

FPGA IMPLEMENTATION OF
METAHEURISTIC OPTIMIZATION

ALGORITHM

PHUAH SOON EU

B.ENG (HONS.) ELECTRICAL
ENGINEERING (ELECTRONICS)

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : PHUAH SOON EU_____________________________________

Date of Birth : 05/05/1998__

Title : FPGA IMPLEMENTATION OF METAHEURISTIC _________

 OPTIMIZATION ALGORITHM__________________________

Academic Session : SEMESTER II 2021/2022________________________________

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*
 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*
 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

____980505-08-5481____
New IC/Passport Number
Date: 21/6/2022

 (Supervisor’s Signature)

Name of Supervisor
Date:

UNIVERSITI MALAYSIA PAHANG

Nurul Hazlina Noordin

24 June 2022

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,
Perpustakaan Universiti Malaysia Pahang,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three
(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan
Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name
Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of the Bachelor of Electrical

Engineering (Electronics) with Honours

 (Supervisor’s Signature)

Full Name :

Position :

Date :

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

Nurul Hazlina Noordin

Assosiate Professor
24 June 2022

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : PHUAH SOON EU

ID Number : EA18096

Date : 21/6/2022

FPGA IMPLEMENTATION OF
METAHEURISTIC OPTIMIZATION ALGORITHM

PHUAH SOON EU

Thesis submitted in fulfillment of the requirements
for the award of the

Bachelor of Electrical Engineering (Electronics) with Honours

College of Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2022

ii

ACKNOWLEDGEMENTS

 I would like to use this opportunity to express with great pleasure to thank all
those who have helped to complete this project. I am thankful for the invaluable advice
and guidance from Ir. Dr. Nurul Hazlina binti Noordin during the implementation of this
project and also providing spiritual and moral support during the research into this
project. Moreover, I also like to thank everyone directly and indirectly for their support,
help and ideas in completing this project progress report. I sincerely thank all who share
their knowledge, idea, and experience on helping me to complete the project on time
Lastly, I would like to thank my family for being considerate and supportive towards me
to allow me to successfully pursue and complete the project.

iii

ABSTRAK

Algoritma metaheuristik semakin popular di kalangan penyelidik kerana keupayaannya
untuk menyelesaikan masalah pengoptimuman bukan linear serta keupayaan untuk
disesuaikan untuk menyelesaikan pelbagai masalah.Terdapat lonjakan metaeuristik novel
yang dicadangkan baru-baru ini, namun tidak pasti sama ada ia sesuai untuk pelaksanaan
FPGA. Di samping itu, terdapat pelbagai metodologi reka bentuk perlaksanaan
metaheuristik FPGA yang boleh meningkatkan keupayaannya. Projek ini dimulakan
dengan meneliti dan mengenal pasti metaheuristik yang sesuai untuk pelaksanaan FPGA.
Metaeuristik yang dipilih ialah Simulated Kalman Filter (SKF) yang mencadangkan
algoritma yang rendah kerumitan dan menggunakan bilang langkah yang kecil.
Kemudian SKF Diskret telah disesuaikan daripada metaheuristik asal dengan
membundarkan semua nilai titik terapung kepada nombor bulat serta menetapkan
keuntungan Kalman tetap 0.5. SKF Diskret kemudiannya dimodelkan menggunakan
pemodelan tingkah laku untuk menghasilkan SKF Binari yang kemudiannya
dilaksanakan pada FPGA. Reka bentuk telah dibuat secara modular dengan menghasilkan
modul berasingan yang menguruskan bahagian metaheuristik yang berbeza dan juga
melaksanakan konfigurasi port Selari-Dalam-Selari-Keluar yang meningkatkan
keupayaannya. SKF Diskret kemudiannya disimulasikan pada MATLAB manakala SKF
Binari dilaksanakan pada FPGA dan keupayaannya diukur berdasarkan penggunaan cip,
kelajuan pemprosesan dan ketepatan keputusan. SKF Binari menghasilkan peningkatan
kelajuan sehingga 69 kali lebih pantas berbanding dengan simulasi SKF Diskret.

iv

ABSTRACT

Metaheuristic algorithms are gaining popularity amongst researchers due to their ability
to solve nonlinear optimization problems as well as the ability to be adapted to solve a
variety of problems. There is a surge of novel metaheuristics proposed recently, however
it is uncertain whether they are suitable for FPGA implementation. In addition, there
exists a variety of design methodologies to implement metaheuristics upon FPGA which
may improve the performance of the implementation. The project begins by researching
and identifying metaheuristics which are suitable for FPGA implementation. The selected
metaheuristic was the Simulated Kalman Filter (SKF) which proposed an algorithm that
was low in complexity and used a small number of steps. Then the Discrete SKF was
adapted from the original metaheuristic by rounding all floating-point values to integers
as well as setting a fixed Kalman gain of 0.5. The Discrete SKF was then modelled using
behavioural modelling to produce the Binary SKF which was then implemented onto
FPGA. The design was made modular by producing separate modules that managed
different parts of the metaheuristic and also implemented Parallel-In-Parallel-Out
configuration of ports. The Discrete SKF was then simulated on MATLAB meanwhile
the Binary SKF was implemented onto FPGA and their performance were measured
based on chip utilization, processing speed, and accuracy of results. The Binary SKF
produced speed increment of up to 69 times faster than the Discrete SKF simulation.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statement 1

1.3 Objectives 2

1.4 Scope of Project 2

1.5 Thesis Outline 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Novel Optimization Algorithms 4

2.2.1 Single-Agent Finite Impulse Response Optimizer 4

2.2.2 Barnacles Mating Optimization 5

2.2.3 Orca Predation Algorithm 5

vi

2.2.4 Simulated Kalman Filter 6

2.2.5 Single-solution Simulated Kalman Filter 7

2.2.6 Particle Swarm Optimization 7

2.2.7 Variants of Particle Swarm Optimization 8

2.2.8 Binary Ant Colony Optimization 9

2.2.9 Hybrid Binary Bat Enhanced Particle Swarm Optimization

Algorithm 9

2.3 FPGA Implementation Optimization Techniques 10

2.3.1 Parallel Implementation of Particle Swarm Optimization 10

2.3.2 Pipeline Architecture of Particle Swarm Optimization 11

2.3.3 FPGA Realization of Particle Swarm Optimization Algorithm

using Floating Point Arithmetic 12

CHAPTER 3 METHODOLOGY 13

3.1 Introduction 13

3.2 Simulated Kalman Filter 13

3.3 Discrete Simulated Kalman Filter Adaptation 17

3.4 Binary Simulated Kalman Filter Behavioural Modelling 19

3.4.1 Parallel-In-Parallel-Out Configuration of Modules 19

3.4.2 Pseudo Random Number Generator (RNG) 20

3.4.3 Random-Access Memory (RAM) 21

3.4.4 Activation Function 22

3.4.5 2-bit Pseudo Random Number Generator 22

3.4.6 Measure 23

3.4.7 Estimate 24

3.4.8 Finite State Machine Controller 25

3.4.9 Testbench Verification 29

vii

3.5 Hardware Components 30

3.6 Software Components 31

3.7 Performance Parameters 31

3.7.1 Chip Utilization 32

3.7.2 Processing Speed 32

3.7.3 Accuracy of Result 32

CHAPTER 4 RESULTS & DISCUSSION 33

4.1 Introduction 33

4.2 Experimental Setup 33

4.3 Simulation and Implementation Results 33

4.3.1 MATLAB Simulation of Discrete Simulated Kalman Filter 34

4.3.2 FPGA Implementation of Binary Simulated Kalman Filter 35

4.4 Chip Utilization 37

4.5 Processing Speed 38

4.6 Accuracy of Result 39

4.7 Approximating the Time Taken by FPGA to Complete Run 40

CHAPTER 5 CONCLUSION 41

5.1 Discrete Simulated Kalman Filter 41

5.2 Implementation of Binary Simulated Kalman Filter 41

5.3 Project Limitations 42

5.4 Suggestions and Future Work 42

5.4.1 Improving Accuracy of Results 42

5.4.2 Implementation of Pipeline Structure 42

5.4.3 Implementation of CEC2014 Benchmark Functions 43

viii

5.4.4 Physical Synthesis to Improve Timing and Accuracy of Results 43

5.4.5 Utilizing Phase-Locked Loop to Increase Clock Frequency 43

REFERENCES 44

ix

LIST OF TABLES

Table 1 Compiled result of simulation and FPGA implementation 33

Table 2 Comparison of chip utilization 37

Table 3 Comparison of processing speed 38

Table 4 Comparison of accuracy of result 39

Table 5 Approximating time taken by FPGA to complete run 40

x

LIST OF FIGURES

Figure 1 Flowchart for Single-agent Finite Impulse Response Optimizer 4

Figure 2 Flowchart for Barnacles Mating Optimizer 5

Figure 3 Flowchart for Orca Predation Algorithm 6

Figure 4 Flowchart for Simulated Kalman Filter 6

Figure 5 Flowchart for Single-solution Simulated Kalman Filter 7

Figure 6 Flowchart for Particle Swarm Optimization 8

Figure 7 Parallel Implementation of Particle Modules 10

Figure 8 Data path between registers 11

Figure 9 Pipeline structure 12

Figure 10 Simulated Kalman Filter flowchart 14

Figure 11 Generation of population and fitness evaluation of agent for SKF 15

Figure 12 Generation of population and fitness evaluation of agent for Discrete
SKF 17

Figure 13 Progression of Kalman gain in original SKF 18

Figure 14 2s complement binary representation of Binary SKF 18

Figure 15 Stacked random number generator modules 20

Figure 16 Random-Access Memory module 21

Figure 17 Activation Function module 22

Figure 18 2-bit Pseudo Random Number Generator 22

Figure 19 Measure module 23

Figure 20 Estimate module 24

Figure 21 Simplified state diagram of finite state machine controller 25

Figure 22 State s0 Reset 26

Figure 23 State s1 Generate population 26

Figure 24 State s2 Fitness evaluation and comparison 27

Figure 25 State s3 Measure 27

Figure 26 State s4 Estimate 28

Figure 27 Waveform generated by a testbench with parameters N = 50, D =
10, maxrun = 2, tmax = 50. 29

Figure 28 DE10 – Lite System Builder application 30

Figure 29 Quartus Prime Lite Edition 18.1 31

Figure 30 Performance parameters 32

Figure 31 MATLAB simulation result for D = 5 34

Figure 32 MATLAB simulation result for D = 10 34

xi

Figure 33 MATLAB simulation result for D = 20 34

Figure 34 FPGA implementation result for D = 5 35

Figure 35 FPGA implementation result for D = 10 35

Figure 36 FPGA implementation result for D = 20 35

Figure 37 FPGA implementation chip utilization for D = 5 36

Figure 38 FPGA implementation chip utilization for D = 10 36

Figure 39 FPGA implementation chip utilization for D = 20 36

xii

LIST OF ABBREVIATIONS

FPGA Field Programmable Gate Array

SKF Simulated Kalman Filter

FSM Finite State Machine

RNG Random Number Generator

RAM Random-Access Memory

PIPO Parallel-In-Parallel-Out

SISO Serial-In-Serial-Out

CPU Central Processing Unit

LFSR Linear Feedback Shift Register

PLL Phase-Locked Loop

1

CHAPTER 1

INTRODUCTION

1.1 Project Background

A metaheuristic algorithm is an optimization method that is used to solve complex

nonlinear and multimodal problems [1] .In addition, metaheuristic algorithms are flexible

due to their ability to be adapted to solve a wide range of optimization problems. In recent

times, some metaheuristics have risen to popularity due to their flexibility and capability

in solving a wide scale and variety of optimization problems. A few examples of these

metaheuristics are such as Genetic Algorithm, Grey Wolf Optimizer, Particle Swarm

Optimization, and Simulated Kalman Filter.

Implementation of a metaheuristic onto a field programmable gate array (FPGA)

is a straightforward process. The metaheuristic equations are implemented according to

the flowchart and with the assistance of the pseudocode into a description hardware

language such as System Verilog which will then be programmed onto an FPGA.

However, the design methodology of the implementation can significantly affect the

performance of the metaheuristics on the hardware.

1.2 Problem Statement

Lately, a large influx of novel metaheuristic algorithms has been proposed such

as Barnacles Mating Optimizer, Orca Predation Algorithm, and Single-Agent Finite

Impulse Response Optimizer. Furthermore, researchers have also worked on existing

metaheuristics to produce variants of the original work such as Transitional Particle

Swarm Optimization, Binary Particle Swarm Optimization, and Single-solution

Simulated Kalman Filter.

2

The increasing interest of developing new or variants of metaheuristic algorithms

is because each metaheuristic can achieve a different performance in terms of their

exploration and exploitation process [2]. This would lead to varying performance

difference in solving different kind of optimization problems. However, these novel

metaheuristics are typically designed with numerous and complex steps that may be

difficult to implement on a FPGA.

In recent times, edge computing has been a growing trend as it contends against

its alternative cloud computing. Instead of transmitting raw data from the source to a

central data centre for analysis and processing, some of the work is shifted to the source

itself. However, this method of computing requires reliable yet cost effective hardware

to be equipped at the front end.

1.3 Objectives

The objectives of this project are listed below:

i. To study, explore and modify Simulated Kalman Filter algorithm for

hardware implementation

ii. To investigate, design & implement binary Simulated Kalman Filter

iii. To evaluate the performance of the structure in terms of accuracy, speed, and

cost

1.4 Scope of Project

This project will only consider metaheuristic algorithms for numerical

optimization. The hardware used for the implementation will be the DE10 - Lite board

(10M50DAF474G) and the performance of the project will be dependent on its

capabilities. In addition, the performance of the implementation will be measured using

one activation function only.

3

1.5 Thesis Outline

This thesis is composed of five main chapters which are the introduction,

literature review, methodology, results and discussion, and conclusion.

Chapter 1 introduces the background of project, the problem statement,

objectives, and scope of the project. This chapter is dedicated to enable the reader to grasp

the essential topics of the project such as the definition of metaheuristic and its

utilizations. It also elaborates the aim and limitations of the project so that readers are

more aware of what the project tries to achieve within the given scope.

Chapter 2 is the literature review where articles written by experts of the field of

metaheuristics and the implementation of metaheuristics into FPGA are reviewed. In the

literature review, the thesis looks into a variety of novel optimization algorithms that have

been recently introduced. Then a list of design methodologies of FPGA implementation

is also reviewed to understand the effects of different design methodologies can have

upon the performance of the metaheuristic.

Chapter 3 describes the adaptation of the original Simulated Kalman Filter into

the Discrete Simulated Kalman Filter that is more suitable for implementation into digital

systems. Then the Discrete Simulated Kalman Filter is then modelled using System

Verilog through behavioural modelling to generate the necessary modules to operate the

Binary Simulated Kalman Filter. The design of the finite state machine controller is also

described in detail in this chapter. Next, the software and hardware components are

briefly described. Lastly, the performance parameters which will be used to verify the

performance of the implementation is discussed.

Chapter 4 presents the results of the FPGA implementation of the Binary

Simulated Kalman Filter and the MATLAB simulation of the Discrete Simulated Kalman

Filter. The chapter then continues to analyse the performance of both methods in terms

of the performance parameters.

Chapter 5 concludes the project by summing up results of the project. Then the

limitations of the project were identified. This is followed by the suggestions and future

work that should be implemented to further improve the performance of the

implementation.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The first objective of the project is to study different metaheuristic algorithms and

to identify suitable metaheuristics for hardware implementation. The project begins by

studying a variety of novel optimization algorithms.

2.2 Novel Optimization Algorithms

2.2.1 Single-Agent Finite Impulse Response Optimizer

The metaheuristic proposed is a single-agent metaheuristics that is inspired by the

unbiased finite impulse response filter. It proposes an algorithm that optimizes a single

solution iteratively until a stopping condition is met. It boasts a great performance in

exploration and exploitation which enables it to search a wide range of possible solutions

and lastly produce a near optimum solution [1]. Its process is described in the flowchart

as shown in Figure 1.

Figure 1 Flowchart for Single-agent Finite Impulse Response Optimizer

5

2.2.2 Barnacles Mating Optimization

The proposed algorithm is a novel multi-agent optimization algorithm which

mimics the mating behaviours of barnacles as described in Figure 2. It involves a

sequence where barnacles are randomly selected, and the reproduction process occurs to

a set population of barnacles. Then, the barnacles may only mate with the surrounding

barnacles based on the length of their penis which is set prior to simulation. The offspring

of the barnacles will then inherit the characteristics from its parents [2].

Figure 2 Flowchart for Barnacles Mating Optimizer

2.2.3 Orca Predation Algorithm

A novel multi-agent bio-inspired metaheuristic which mimics the hunting

behaviour of orcas. The metaheuristic introduces a sequence where orcas drive, encircle,

and attack a school of fish. The algorithm emphasises on different stages of the sequence

such as driving and encircling to effectively adjust its exploration and exploitation

respectively. This enables the algorithm to solve a large variety of problems as it was

implemented onto several engineering optimization problems which showed great

performance [3]. The metaheuristic is described using a complex flowchart as seen in

Figure 3.

6

Figure 3 Flowchart for Orca Predation Algorithm

2.2.4 Simulated Kalman Filter

A multi-agent metaheuristic where each search agent acts as a Kalman Filter

which is a state estimation method popularized in the year 1960. Each search agent then

estimates the optimum solution to the fitness function through several steps such as

predict, measure, and estimate to consequently produce the best-so-far solution as shown

in Figure 4 [4].

Figure 4 Flowchart for Simulated Kalman Filter

7

2.2.5 Single-solution Simulated Kalman Filter

This algorithm is a variant of the original Simulated Kalman Filter metaheuristic

which is a multi-agent metaheuristic. This variant is adapted to become a single-agent

metaheuristic where there is only one search agent acting as a Kalman Filter. The

proposed algorithm boasts simplified equations since it only uses one agent [5]. Its

flowchart is described in Figure 5.

Figure 5 Flowchart for Single-solution Simulated Kalman Filter

2.2.6 Particle Swarm Optimization

A multi-agent metaheuristic inspired by the movement of flock of birds such as

scattering and regrouping in search of food. Each agent also known as a particle is a

candidate solution which moves around the search space during each iteration in search

of improvements to the solution. The position and velocity are influenced by each

particle’s best-known position as well as the best-known position of other particles as

well [6]. The flowchart for Particle Swarm Optimization is illustrated in Figure 6.

8

Figure 6 Flowchart for Particle Swarm Optimization

2.2.7 Variants of Particle Swarm Optimization

Due to the popularity of the original Particle Swarm Optimization algorithm, a

large variety of its variants were proposed to improve upon the algorithm in different

aspects. The Binary Particle Swarm Optimization was introduced to adapt the original

algorithm into a discrete search space which overcomes the problems faced by the

original algorithm which was designed to be used in a continuous search space. In this

variant, the particles represent its position in binary meanwhile its velocity is defined as

the probability that it will change its state. The structure of the variant is like the original

algorithm however it utilizes a separate set of equations since it is adapted to work in

binary [7].

The Random Time-Varying Particle Swarm Optimization algorithm was

introduced to enable the algorithm to reduce its processing time and evaluate positions of

real-time locating systems with reasonable accuracy. The variant employs a smaller

number of particles and fewer iterations to reduce the processing time to fulfil the rigid

real-time conditions. In addition, the variant was adapted to produce quick and accurate

solutions from a dynamic search space. The variant was also implemented on hardware

which further improved its performance through simultaneous computations [8].

9

The Transitional Particle Swarm Optimization implements a transition in the

original algorithm from asynchronous update at the start of the search and transitions to

synchronous iteration towards the end of the run. This is because asynchronous iteration

enables a better exploration meanwhile synchronous iteration enables a better

exploitation of the search space. Synchronous iteration is done by evaluating the entire

population then identifying the individual particle’s and the population’s best solution. In

comparison, asynchronous iteration is done by immediately updating the particle’s and

population’s best solution immediately upon completing its own fitness evaluation [9].

2.2.8 Binary Ant Colony Optimization

In the year 1991, the original Ant Colony Optimization metaheuristic was

introduced. This paper implements the original metaheuristic into a binary solution

domain such that the solution search space is represented in a binary format. Then its

performance was verified through a binary function optimization problem opposed to the

typical continuous function optimization problem [10].

2.2.9 Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm

This metaheuristic combines two variants of the original Bat optimization and

Particle Swarm Optimization to form a hybrid metaheuristic namely a combination of

binary Bat metaheuristic and binary Particle Swarm Optimization to form the Hybrid

Binary Bat Enhanced Particle Swarm Optimization Algorithm. It is claimed that the

binary variants of metaheuristics are capable of producing superior results.

The binary Bat metaheuristic applies a binary map onto the solution found since

the solution search space is continuous. Meanwhile the Binary Particle Swarm

Optimization converts continuous values into binary values. The results shows that the

hybrid metaheuristic is capable of producing better results than other binary variants of

other metaheuristics such as binary Genetic Algorithm, binary Particle Swarm

Optimization, binary Greywolf, binary Bat, and binary Dragonfly. The hybrid

combination of both binary Bat and binary Particle Swarm Optimization produced better

solutions than the individual metaheuristics [11].

10

2.3 FPGA Implementation Optimization Techniques

The performance of a metaheuristics on FPGA is dependent upon its design

methodology. A typical implementation of a metaheuristic may vary in comparison to the

implementation with different design methodology such as parallel implementations,

pipeline architectures, and implementation of floating-point arithmetic modules.

2.3.1 Parallel Implementation of Particle Swarm Optimization

This implementation optimization technique was implemented to accelerate the

processing speed of the algorithm. It was designed to process large volumes of data from

processes such as Big Data and Mining of Massive Datasets. This was achieved through

the implementation of several particle modules in parallel to concurrently compare the

best fitness value of all particles as shown in Figure 7. Despite the increment of particle

modules to enable parallel computing of the particles, the results of the hardware costs

showed that it used less registers and Look Up Tables in comparison to similar works

from the literature [12].

Figure 7 Parallel Implementation of Particle Modules

11

2.3.2 Pipeline Architecture of Particle Swarm Optimization

The paper works upon the previously mentioned variant of the Particle Swarm

Optimization with random time-varying inertia weight and acceleration coefficients and

its existing serial architecture implemented on hardware. The improvements proposed in

this paper includes simplifications of the hardware architecture such as changing the

control mechanism from a complicated distributed style into a simple centralized style to

improve the stability of the hardware system as shown in Figure 8. This was done to

overcome the calculation error that occurred in the previous implementation. Next, the

performance of the implementation was improved by introducing registers and

reconfiguration of the state transitions.

The implementation was able to successfully run 6 concurrent operations through

a pipeline architecture as shown in Figure 9. In addition, the simplification of hardware

architecture was able to successfully reduce errors and improve the rate of available

results. The results reported showed a significant improvement in terms of performance.

However, an increment in chip usage was observed [13].

Figure 8 Data path between registers

12

Figure 9 Pipeline structure

2.3.3 FPGA Realization of Particle Swarm Optimization Algorithm using

Floating Point Arithmetic

The paper introduces the implementation of the original Particle Swarm

Optimization algorithm with a modification upon its arithmetic modules. The arithmetic

modules were replaced with floating-point arithmetic modules to further improve the

accuracy of each particle results. This is because floating-point arithmetic used such as

the single precision and double precision floating point arithmetic module enables the

implementation to calculate to more decimal points. However, this resulted in extremely

high chip usage. The implementation of the double precision floating point arithmetic

module exceeded the total hardware available. The hardware cost was reduced by further

implementing resource sharing for multiplication and addition operations which managed

to free up some Look Up Tables [14].

During the review of the paper, it was noted that the paper did not reveal any

results in the terms of accuracy despite the implementation of the floating-point

arithmetic module was intended to improve the accuracy of results. However, it did

successfully evaluate the hardware costs of implementing the floating-point arithmetic

module and the effect of swarm size upon hardware costs.

13

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, the process of adapting the original Simulated Kalman Filter

metaheuristic into Discrete Simulated Kalman Filter is described. Then the Discrete

Simulated Kalman Filter is then modelled using System Verilog through behavioural

modelling to produce the Binary Simulated Kalman Filter which is then implemented

into the FPGA. The individual modules are initially designed modularly and then

integrated into a finite state machine to handle timing and interconnection of modules.

Test benches were also produced to test the functionality of each individual module as

well as the finite state machine prior to implementation into FPGA. Lastly, the

performance parameter which is used to verify the performance of the implementation is

discussed.

3.2 Simulated Kalman Filter

Through the process of elimination, the metaheuristic chosen for FPGA

implementation was the Simulated Kalman Filter (SKF). The bio-inspired metaheuristics

Barnacles Mating Optimizer and Orca Predation Algorithm proposed steps that were too

complex and numerous. This would result in a difficult implementation of the algorithm

as it may incur high costs to implement all the different states and modules of the

algorithm. The Single-Agent Finite Impulse Response Optimizer proposes an iterative

process with a sub-iterative process which introduces the same problem as mentioned

above.

14

Figure 10 Simulated Kalman Filter flowchart

The SKF metaheuristic is composed of 4 major components namely the

population generation, fitness evaluation of agents, fitness evaluation comparison and

storage, and the Kalman Filter components which are the predict, measure, and estimate

steps as shown in Figure 10. These steps are carried out iteratively until a stopping

condition is met which is typically the maximum number of iterations. There are several

variables of the Kalman Filter components which are significant such as the initial error

covariance estimate, P(0), process noise, Q, measurement noise, R, and the Kalman gain,

K.

15

Figure 11 Generation of population and fitness evaluation of agent for SKF

Before the first iteration starts, several parameters need to be defined such as the

number of agents, N, number of dimensions, D, and maximum number of iterations, tmax.

Then the initial generation of population is done by generating a random floating-point

value between the range of -100 to 100 and loading it into a multidimensional array X

which has N columns and D rows.

Then the evaluation step is proceeded by evaluating the fitness of the agents

through the activation function. The activation function of the original SKF metaheuristic

utilizes the CEC2014 benchmark function which contains a set of 30 activation functions.

Figure 11 illustrates the generation of population and fitness evaluation using the sphere

activation function. The sphere activation function is described in Equation 3.1.

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹) = �𝑋𝑋(𝐹𝐹)2
𝐷𝐷

𝑛𝑛=1

 3.1

After all agents have their fitness evaluated, all the fitness evaluation values are

compared and the agent with the best fitness evaluation for the current iteration is selected

as the Xbest(t). The selection process for Xbest(t) depends on whether it is a minimization

problem or maximization problem. Equation 3.2 is used to determine Xbest(t) if it is a

minimization problem and Equation 3.3 is used if it is a maximization problem. The

Xbest(t) is then used to update the best-so-far solution of the run, Xtrue by replacing the

16

best-so-far solution with the Xbest(t) value if Xbest(t) < Xtrue for minimization problems

and Xbest(t) > Xtrue for maximization problems.

𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝐹𝐹𝐹𝐹𝑖𝑖∈1,….,𝑛𝑛𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖�𝑋𝑋(𝐹𝐹)� 3.2

𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈1,….,𝑛𝑛𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖�𝑋𝑋(𝐹𝐹)� 3.3

In the first iteration, the predict step is carried out by setting the initial error

covariance to 1000, P(0) = 1000, the process noise is set to 0.5, Q = 0.5, and the

measurement noise is set to 0.5, R = 0.5. Then the error covariance is calculated using

Equation 3.4.

𝑃𝑃 = 𝑃𝑃 + 𝑄𝑄 3.4

Then the measurement step is carried out using Equation 3.5. where the X is the

position of the agents and Y is the measured value of the agents.

Y = 𝑋𝑋 + �𝐹𝐹𝐹𝐹𝐹𝐹(𝑟𝑟𝑚𝑚𝐹𝐹𝑟𝑟(𝐹𝐹, 1) × 2 × 𝜋𝜋)� × 𝑚𝑚𝑎𝑎𝐹𝐹(𝑋𝑋 − 𝑋𝑋_𝐹𝐹𝑟𝑟𝑡𝑡𝐹𝐹) 3.5

Then the estimate step is proceeded to calculate the Kalman gain value as shown

in Equation 3.6. Then the position of agents is updated using the Equation 3.7 and lastly

the new error covariance is updated through the Equation 3.8.

𝐾𝐾 =
𝑃𝑃

(𝑃𝑃 + 𝑅𝑅) 3.6

𝑋𝑋 = 𝑋𝑋 + 𝐾𝐾 × (𝑌𝑌 − 𝑋𝑋) 3.7

𝑃𝑃 = (1 − 𝐾𝐾) × 𝑃𝑃 3.8

At the end of the estimate step of the Kalman Filter components, the stopping

condition is checked and the run stops if the maximum number of iterations have been

achieved. Else the run continues on to the next iteration and the steps are repeated from

the evaluation of fitness agent.

17

3.3 Discrete Simulated Kalman Filter Adaptation

The original SKF metaheuristic was simulated using MATLAB utilizing floating-

point values. The operation of this simulation is represented in Figure 11 where the agent

positions as well as its fitness evaluation are represented by whole numbers, decimal

point, and its corresponding fractional part. This introduced complications into the design

of the FPGA implementation as it is difficult to represent the fractional parts of a number

in a digital system. Hence, the original SKF was adapted into a Discrete SKF to remove

this complication.

Figure 12 Generation of population and fitness evaluation of agent for Discrete

SKF

The Discrete SKF utilizes the same minimization sphere function but utilizes only

integer values. This is done by rounding all the floating-point agent position values to the

nearest integer. This would consequently produce fitness evaluation values in whole

number as well. The generation of population and fitness evaluation by Discrete SKF is

illustrated in Figure 12.

In addition to rounding up the floating-point values, the Kalman gain which was

previously calculated using Equation 3.6 is set to a fixed value of K = 0.5. This is done

because a multiplication of 0.5 can be translated into a division by 2 which can be

operated in binary as a logical right shift of 1 bit. The deliberate value of 0.5 is set after

thorough investigation of the transition of the Kalman gain in the original SKF MATLAB

18

simulation. The Kalman gain can be observed to slowly decrease from 0.9995 at the first

iteration to 0.6180 at the seventh iteration. The Kalman gain value then stagnates at

0.6180 until the end of the run as seen in Figure 13.

Figure 13 Progression of Kalman gain in original SKF

This Discrete SKF was then simulated in MATLAB to verify its results. The

significance of the adaptation from the original to discrete version of SKF is that the

discrete version can be readily implemented in a digital system by representing the integer

values as binary values. The implementation of Discrete SKF as Binary SKF is illustrated

in Figure 14 where the integer values are represented in 2s complement binary values.

Figure 14 2s complement binary representation of Binary SKF

19

3.4 Binary Simulated Kalman Filter Behavioural Modelling

Each section of the Binary SKF metaheuristic was segmented and individually

designed into separate modules using System Verilog. The major components that needed

to be designed were the random number generator to generate the initial population of

agents, Random-Access Memory (RAM) to store the agent position and measurement

values, Activation Function module to evaluate the fitness of each agent according to

Equation 3.1, Measure module to carry out measurement calculations as shown in

Equation 3.5, and the Estimate module to update the position of agents according to

Equation 3.7. The initial design produced is capable of processing 10 dimensions. This

design is repurposed to produce 3 different variants which are the 5-dimension, 10-

dimension and 20-dimension Binary SKF for FPGA implementation.

3.4.1 Parallel-In-Parallel-Out Configuration of Modules

During the behavioural modelling of the required modules, it was discovered that

it was possible to produce modules with multiple input and output ports. This was

significant as it enabled a module to receive multiple inputs, process the inputs, and

produce multiple outputs at once. This Parallel-In-Parallel-Out (PIPO) configuration was

exploited to maximise the number of inputs and outputs of each module and consequently

improve their performance. The number of ports is dependent on the number of

dimensions for that implementation. The rest of the chapter describes the design of the

10-dimension implementation.

20

3.4.2 Pseudo Random Number Generator (RNG)

Figure 15 Stacked random number generator modules

The random number generator is designed upon the concept of Linear Feedback

Shift Register (LFSR) which is a long chain of flip-flop with XOR gates at specific

outputs of the flip-flop chain. The LFSR then produces a sequence of pseudo random

numbers. Since the numbers generated are a sequence, the number will repeat themselves

after 2N – 1 outputs where N is the polynomial factor or number of flip-flops used in the

module. In this implementation, the module is designed with a polynomial factor of 16

which results in a sequence that repeats itself after 65535 number of outputs. In practical

terms, this would be sufficiently long enough to be considered random. In addition, the

sequence is determined by the input seed value. A different seed value would result in a

different sequence of numbers. This is useful because it enables the same module to be

reused to generate separate set of randomly generated numbers.

The bus width of the output is set to 8-bits to sufficiently represent the position of

the agents which is between -127 to 127. To produce a value between -100 to 100, an

internal boundary function is implemented to ensure the values produced are in the

allowed range.

A single random number generator module is capable of outputting a single

random number in a single clock cycle. This is sufficient to generate the inputs for the

RAM holding the agent positions. To further improve the speed of the generator, it was

decided to stack 10 modules together to generate 10 random values as shown in Figure

15. Each random number generator then outputs the value for a single dimension.

21

3.4.3 Random-Access Memory (RAM)

Figure 16 Random-Access Memory module

The Random-Access Memory (RAM) module was designed to temporarily store

the position value of the all the dimensions of the agents as illustrated in Figure 16. The

RAM module is a multidimensional register with N number of columns and D number of

rows. The input and output ports are similarly designed in PIPO arrangement which

allows all dimension of a single agent to read and written to in a single clock cycle.

The we_x is the write enable port. When pulled high, it enables writing to the

module and when pulled low, it disables writing to the module. The w_addr_x and

r_addr_x ports are the write to and read from address ports, respectively. The writing

operation is done by pulling we_x high, inputting a specific address between value of 0

to N-1 and inputting the value at the input ports. To read from the RAM, sending an

address value between 0 to N-1 to the r_addr_x port will result in the value of the address

produced at the output ports. The bus width of all the input and outputs are 8-bits wide

similarly to the RNG module. The instantiation of this module to store the position of

agents is called RAM_X.

The module is also instantiated with a larger input and output bus width of 9 bits

called RAM_Y. This separate module is used to store the output values from the Measure

module. The enhanced resolution is to facilitate the arithmetic operations upon the agent’s

original position which is conducted in the Measure module.

22

3.4.4 Activation Function

Figure 17 Activation Function module

The Activation Function module facilitates the calculations required to evaluate

the fitness of agent using the activation function described in Equation 3.1. The module

receives input from the RAM_X module and then computes and outputs the evaluation

of the agent as shown in Figure 17. In a single clock cycle, every dimension of an agent

is loaded into the module and its fitness evaluation is outputted from its output port.

3.4.5 2-bit Pseudo Random Number Generator

Figure 18 2-bit Pseudo Random Number Generator

This RNG module is a modified version of the 8-bit pseudo random number

generator that produces an output with only 2-bits and further bounded to 3 specific

outputs which are -1, 0 and 1. This is done to simulate the �𝐹𝐹𝐹𝐹𝐹𝐹(𝑟𝑟𝑚𝑚𝐹𝐹𝑟𝑟(𝐹𝐹, 1) × 2 × 𝜋𝜋)�

component of the measure step as described in Equation 3.5 which originally generates a

floating-point value ranging between -1 to 1. The module is represented in Figure 18.

23

3.4.6 Measure

Figure 19 Measure module

The Measure module facilitates the calculations required to carry out the measure

step as described in Equation 3.5. It receives a random number of either -1, 0, or 1 from

its rng port which is then used for the calculation of the outputs. The best_agent_D# ports

are the input ports of the position value of the Xtrue which are used for the

𝑚𝑚𝑎𝑎𝐹𝐹(𝑋𝑋 − 𝑋𝑋_𝐹𝐹𝑟𝑟𝑡𝑡𝐹𝐹) component of Equation 3.5. The input ports receive the agent position

values from the RAM_X output ports which is then processed and produced at the output

ports as shown in Figure 19. The output ports are 9-bits wide to facilitate the measurement

arithmetic operations and enable an output value ranging between -511 to 511.

24

3.4.7 Estimate

Figure 20 Estimate module

The Estimate module facilitates the calculations required to carry out the estimate

step as described in Equation 3.7. The module receives inputs from both RAM_X and

RAM_Y which it then processes and outputs in its output ports as shown in Figure 20.

The output value is internally bounded to ensure that the output values are within the

acceptable range of -100 to 100. The output values are then loaded to the input ports of

the RAM_X to update the new value of agent position.

25

3.4.8 Finite State Machine Controller

Figure 21 Simplified state diagram of finite state machine controller

To ensure proper timing and flow of data between modules, a finite state machine

(FSM) was modelled using System Verilog. The FSM instantiates all the necessary

modules and the necessary wires for interconnection between modules. The FSM has 6

states in sequence of s0 Reset, s1 Generate population, s2 Fitness evaluation and

comparison, s3 Measure, s4 Estimate, and s5 Complete. A simplified state diagram of the

FSM is illustrated in Figure 21.

26

Figure 22 State s0 Reset

In state s0, all modules are reset. In this state, the initial seed values are input into

the RNG modules, all comparison and storage registers are cleared except for Xtrue, and

write enable for RAM_X is disabled a shown in Figure 22. There is no condition for

moving onto the next state, so it will proceed to state s1 upon the next clock cycle.

Figure 23 State s1 Generate population

In state s1, all modules have their reset ports pulled low to leave reset state. The

RNG stack output is then connected to the input ports of the RAM_X as shown in Figure

23. At the same time, the write enable for RAM_X is enabled. On the first clock cycle,

the write address is directed to the address 0 and increases by 1 on each positive edge of

the clock signal. When the write address reaches the value N-1, the write enable of

RAM_X is disabled, the RNG reset is pulled high, and the FSM enters the next state.

27

Figure 24 State s2 Fitness evaluation and comparison

In state s2, the output ports of RAM_X is connected to the input ports of the

Activation Function module as shown in Figure 24. On the first clock cycle, the read

address of RAM_X is directed to address 0 and increases by 1 on each positive edge of

the clock signal. The Activation Function module then processes and outputs the agent

evaluation at its output port. The FSM controller then compares the current evaluation

with the overall best evaluation for the current iteration to update the Xbest register. At

the same time, it updates the Xtrue register and lastly moves onto the next state when the

read address of RAM_X reaches the value N.

Figure 25 State s3 Measure

28

In state s3, the output ports of RAM_X is connected to the input ports of the

Measure module. The 2-bit RNG module is connected to the rng port of the Measure

module and the best_agent_D# ports are driven by the FSM controller registers as shown

in Figure 25. The output ports of the Measure module are connected to the input ports of

the RAM_Y module and the write enable for RAM_Y is enabled. On the first clock cycle,

the read address of the RAM_X is directed to address 0 meanwhile the write address of

the RAM_Y is directed to address 0. Both addresses increase on each clock cycle until

they reach the value of N-1 which then triggers the condition to enter the next state.

Figure 26 State s4 Estimate

In state s4, the output ports of RAM_X and RAM_Y are connected to the input

ports of the Estimate module as shown in Figure 26. The output ports of the Estimate are

then connected to the input ports of the RAM_X module. The write enable for RAM_Y

is disabled meanwhile the write enable for RAM_X is enabled to allow the Estimate

module to update the positions of the agents. On the first clock cycle, the read address of

29

both RAM_X and RAM_Y is directed to address 0 and increases by 1 on each clock

cycle. On the second clock cycle, the write address on RAM_X is directed to address 0

so that the output of the Estimate module can overwrite the value of the agent in the

address. Similarly, the RAM_X write address increases by 1 on each clock cycle. When

the write address reaches the value of N-1, the state machine transits to the next state

depending on the current number of runs, and the current iteration number.

If the number of iterations have not reached tmax, the FSM will enter state s2 to

move onto the next iteration of the run. If the maximum number of iterations have been

reached but the maximum number of runs have not been reached, the FSM will enter state

s0 and move onto the next run. Lastly, if the maximum number of iterations and

maximum number of runs have been achieved, the FSM enters state s5 which marks the

completion of all operations. In this state, the FSM displays the result of Xtrue, and the

time interval taken to complete all iterations and runs.

3.4.9 Testbench Verification

Several testbenches were designed using System Verilog to test the functionality

of each module and the FSM prior to implementation into FPGA. The individual modules

were tested to ensure the calculations produce the expected results prior to integration

into the FSM. Then the FSM itself was simulated on a testbench to ensure proper timing

as well as module interconnection was achieved. The waveform produced by the

testbench is as shown in Figure 27 and is used to troubleshoot any errors that may occur.

Figure 27 Waveform generated by a testbench with parameters N = 50, D = 10,

maxrun = 2, tmax = 50.

30

3.5 Hardware Components

Figure 28 DE10 – Lite System Builder application

The board chosen for the implementation of the Binary SKF was the DE10 - Lite

which is powered by the 10M50DAF474G chip produced by Altera. The board was a

provided by the Intel FPGA University Program. The board provides sufficient peripheral

ports and interaction devices such as LEDs, slide switches, temporary pushbuttons, and

seven – segment displays. Included on the board is a clock generation chip which outputs

a stable 50MHz clock cycle to drive the 10M50DAF474G chip. The FPGA chip is

sufficiently powerful to power the design as it contains 50 thousand logical elements,

1638 Kb of M9K memory, 5888 Kb of user flash memory, and 144 units of 18 x 18

multiplier.

Meanwhile, the MATLAB simulation of Discrete SKF is ran on a HP ProBook

440 G7 which is equipped with a 10th generation Intel processor namely the Intel Core i5

– 10210U CPU and is paired with 16 gigabytes of RAM.

31

3.6 Software Components

Figure 29 Quartus Prime Lite Edition 18.1

The software used to design and implement the Binary SKF onto FPGA is the

Quartus Prime Lite Edition 18.1. It is a proprietary software by Intel that is used to

compile, synthesize, place, route and analyse designs for implementation onto Altera

FPGA chips. The software also enables access to the IP Catalog which contains a library

of parametric modules which can be easily integrated into existing designs. The software

is available for free on the Intel website and does not require license to operate. However,

the performance of the software is limited and can be unlocked with the purchase of a

license.

3.7 Performance Parameters

After the Binary SKF has been programmed onto the FPGA, its performance was

verified based on several metrics such as the chip utilization, processing speed and the

accuracy of the result. The design was also altered to produce 3 variants, each handling

different number of dimensions. The 3 variants are set to handle 5-dimensions, 10-

dimensions and 20-dimensions, respectively. The processing speed and accuracy of result

produced by the variant implementations were then compared against the Discrete SKF

metaheuristic simulated in MATLAB. Figure 30 illustrates the performance parameters

that will be evaluated.

32

Figure 30 Performance parameters

3.7.1 Chip Utilization

The resources on the 10M50D474CG is limited to 50 thousand logical elements.

As a design increases in complexity, more logical elements are used to synthesize the

design. The chip utilization of the designs can be analysed using the Analysis and

Synthesis Summary report generated by the Quartus Prime software.

3.7.2 Processing Speed

The processing speed of the Binary SKF is defined as the time taken for the design

to complete all calculations and display the results. The time taken for the FPGA

implementation is set to be displayed on the seven-segment display during the operation

and stop when the calculation processes are done. Similarly, the MATLAB simulation of

the Discrete SKF is set to display the time taken to complete all the iterations and runs.

A faster processing speed would mean a shorter time period taken to complete all

calculations.

3.7.3 Accuracy of Result

Since the problem is a minimization of the sphere function, the expected result

would be X = 0 for all dimensions since a value of 0 would produce the smallest possible

fitness evaluation. The results produced by the Discrete SKF simulation, and the Binary

SKF would then be compared to the expected value to verify the accuracy of their outputs.

The closer the output result is to the expected result, the more accurate the output.

Performance
Parameters

Chip
Utilization

Processing
Speed

Accuracy
of result

33

CHAPTER 4

Results & Discussion

4.1 Introduction

In this chapter the results of the FPGA implementation of Binary SKF

metaheuristic and MATLAB simulation of Discrete SKF metaheuristic is presented. The

results then analysed and discussed based on the performance parameters.

4.2 Experimental Setup

The run parameter set for both the MATLAB simulation and FPGA

implementation is set to 50 maximum runs, 5000 maximum iterations, 50 agents, and

fixed Kalman gain of 0.5. The runs are conducted 3 times on MATLAB using 3 different

dimension values which are 5-dimensions, followed by 10-dimensions, and lastly 20-

dimensions. The FPGA implementation is programmed with 3 different designs and ran

3 separate times to facilitate the run of the 3 different variants namely the 5-dimension,

10-dimension, and 20-dimension implementations. The time taken to complete all

calculations, the value of Xtrue and chip utilization of each design is noted is compiled

into Table 1.

4.3 Simulation and Implementation Results

Table 1 Compiled result of simulation and FPGA implementation

 Agents,
N

Dimensions,
D

Xtrue Time
taken

(s)

Logical
Elements

Registers Multiplier
9-bit

elements

Simulation
50 5 14 27.329 - - -
50 10 503 36.481 - - -
50 20 3936 54.571 - - -

FPGA
50 5 32 0.780 8220 4686 5
50 10 253 0.780 14637 9146 10
50 20 4749 0.780 27413 18066 20

34

4.3.1 MATLAB Simulation of Discrete Simulated Kalman Filter

Figure 31 MATLAB simulation result for D = 5

Figure 32 MATLAB simulation result for D = 10

Figure 33 MATLAB simulation result for D = 20

35

4.3.2 FPGA Implementation of Binary Simulated Kalman Filter

Figure 34 FPGA implementation result for D = 5

Figure 35 FPGA implementation result for D = 10

Figure 36 FPGA implementation result for D = 20

36

Figure 37 FPGA implementation chip utilization for D = 5

Figure 38 FPGA implementation chip utilization for D = 10

Figure 39 FPGA implementation chip utilization for D = 20

37

4.4 Chip Utilization

Table 2 Comparison of chip utilization

 Agents,
N

Dimensions,
D

Logical
Elements

Registers Multiplier 9-bit
elements

FPGA
50 5 8220 4686 5
50 10 14637 9146 10
50 20 27413 18066 20

For the 5-dimension FPGA implementation, 8220 logical elements, 4686

registers, and 5 units of 9-bit multiplier elements were utilized to synthesize the design.

For the 10-dimension FPGA implementation, 14637 logical elements, 9146 registers, and

10 units of 9-bit multiplier elements were utilized to synthesize the design. Lastly, 27413

logical elements, 18066 registers, and 20 units of 9-bit multiplier elements were utilized

to synthesize the 20-dimension FPGA implementation. The chip utilization of the 5

dimension, 10 dimension, and 20 dimension designs were tabulated in Table 2.

It can be observed that as the number of dimension of the FPGA implementation

increases the resources used to synthesize the design significantly increases as well. The

number of registers roughly doubles whenever the number of dimensions is doubled. This

is because the multidimensional array X and Y doubles in depth whenever dimension is

doubled as observed in Figure 12.

The logical elements utilization increases by 43% when the number of dimensions

increases from 5 to 10. Meanwhile, an increment of 46% is observed when the number

of dimensions increases from 10 to 20. Extrapolating this information, the

10M50DAF474G chip may only be able to handle a similar design with 50 dimensions

before running out of logical elements to successfully synthesize the design.

38

4.5 Processing Speed

Table 3 Comparison of processing speed

 Agents, N Dimensions, D Time taken (s)

Simulation
50 5 27.329
50 10 36.481
50 20 54.571

FPGA
50 5 0.780
50 10 0.780
50 20 0.780

The MATLAB simulation of Discrete SKF is ran 3 times using 3 different

dimension parameters of D = 5, D = 10, and D = 20. The 5-dimension, 10-dimension and

20-dimension run were completed in 27.329 seconds, 36.481 seconds, and 54.571

seconds respectively.

Meanwhile, the FPGA implementation of Binary SKF was programmed with 3

separate designs for 3 different dimension parameters of D = 5, D = 10, and D = 20. Each

run on the FPGA implementation took exactly 0.780 seconds to complete. It can be

observed that the 5-dimension, 10-dimension, and 20-dimension run on the FPGA

implementation introduced a time reduction by a factor of 35.04, 46.77, and 69.96

respectively compared to the MATLAB simulation. The results of the simulation and

FPGA implementation were tabulated on Table 3.

The time taken to complete the simulation on MATLAB increases by 25% when

the number of dimensions increased from 5 to 10. Meanwhile increasing the dimensions

from 10 to 20 further increased the time taken by 33%. This shows that the time taken to

complete the simulation increases as the number of dimensions increases for the

MATLAB simulation

However, there is no change in time taken to complete the run on the FPGA

implementation. It is observed that the time taken to complete the run remains the same

despite increasing the number of dimensions for the FPGA implementation. This is

because the modules of the FPGA implementation are designed using the PIPO

configuration which enables all dimensions of a single agent to be loaded and processed

in a single clock cycle. Consequently, the PIPO configuration of modules will result in

the same processing time despite an increment or decrement of number of dimensions.

39

4.6 Accuracy of Result

Table 4 Comparison of accuracy of result

 Agents, N Dimensions, D Xtrue Expected Value

Simulation
50 5 14 0
50 10 503 0
50 20 3936 0

FPGA
50 5 32 0
50 10 253 0
50 20 4749 0

The Xtrue value produced by the MATLAB simulation is 14, 503, and 3936 for

the 5-dimension, 10-dimension, and 20-dimension run respectively. None of the Xtrue was

able to reach the expected value of 0. It can also be observed that as the number of

dimensions increase for the simulation, the Xtrue value strays further away from the

expected value.

The output of the FPGA implementation is presented on the seven-segment

display of the board which is encoded in Binary Coded Hexadecimal. The output of the

FPGA is then decoded and inserted into Table 1 and Table 4. Similar to the MATLAB

simulation, the FPGA implementation is not able to achieve the expected value of 0 in

any of the runs. The FPGA implementation produced Xtrue values of 32, 253, and 4749

which follows a trend similar to the MATLAB simulation result. As the dimension

increases, the Xtrue value strays further away from the expected value. The results of the

MATLAB simulation and FPGA implementation are tabulated under Table 4.

The MATLAB simulated Discrete SKF and the FPGA implemented Binary SKF

are both unable to produce an accurate result. For the MATLAB simulation, the culprit

behind this diminished accuracy is because of the rounding of floating-point values to

integers. This reduces the resolution and the accuracy of the results. In addition, a fixed

Kalman gain of 0.5 further diminishes the accuracy as it reduces the ability of the

metaheuristic to conduct the exploitation process which is the process that enables the

metaheuristic to narrow down the solution to the optimal solution. This error is then

carried forward to the FPGA implementation which uses binary format to represent the

integer values.

40

4.7 Approximating the Time Taken by FPGA to Complete Run

Table 5 Approximating time taken by FPGA to complete run

Iteration 1st 2nd to 4999th 5000th

States s0, s1, s2, s3, s4 s2, s3, s4 s2, s3, s4, s5
Clock cycles 250 749,700 200

Total clock cycles per run 750,150

Total clock cycles 37,507,500

Approximated time (s) 0.750

Actual time (s) 0.780

The FSM controls the timing of the implementation which iterates through the 6

states from state s0 through to state s5. In the first iteration, the state machine goes

through state s0, s1, s2, s3, and s4. Then from the 2nd to 4999th iteration, the FSM goes

through states s2, s3, and S4. Lastly, on the 5000th iteration, the FSM goes through state

s2, s3, s4, and completes in s5. The number of clock cycles required to transit from one

state to another is roughly N number of clock cycles. In this implementation it would

mean 50 clock cycles is required to transit from one state to another. In conclusion, 5 runs

at 5000 iterations would require 37,507,500 clock cycles to complete. Since the clock is

running at 50MHz, the time taken to complete the run would be 0.750 seconds. This is a

close approximation to the actual time taken to complete the run which is 0.780 seconds.

The calculation of approximating the time taken is tabulated on Table 5.

41

CHAPTER 5

CONCLUSION

5.1 Discrete Simulated Kalman Filter

The original SKF metaheuristic was successfully adapted into the Discrete SKF

where all of its elements are represented in whole numbers. The adaptation removes all

decimal points and fractional part of all elements as well as uses a fixed value Kalman

gain of 0.5. This is important because it enables a direct implementation into a digital

system where all elements are represented in a binary format.

5.2 Implementation of Binary Simulated Kalman Filter

The Binary SKF was successfully designed using System Verilog to produce a

behavioural model of the Discrete SKF. The design was then modified into 3 different

variants namely the 5-dimension, 10-dimension, and 20-dimension versions. The designs

were then implemented and evaluated based on the performance parameters. The chip

cost of the 3 designs were observed to increase as the number of dimensions of the

implementation increased. The FPGA implementation was able to increase processing

speed by a factor of 35.04, 46.77, and 69.96 for the 5-dimension, 10-dimension, and 20-

dimension respectively compared to the MATLAB simulation. In addition, the accuracy

of the FPGA implementation of Binary SKF was not able produce accurate results.

However, the results follow a trend similar to the Discrete SKF simulation in MATLAB.

As the number of dimensions increased, the Xtrue value produced strays further away

from the expected value for both Discrete SKF and Binary SKF. Lastly, the configuration

of ports of modules in PIPO arrangements enabled processing time to be independent

from the number of dimensions.

42

5.3 Project Limitations

The Discrete SKF is an adaptation of the original SKF metaheuristic which

originally operates using floating-point arithmetic. The adaptation removes all floating-

point values and converts them into integers. This severely reduces the resolution and

accuracy of the result. In addition, the fixed Kalman gain of 0.5 reduces the exploitation

performance of the Discrete SKF as it struggles to find the optimum solution.

This adaptation into Discrete SKF is done so that the metaheuristic can be

translated into Binary SKF using System Verilog without the implementation of floating-

point arithmetic. This would significantly reduce the scope of the project as a significant

number of modifications would be required to each module to facilitate arithmetic in

floating-point. This includes representing all numbers in all registers of the design to be

represented in the IEEE 754 format. The implementation of floating-point arithmetic

would amend the problem of diminished accuracy discussed in Chapter 4.6.

5.4 Suggestions and Future Work

5.4.1 Improving Accuracy of Results

To address the project limitations described in Chapter 5.3, it is recommended to

implement the floating-point arithmetic module available in the IP Catalog of the Quartus

Prime software. The module would be implemented inside the Activation Function

module, Measure module, and Estimate module to facilitate all floating-point

calculations.

In addition, the availability of floating-point calculations would eliminate the

need for a fixed Kalman gain. The original SKF metaheuristic utilizes the error

covariance estimate, process noise value, and measurement noise value to calculate the

Kalman gain in each iteration which would then be used in the measurement step. This

would restore the exploitation ability of the SKF metaheuristic to produce accurate

results.

5.4.2 Implementation of Pipeline Structure

Furthermore, the processing speed of the implementation can be further improved

by introducing a pipeline structure by tweaking the FSM controller. This implementation

43

should produce a significant increase in processing speed as it removes the waiting time

between states of the FSM.

5.4.3 Implementation of CEC2014 Benchmark Functions

To verify the performance of the FPGA implementation, it would be necessary to

introduce a method to equally compare the performance of the original SKF metaheuristic

and the FPGA implementation. The implementation of all 30 functions in the CEC2014

benchmarking functions would enable the FPGA implementation to be directly compared

with the original SKF metaheuristic in terms of accuracy of results as well as processing

speed.

5.4.4 Physical Synthesis to Improve Timing and Accuracy of Results

The Quartus Prime software provides users with the ability to set the synthesis

effort, physical synthesis effort, and fitter effort to various levels of efforts. The fastest

methods were used to implement the designs for this project as it reduces the compilation

time of the design. However, this may affect the result of the implementation by reducing

the performance of the implementation such as timing errors and other inefficiencies.

This can be improved by using a higher effort to compile the designs which would

consequently increase the time taken for compilation.

In addition, Quartus Prime includes the ability to use the Chip Planner

functionality which allows users to manually do fitting operations. This could enhance

the performance of the implementation by improving the timing delays, power

consumption, and accuracy of results.

5.4.5 Utilizing Phase-Locked Loop to Increase Clock Frequency

The DE10 – Lite board is powered by an on-board chip that generates a 50MHz

clock signal. This clock signal is then fed onto the FPGA and directly affects the

processing speed as described in Chapter 4.7. It is possible to use the Phase-Locked Loop

(PLL) available on the 10M50DAF484C7G chip to generate an internal clock of 100MHz

based on the 50MHz external clock. The application of PLL which is available in the IP

Catalog into the design could significantly increase the processing speed of the

implementation on FPGA.

44

REFERENCES

[1] T. Ab Rahman, Z. Ibrahim, N. A. Ab Aziz, S. Zhao, and N. H. Abdul Aziz, “Single-
Agent Finite Impulse Response Optimizer for Numerical Optimization Problems,” IEEE
Access, vol. 6, pp. 9358–9374, Jan. 2018, doi: 10.1109/ACCESS.2017.2777894.

[2] M. H. Sulaiman, Z. Mustaffa, M. M. Saari, and H. Daniyal, “Barnacles Mating
Optimizer: A new bio-inspired algorithm for solving engineering optimization
problems,” Engineering Applications of Artificial Intelligence, vol. 87, Jan. 2020, doi:
10.1016/j.engappai.2019.103330.

[3] Y. Jiang, Q. Wu, S. Zhu, and L. Zhang, “Orca predation algorithm: A novel bio-inspired
algorithm for global optimization problems,” Expert Systems with Applications, vol.
188, Feb. 2022, doi: 10.1016/j.eswa.2021.116026.

[4] Z. Ibrahim, N. H. Abdul Aziz, N. A. Nor, S. Razali, and M. S. Mohamad, “Simulated
Kalman Filter: A novel estimation-based metaheuristic optimization algorithm,”
Advanced Science Letters, vol. 22, no. 10, pp. 2941–2946, Oct. 2016, doi:
10.1166/asl.2016.7083.

[5] N. H. Abdul Aziz et al., “A Tutorial on Single-solution Simulated Kalman Filter,”
MEKATRONIKA, vol. 1, no. 2, pp. 33–44, Jul. 2019, doi:
10.15282/mekatronika.v1i2.4895.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95
- International Conference on Neural Networks, vol. 4, pp. 1942–1948. doi:
10.1109/ICNN.1995.488968.

[7] M. A. Khanesar, M. Teshnehlab, M. Aliyari, and S. K. N. Toosi, “A Novel Binary
Particle Swarm Optimization,” 2007.

[8] H. Zhu Member Yuji Tanabe Non-member Takaaki Baba Non-member Waseda, “A
Random Time-Varying Particle Swarm Optimization for the Real Time Location
Systems,” 2008.

[9] N. A. A. Aziz, Z. Ibrahim, M. Mubin, S. W. Nawawi, and N. H. A. Aziz, “Transitional
particle swarm optimization,” International Journal of Electrical and Computer
Engineering, vol. 7, no. 3, pp. 1611–1619, Jun. 2017, doi: 10.11591/ijece.v7i3.pp1611-
1619.

[10] M. Kong and P. Tian, “Introducing a Binary Ant Colony Optimization.”

45

[11] M. A. Tawhid and K. B. Dsouza, “Hybrid binary bat enhanced particle swarm
optimization algorithm for solving feature selection problems,” Applied Computing and
Informatics, vol. 16, no. 1–2, pp. 117–136, Apr. 2018, doi: 10.1016/j.aci.2018.04.001.

[12] A. L. X. da Costa, C. A. D. Silva, M. F. Torquato, and M. A. C. Fernandes, “Parallel
Implementation of Particle Swarm Optimization on FPGA,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 66, no. 11, pp. 1875–1879, Nov. 2019, doi:
10.1109/TCSII.2019.2895343.

[13] X. Cai, S. Ngah, H. Zhu, Y. Tanabe, and T. Baba, “Pipeline architecture of particle
swarm optimization,” in Proceedings - 9th IEEE/ACIS International Conference on
Computer and Information Science, ICIS 2010, 2010, pp. 3–8. doi:
10.1109/ICIS.2010.42.

[14] A. Rathod and R. A. Thakker, “FPGA realization of Particle Swarm Optimization
algorithm using floating point arithmetic,” Feb. 2015. doi:
10.1109/ICHPCA.2014.7045338.

	ACKNOWLEDGEMENTS
	ABSTRAK
	ABSTRACT
	TABLE OF CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Project Background
	1.2 Problem Statement
	1.3 Objectives
	1.4 Scope of Project
	1.5 Thesis Outline

	CHAPTER 2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Novel Optimization Algorithms
	2.2.1 Single-Agent Finite Impulse Response Optimizer
	2.2.2 Barnacles Mating Optimization
	2.2.3 Orca Predation Algorithm
	2.2.4 Simulated Kalman Filter
	2.2.5 Single-solution Simulated Kalman Filter
	2.2.6 Particle Swarm Optimization
	2.2.7 Variants of Particle Swarm Optimization
	2.2.8 Binary Ant Colony Optimization
	2.2.9 Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm

	2.3 FPGA Implementation Optimization Techniques
	2.3.1 Parallel Implementation of Particle Swarm Optimization
	2.3.2 Pipeline Architecture of Particle Swarm Optimization
	2.3.3 FPGA Realization of Particle Swarm Optimization Algorithm using Floating Point Arithmetic

	CHAPTER 3 METHODOLOGY
	3.1 Introduction
	3.2 Simulated Kalman Filter
	3.3 Discrete Simulated Kalman Filter Adaptation
	3.4 Binary Simulated Kalman Filter Behavioural Modelling
	3.4.1 Parallel-In-Parallel-Out Configuration of Modules
	3.4.2 Pseudo Random Number Generator (RNG)
	3.4.3 Random-Access Memory (RAM)
	3.4.4 Activation Function
	3.4.5 2-bit Pseudo Random Number Generator
	3.4.6 Measure
	3.4.7 Estimate
	3.4.8 Finite State Machine Controller
	3.4.9 Testbench Verification

	3.5 Hardware Components
	3.6 Software Components
	3.7 Performance Parameters
	3.7.1 Chip Utilization
	3.7.2 Processing Speed
	3.7.3 Accuracy of Result

	CHAPTER 4 Results & Discussion
	4.1 Introduction
	4.2 Experimental Setup
	4.3 Simulation and Implementation Results
	4.3.1 MATLAB Simulation of Discrete Simulated Kalman Filter
	4.3.2 FPGA Implementation of Binary Simulated Kalman Filter

	4.4 Chip Utilization
	4.5 Processing Speed
	4.6 Accuracy of Result
	4.7 Approximating the Time Taken by FPGA to Complete Run

	CHAPTER 5 CONCLUSION
	5.1 Discrete Simulated Kalman Filter
	5.2 Implementation of Binary Simulated Kalman Filter
	5.3 Project Limitations
	5.4 Suggestions and Future Work
	5.4.1 Improving Accuracy of Results
	5.4.2 Implementation of Pipeline Structure
	5.4.3 Implementation of CEC2014 Benchmark Functions
	5.4.4 Physical Synthesis to Improve Timing and Accuracy of Results
	5.4.5 Utilizing Phase-Locked Loop to Increase Clock Frequency
	REFERENCES

