾)  × 𝑃𝑃 3.8 

At the end of the estimate step of the Kalman Filter components, the stopping 

condition is checked and the run stops if the maximum number of iterations have been 

achieved. Else the run continues on to the next iteration and the steps are repeated from 

the evaluation of fitness agent. 
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3.3 Discrete Simulated Kalman Filter Adaptation 

The original SKF metaheuristic was simulated using MATLAB utilizing floating-

point values. The operation of this simulation is represented in Figure 11 where the agent 

positions as well as its fitness evaluation are represented by whole numbers, decimal 

point, and its corresponding fractional part. This introduced complications into the design 

of the FPGA implementation as it is difficult to represent the fractional parts of a number 

in a digital system. Hence, the original SKF was adapted into a Discrete SKF to remove 

this complication. 

 
Figure 12 Generation of population and fitness evaluation of agent for Discrete 

SKF 

The Discrete SKF utilizes the same minimization sphere function but utilizes only 

integer values. This is done by rounding all the floating-point agent position values to the 

nearest integer. This would consequently produce fitness evaluation values in whole 

number as well. The generation of population and fitness evaluation by Discrete SKF is 

illustrated in Figure 12. 

In addition to rounding up the floating-point values, the Kalman gain which was 

previously calculated using Equation 3.6 is set to a fixed value of K = 0.5. This is done 

because a multiplication of 0.5 can be translated into a division by 2 which can be 

operated in binary as a logical right shift of 1 bit. The deliberate value of 0.5 is set after 

thorough investigation of the transition of the Kalman gain in the original SKF MATLAB 
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simulation. The Kalman gain can be observed to slowly decrease from 0.9995 at the first 

iteration to 0.6180 at the seventh iteration. The Kalman gain value then stagnates at 

0.6180 until the end of the run as seen in Figure 13.  

 
Figure 13 Progression of Kalman gain in original SKF 

This Discrete SKF was then simulated in MATLAB to verify its results. The 

significance of the adaptation from the original to discrete version of SKF is that the 

discrete version can be readily implemented in a digital system by representing the integer 

values as binary values. The implementation of Discrete SKF as Binary SKF is illustrated 

in Figure 14 where the integer values are represented in 2s complement binary values. 

 
Figure 14 2s complement binary representation of Binary SKF 
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3.4 Binary Simulated Kalman Filter Behavioural Modelling 

Each section of the Binary SKF metaheuristic was segmented and individually 

designed into separate modules using System Verilog. The major components that needed 

to be designed were the random number generator to generate the initial population of 

agents, Random-Access Memory (RAM) to store the agent position and measurement 

values, Activation Function module to evaluate the fitness of each agent according to 

Equation 3.1, Measure module to carry out measurement calculations as shown in 

Equation 3.5, and the Estimate module to update the position of agents according to 

Equation 3.7. The initial design produced is capable of processing 10 dimensions. This 

design is repurposed to produce 3 different variants which are the 5-dimension, 10-

dimension and 20-dimension Binary SKF for FPGA implementation. 

3.4.1 Parallel-In-Parallel-Out Configuration of Modules 

During the behavioural modelling of the required modules, it was discovered that 

it was possible to produce modules with multiple input and output ports. This was 

significant as it enabled a module to receive multiple inputs, process the inputs, and 

produce multiple outputs at once. This Parallel-In-Parallel-Out (PIPO) configuration was 

exploited to maximise the number of inputs and outputs of each module and consequently 

improve their performance. The number of ports is dependent on the number of 

dimensions for that implementation. The rest of the chapter describes the design of the 

10-dimension implementation. 
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3.4.2 Pseudo Random Number Generator (RNG) 

 
Figure 15 Stacked random number generator modules 

The random number generator is designed upon the concept of Linear Feedback 

Shift Register (LFSR) which is a long chain of flip-flop with XOR gates at specific 

outputs of the flip-flop chain. The LFSR then produces a sequence of pseudo random 

numbers. Since the numbers generated are a sequence, the number will repeat themselves 

after 2N – 1 outputs where N is the polynomial factor or number of flip-flops used in the 

module. In this implementation, the module is designed with a polynomial factor of 16 

which results in a sequence that repeats itself after 65535 number of outputs. In practical 

terms, this would be sufficiently long enough to be considered random. In addition, the 

sequence is determined by the input seed value. A different seed value would result in a 

different sequence of numbers. This is useful because it enables the same module to be 

reused to generate separate set of randomly generated numbers.  

The bus width of the output is set to 8-bits to sufficiently represent the position of 

the agents which is between -127 to 127. To produce a value between -100 to 100, an 

internal boundary function is implemented to ensure the values produced are in the 

allowed range. 

A single random number generator module is capable of outputting a single 

random number in a single clock cycle. This is sufficient to generate the inputs for the 

RAM holding the agent positions. To further improve the speed of the generator, it was 

decided to stack 10 modules together to generate 10 random values as shown in Figure 

15. Each random number generator then outputs the value for a single dimension.  
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3.4.3 Random-Access Memory (RAM) 

 
Figure 16 Random-Access Memory module 

The Random-Access Memory (RAM) module was designed to temporarily store 

the position value of the all the dimensions of the agents as illustrated in Figure 16. The 

RAM module is a multidimensional register with N number of columns and D number of 

rows. The input and output ports are similarly designed in PIPO arrangement which 

allows all dimension of a single agent to read and written to in a single clock cycle.  

The we_x is the write enable port. When pulled high, it enables writing to the 

module and when pulled low, it disables writing to the module. The w_addr_x and 

r_addr_x ports are the write to and read from address ports, respectively. The writing 

operation is done by pulling we_x high, inputting a specific address between value of 0 

to N-1 and inputting the value at the input ports. To read from the RAM, sending an 

address value between 0 to N-1 to the r_addr_x port will result in the value of the address 

produced at the output ports. The bus width of all the input and outputs are 8-bits wide 

similarly to the RNG module. The instantiation of this module to store the position of 

agents is called RAM_X. 

The module is also instantiated with a larger input and output bus width of 9 bits 

called RAM_Y. This separate module is used to store the output values from the Measure 

module. The enhanced resolution is to facilitate the arithmetic operations upon the agent’s 

original position which is conducted in the Measure module. 
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3.4.4 Activation Function 

 
Figure 17 Activation Function module 

The Activation Function module facilitates the calculations required to evaluate 

the fitness of agent using the activation function described in Equation 3.1. The module 

receives input from the RAM_X module and then computes and outputs the evaluation 

of the agent as shown in Figure 17. In a single clock cycle, every dimension of an agent 

is loaded into the module and its fitness evaluation is outputted from its output port. 

3.4.5 2-bit Pseudo Random Number Generator 

 
Figure 18 2-bit Pseudo Random Number Generator 

This RNG module is a modified version of the 8-bit pseudo random number 

generator that produces an output with only 2-bits and further bounded to 3 specific 

outputs which are -1, 0 and 1. This is done to simulate the �𝐹𝐹𝐹𝐹𝐹𝐹(𝑟𝑟𝑚𝑚𝐹𝐹𝑟𝑟(𝐹𝐹, 1)  × 2 ×  𝜋𝜋)� 

component of the measure step as described in Equation 3.5 which originally generates a 

floating-point value ranging between -1 to 1. The module is represented in Figure 18. 
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3.4.6 Measure 

 
Figure 19 Measure module 

The Measure module facilitates the calculations required to carry out the measure 

step as described in Equation 3.5. It receives a random number of either -1, 0, or 1 from 

its rng port which is then used for the calculation of the outputs. The best_agent_D# ports 

are the input ports of the position value of the Xtrue which are used for the 

𝑚𝑚𝑎𝑎𝐹𝐹(𝑋𝑋 − 𝑋𝑋_𝐹𝐹𝑟𝑟𝑡𝑡𝐹𝐹) component of Equation 3.5. The input ports receive the agent position 

values from the RAM_X output ports which is then processed and produced at the output 

ports as shown in Figure 19. The output ports are 9-bits wide to facilitate the measurement 

arithmetic operations and enable an output value ranging between -511 to 511. 
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3.4.7 Estimate 

 
Figure 20 Estimate module 

The Estimate module facilitates the calculations required to carry out the estimate 

step as described in Equation 3.7. The module receives inputs from both RAM_X and 

RAM_Y which it then processes and outputs in its output ports as shown in Figure 20. 

The output value is internally bounded to ensure that the output values are within the 

acceptable range of -100 to 100. The output values are then loaded to the input ports of 

the RAM_X to update the new value of agent position. 

 



25 

3.4.8 Finite State Machine Controller 

 
Figure 21 Simplified state diagram of finite state machine controller 

To ensure proper timing and flow of data between modules, a finite state machine 

(FSM) was modelled using System Verilog. The FSM instantiates all the necessary 

modules and the necessary wires for interconnection between modules. The FSM has 6 

states in sequence of s0 Reset, s1 Generate population, s2 Fitness evaluation and 

comparison, s3 Measure, s4 Estimate, and s5 Complete. A simplified state diagram of the 

FSM is illustrated in Figure 21. 
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Figure 22 State s0 Reset  

In state s0, all modules are reset. In this state, the initial seed values are input into 

the RNG modules, all comparison and storage registers are cleared except for Xtrue, and 

write enable for RAM_X is disabled a shown in Figure 22. There is no condition for 

moving onto the next state, so it will proceed to state s1 upon the next clock cycle. 

 
Figure 23 State s1 Generate population 

In state s1, all modules have their reset ports pulled low to leave reset state. The 

RNG stack output is then connected to the input ports of the RAM_X as shown in Figure 

23. At the same time, the write enable for RAM_X is enabled. On the first clock cycle, 

the write address is directed to the address 0 and increases by 1 on each positive edge of 

the clock signal. When the write address reaches the value N-1, the write enable of 

RAM_X is disabled, the RNG reset is pulled high, and the FSM enters the next state. 
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Figure 24 State s2 Fitness evaluation and comparison 

In state s2, the output ports of RAM_X is connected to the input ports of the 

Activation Function module as shown in Figure 24. On the first clock cycle, the read 

address of RAM_X is directed to address 0 and increases by 1 on each positive edge of 

the clock signal. The Activation Function module then processes and outputs the agent 

evaluation at its output port. The FSM controller then compares the current evaluation 

with the overall best evaluation for the current iteration to update the Xbest register. At 

the same time, it updates the Xtrue register and lastly moves onto the next state when the 

read address of RAM_X reaches the value N. 

 
Figure 25 State s3 Measure 
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In state s3, the output ports of RAM_X is connected to the input ports of the 

Measure module. The 2-bit RNG module is connected to the rng port of the Measure 

module and the best_agent_D# ports are driven by the FSM controller registers as shown 

in Figure 25. The output ports of the Measure module are connected to the input ports of 

the RAM_Y module and the write enable for RAM_Y is enabled. On the first clock cycle, 

the read address of the RAM_X is directed to address 0 meanwhile the write address of 

the RAM_Y is directed to address 0. Both addresses increase on each clock cycle until 

they reach the value of N-1 which then triggers the condition to enter the next state. 

 
Figure 26 State s4 Estimate 

In state s4, the output ports of RAM_X and RAM_Y are connected to the input 

ports of the Estimate module as shown in Figure 26. The output ports of the Estimate are 

then connected to the input ports of the RAM_X module. The write enable for RAM_Y 

is disabled meanwhile the write enable for RAM_X is enabled to allow the Estimate 

module to update the positions of the agents. On the first clock cycle, the read address of 
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both RAM_X and RAM_Y is directed to address 0 and increases by 1 on each clock 

cycle. On the second clock cycle, the write address on RAM_X is directed to address 0 

so that the output of the Estimate module can overwrite the value of the agent in the 

address. Similarly, the RAM_X write address increases by 1 on each clock cycle. When 

the write address reaches the value of N-1, the state machine transits to the next state 

depending on the current number of runs, and the current iteration number.  

If the number of iterations have not reached tmax, the FSM will enter state s2 to 

move onto the next iteration of the run. If the maximum number of iterations have been 

reached but the maximum number of runs have not been reached, the FSM will enter state 

s0 and move onto the next run. Lastly, if the maximum number of iterations and 

maximum number of runs have been achieved, the FSM enters state s5 which marks the 

completion of all operations. In this state, the FSM displays the result of Xtrue, and the 

time interval taken to complete all iterations and runs. 

3.4.9 Testbench Verification 

Several testbenches were designed using System Verilog to test the functionality 

of each module and the FSM prior to implementation into FPGA. The individual modules 

were tested to ensure the calculations produce the expected results prior to integration 

into the FSM. Then the FSM itself was simulated on a testbench to ensure proper timing 

as well as module interconnection was achieved. The waveform produced by the 

testbench is as shown in Figure 27 and is used to troubleshoot any errors that may occur.  

 
Figure 27 Waveform generated by a testbench with parameters N = 50, D = 10, 

maxrun = 2, tmax  = 50. 
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3.5 Hardware Components 

 
Figure 28 DE10 – Lite System Builder application 

The board chosen for the implementation of the Binary SKF was the DE10 - Lite 

which is powered by the 10M50DAF474G chip produced by Altera. The board was a 

provided by the Intel FPGA University Program. The board provides sufficient peripheral 

ports and interaction devices such as LEDs, slide switches, temporary pushbuttons, and 

seven – segment displays. Included on the board is a clock generation chip which outputs 

a stable 50MHz clock cycle to drive the 10M50DAF474G chip. The FPGA chip is 

sufficiently powerful to power the design as it contains 50 thousand logical elements, 

1638 Kb of M9K memory, 5888 Kb of user flash memory, and 144 units of 18 x 18 

multiplier. 

Meanwhile, the MATLAB simulation of Discrete SKF is ran on a HP ProBook 

440 G7 which is equipped with a 10th generation Intel processor namely the Intel Core i5 

– 10210U CPU and is paired with 16 gigabytes of RAM.  
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3.6 Software Components 

 
Figure 29 Quartus Prime Lite Edition 18.1 

The software used to design and implement the Binary SKF onto FPGA is the 

Quartus Prime Lite Edition 18.1. It is a proprietary software by Intel that is used to 

compile, synthesize, place, route and analyse designs for implementation onto Altera 

FPGA chips. The software also enables access to the IP Catalog which contains a library 

of parametric modules which can be easily integrated into existing designs. The software 

is available for free on the Intel website and does not require license to operate. However, 

the performance of the software is limited and can be unlocked with the purchase of a 

license. 

 
3.7  Performance Parameters 

After the Binary SKF has been programmed onto the FPGA, its performance was 

verified based on several metrics such as the chip utilization, processing speed and the 

accuracy of the result. The design was also altered to produce 3 variants, each handling 

different number of dimensions. The 3 variants are set to handle 5-dimensions, 10-

dimensions and 20-dimensions, respectively. The processing speed and accuracy of result 

produced by the variant implementations were then compared against the Discrete SKF 

metaheuristic simulated in MATLAB. Figure 30 illustrates the performance parameters 

that will be evaluated. 
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Figure 30 Performance parameters 

3.7.1 Chip Utilization 

The resources on the 10M50D474CG is limited to 50 thousand logical elements. 

As a design increases in complexity, more logical elements are used to synthesize the 

design. The chip utilization of the designs can be analysed using the Analysis and 

Synthesis Summary report generated by the Quartus Prime software. 

3.7.2 Processing Speed 

The processing speed of the Binary SKF is defined as the time taken for the design 

to complete all calculations and display the results. The time taken for the FPGA 

implementation is set to be displayed on the seven-segment display during the operation 

and stop when the calculation processes are done. Similarly, the MATLAB simulation of 

the Discrete SKF is set to display the time taken to complete all the iterations and runs. 

A faster processing speed would mean a shorter time period taken to complete all 

calculations. 

3.7.3 Accuracy of Result 

Since the problem is a minimization of the sphere function, the expected result 

would be X = 0 for all dimensions since a value of 0 would produce the smallest possible 

fitness evaluation. The results produced by the Discrete SKF simulation, and the Binary 

SKF would then be compared to the expected value to verify the accuracy of their outputs. 

The closer the output result is to the expected result, the more accurate the output.

Performance 
Parameters

Chip 
Utilization

Processing 
Speed

Accuracy 
of result
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CHAPTER 4 

 

 

Results & Discussion  

4.1 Introduction 

In this chapter the results of the FPGA implementation of Binary SKF 

metaheuristic and MATLAB simulation of Discrete SKF metaheuristic is presented. The 

results then analysed and discussed based on the performance parameters. 

4.2 Experimental Setup 

The run parameter set for both the MATLAB simulation and FPGA 

implementation is set to 50 maximum runs, 5000 maximum iterations, 50 agents, and 

fixed Kalman gain of 0.5. The runs are conducted 3 times on MATLAB using 3 different 

dimension values which are 5-dimensions, followed by 10-dimensions, and lastly 20-

dimensions. The FPGA implementation is programmed with 3 different designs and ran 

3 separate times to facilitate the run of the 3 different variants namely the 5-dimension, 

10-dimension, and 20-dimension implementations. The time taken to complete all 

calculations, the value of Xtrue and chip utilization of each design is noted is compiled 

into Table 1. 

4.3 Simulation and Implementation Results 

Table 1 Compiled result of simulation and FPGA implementation 

 Agents, 
N  

Dimensions, 
D 

Xtrue Time 
taken 

(s) 

Logical 
Elements 

Registers Multiplier 
9-bit 

elements 

Simulation 
50 5 14 27.329 - - - 
50 10 503 36.481 - - - 
50 20 3936 54.571 - - - 

FPGA 
50 5 32 0.780 8220 4686 5 
50 10 253 0.780 14637 9146 10 
50 20 4749 0.780 27413 18066 20 
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4.3.1 MATLAB Simulation of Discrete Simulated Kalman Filter 

 
Figure 31 MATLAB simulation result for D = 5 

 

 
Figure 32 MATLAB simulation result for D = 10 

 

 
Figure 33 MATLAB simulation result for D = 20 
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4.3.2 FPGA Implementation of Binary Simulated Kalman Filter  

 
Figure 34 FPGA implementation result for D = 5 

 

 
Figure 35 FPGA implementation result for D = 10 

 

 
Figure 36 FPGA implementation result for D = 20 
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Figure 37 FPGA implementation chip utilization for D = 5 

 

 
Figure 38  FPGA implementation chip utilization for D = 10 

 

 
Figure 39  FPGA implementation chip utilization for D = 20 
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4.4 Chip Utilization 

Table 2 Comparison of chip utilization 

 Agents, 
N  

Dimensions, 
D 

Logical 
Elements 

Registers Multiplier 9-bit 
elements 

FPGA 
50 5 8220 4686 5 
50 10 14637 9146 10 
50 20 27413 18066 20 

For the 5-dimension FPGA implementation, 8220 logical elements, 4686 

registers, and 5 units of 9-bit multiplier elements were utilized to synthesize the design. 

For the 10-dimension FPGA implementation, 14637 logical elements, 9146 registers, and 

10 units of 9-bit multiplier elements were utilized to synthesize the design. Lastly, 27413 

logical elements, 18066 registers, and 20 units of 9-bit multiplier elements were utilized 

to synthesize the 20-dimension FPGA implementation. The chip utilization of the 5 

dimension, 10 dimension, and 20 dimension designs were tabulated in Table 2. 

It can be observed that as the number of dimension of the FPGA implementation 

increases the resources used to synthesize the design significantly increases as well. The 

number of registers roughly doubles whenever the number of dimensions is doubled. This 

is because the multidimensional array X and Y doubles in depth whenever dimension is 

doubled as observed in Figure 12.  

The logical elements utilization increases by 43% when the number of dimensions 

increases from 5 to 10. Meanwhile, an increment of 46% is observed when the number 

of dimensions increases from 10 to 20. Extrapolating this information, the 

10M50DAF474G chip may only be able to handle a similar design with 50 dimensions 

before running out of logical elements to successfully synthesize the design. 
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4.5 Processing Speed 

Table 3 Comparison of processing speed 

 Agents, N  Dimensions, D Time taken (s) 

Simulation 
50 5 27.329 
50 10 36.481 
50 20 54.571 

FPGA 
50 5 0.780 
50 10 0.780 
50 20 0.780 

The MATLAB simulation of Discrete SKF is ran 3 times using 3 different 

dimension parameters of D = 5, D = 10, and D = 20. The 5-dimension, 10-dimension and 

20-dimension run were completed in 27.329 seconds, 36.481 seconds, and 54.571 

seconds respectively. 

Meanwhile, the FPGA implementation of Binary SKF was programmed with 3 

separate designs for 3 different dimension parameters of D = 5, D = 10, and D = 20. Each 

run on the FPGA implementation took exactly 0.780 seconds to complete. It can be 

observed that the 5-dimension, 10-dimension, and 20-dimension run on the FPGA 

implementation introduced a time reduction by a factor of 35.04, 46.77, and 69.96 

respectively compared to the MATLAB simulation. The results of the simulation and 

FPGA implementation were tabulated on Table 3. 

The time taken to complete the simulation on MATLAB increases by 25% when 

the number of dimensions increased from 5 to 10. Meanwhile increasing the dimensions 

from 10 to 20 further increased the time taken by 33%. This shows that the time taken to 

complete the simulation increases as the number of dimensions increases for the 

MATLAB simulation 

However, there is no change in time taken to complete the run on the FPGA 

implementation. It is observed that the time taken to complete the run remains the same 

despite increasing the number of dimensions for the FPGA implementation. This is 

because the modules of the FPGA implementation are designed using the PIPO 

configuration which enables all dimensions of a single agent to be loaded and processed 

in a single clock cycle. Consequently, the PIPO configuration of modules will result in 

the same processing time despite an increment or decrement of number of dimensions.  
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4.6 Accuracy of Result 

Table 4 Comparison of accuracy of result 

 Agents, N  Dimensions, D Xtrue Expected Value 

Simulation 
50 5 14 0 
50 10 503 0 
50 20 3936 0 

FPGA 
50 5 32 0 
50 10 253 0 
50 20 4749 0 

The Xtrue value produced by the MATLAB simulation is 14, 503, and 3936 for 

the 5-dimension, 10-dimension, and 20-dimension run respectively. None of the Xtrue was 

able to reach the expected value of 0. It can also be observed that as the number of 

dimensions increase for the simulation, the Xtrue value strays further away from the 

expected value. 

The output of the FPGA implementation is presented on the seven-segment 

display of the board which is encoded in Binary Coded Hexadecimal. The output of the 

FPGA is then decoded and inserted into Table 1 and Table 4. Similar to the MATLAB 

simulation, the FPGA implementation is not able to achieve the expected value of 0 in 

any of the runs. The FPGA implementation produced Xtrue values of 32, 253, and 4749 

which follows a trend similar to the MATLAB simulation result. As the dimension 

increases, the Xtrue value strays further away from the expected value. The results of the 

MATLAB simulation and FPGA implementation are tabulated under Table 4. 

The MATLAB simulated Discrete SKF and the FPGA implemented Binary SKF 

are both unable to produce an accurate result. For the MATLAB simulation, the culprit 

behind this diminished accuracy is because of the rounding of floating-point values to 

integers. This reduces the resolution and the accuracy of the results. In addition, a fixed 

Kalman gain of 0.5 further diminishes the accuracy as it reduces the ability of the 

metaheuristic to conduct the exploitation process which is the process that enables the 

metaheuristic to narrow down the solution to the optimal solution. This error is then 

carried forward to the FPGA implementation which uses binary format to represent the 

integer values. 
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4.7 Approximating the Time Taken by FPGA to Complete Run 

Table 5 Approximating time taken by FPGA to complete run 

Iteration  1st 2nd to 4999th 5000th  

States  s0, s1, s2, s3, s4  s2, s3, s4 s2, s3, s4, s5 
Clock cycles  250 749,700 200 

Total clock cycles per run  750,150 

Total clock cycles  37,507,500 

Approximated time (s)  0.750  

Actual time (s)  0.780 

The FSM controls the timing of the implementation which iterates through the 6 

states from state s0 through to state s5. In the first iteration, the state machine goes 

through state s0, s1, s2, s3, and s4. Then from the 2nd to 4999th iteration, the FSM goes 

through states s2, s3, and S4. Lastly, on the 5000th iteration, the FSM goes through state 

s2, s3, s4, and completes in s5. The number of clock cycles required to transit from one 

state to another is roughly N number of clock cycles. In this implementation it would 

mean 50 clock cycles is required to transit from one state to another. In conclusion, 5 runs 

at 5000 iterations would require 37,507,500 clock cycles to complete. Since the clock is 

running at 50MHz, the time taken to complete the run would be 0.750 seconds. This is a 

close approximation to the actual time taken to complete the run which is 0.780 seconds. 

The calculation of approximating the time taken is tabulated on Table 5. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Discrete Simulated Kalman Filter 

The original SKF metaheuristic was successfully adapted into the Discrete SKF 

where all of its elements are represented in whole numbers. The adaptation removes all 

decimal points and fractional part of all elements as well as uses a fixed value Kalman 

gain of 0.5. This is important because it enables a direct implementation into a digital 

system where all elements are represented in a binary format. 

5.2 Implementation of Binary Simulated Kalman Filter 

The Binary SKF was successfully designed using System Verilog to produce a 

behavioural model of the Discrete SKF. The design was then modified into 3 different 

variants namely the 5-dimension, 10-dimension, and 20-dimension versions. The designs 

were then implemented and evaluated based on the performance parameters. The chip 

cost of the 3 designs were observed to increase as the number of dimensions of the 

implementation increased. The FPGA implementation was able to increase processing 

speed by a factor of 35.04, 46.77, and 69.96 for the 5-dimension, 10-dimension, and 20-

dimension respectively compared to the MATLAB simulation. In addition, the accuracy 

of the FPGA implementation of Binary SKF was not able produce accurate results. 

However, the results follow a trend similar to the Discrete SKF simulation in MATLAB. 

As the number of dimensions increased, the Xtrue value produced strays further away 

from the expected value for both Discrete SKF and Binary SKF. Lastly, the configuration 

of ports of modules in PIPO arrangements enabled processing time to be independent 

from the number of dimensions.  
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5.3 Project Limitations 

The Discrete SKF is an adaptation of the original SKF metaheuristic which 

originally operates using floating-point arithmetic. The adaptation removes all floating-

point values and converts them into integers. This severely reduces the resolution and 

accuracy of the result. In addition, the fixed Kalman gain of 0.5 reduces the exploitation 

performance of the Discrete SKF as it struggles to find the optimum solution. 

This adaptation into Discrete SKF is done so that the metaheuristic can be 

translated into Binary SKF using System Verilog without the implementation of floating-

point arithmetic. This would significantly reduce the scope of the project as a significant 

number of modifications would be required to each module to facilitate arithmetic in 

floating-point. This includes representing all numbers in all registers of the design to be 

represented in the IEEE 754 format. The implementation of floating-point arithmetic 

would amend the problem of diminished accuracy discussed in Chapter 4.6. 

5.4 Suggestions and Future Work 

5.4.1 Improving Accuracy of Results 

To address the project limitations described in Chapter 5.3, it is recommended to 

implement the floating-point arithmetic module available in the IP Catalog of the Quartus 

Prime software. The module would be implemented inside the Activation Function 

module, Measure module, and Estimate module to facilitate all floating-point 

calculations.  

In addition, the availability of floating-point calculations would eliminate the 

need for a fixed Kalman gain. The original SKF metaheuristic utilizes the error 

covariance estimate, process noise value, and measurement noise value to calculate the 

Kalman gain in each iteration which would then be used in the measurement step. This 

would restore the exploitation ability of the SKF metaheuristic to produce accurate 

results. 

5.4.2 Implementation of Pipeline Structure 

Furthermore, the processing speed of the implementation can be further improved 

by introducing a pipeline structure by tweaking the FSM controller. This implementation 
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should produce a significant increase in processing speed as it removes the waiting time 

between states of the FSM.  

5.4.3 Implementation of CEC2014 Benchmark Functions 

To verify the performance of the FPGA implementation, it would be necessary to 

introduce a method to equally compare the performance of the original SKF metaheuristic 

and the FPGA implementation. The implementation of all 30 functions in the CEC2014 

benchmarking functions would enable the FPGA implementation to be directly compared 

with the original SKF metaheuristic in terms of accuracy of results as well as processing 

speed. 

5.4.4 Physical Synthesis to Improve Timing and Accuracy of Results 

The Quartus Prime software provides users with the ability to set the synthesis 

effort, physical synthesis effort, and fitter effort to various levels of efforts. The fastest 

methods were used to implement the designs for this project as it reduces the compilation 

time of the design. However, this may affect the result of the implementation by reducing 

the performance of the implementation such as timing errors and other inefficiencies. 

This can be improved by using a higher effort to compile the designs which would 

consequently increase the time taken for compilation. 

In addition, Quartus Prime includes the ability to use the Chip Planner 

functionality which allows users to manually do fitting operations. This could enhance 

the performance of the implementation by improving the timing delays, power 

consumption, and accuracy of results. 

5.4.5 Utilizing Phase-Locked Loop to Increase Clock Frequency 

The DE10 – Lite board is powered by an on-board chip that generates a 50MHz  

clock signal. This clock signal is then fed onto the FPGA and directly affects the 

processing speed as described in Chapter 4.7. It is possible to use the Phase-Locked Loop 

(PLL) available on the 10M50DAF484C7G chip to generate an internal clock of 100MHz 

based on the 50MHz external clock. The application of PLL which is available in the IP 

Catalog into the design could significantly increase the processing speed of the 

implementation on FPGA. 
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