

ID08

INVESTIGATION OF ROS BASED VEHICLE

STATE ESTIMATION WITH UNCERTAINTIES

BACHELOR OF ELECTRICAL ENGINEERING

(ELECTRONICS) WITH HONOURS

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : SITI NURAINI BINTI CHE HUHAIMI__________________

Date of Birth : 06/10/1999___

Title : INVESTIGATION OF ROS BASED VEHICLE____________

 STATE ESTIMATION WITH UNCERTAINTIES__________

Academic Session : SEMESTER II 2021/2022______________________________

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 Aini

 (Student’s Signature)

 991006035854_________

New IC/Passport Number

Date: 26.6.2022

 (Supervisor’s Signature)

Assoc.Prof.Ts.Dr.Hamzah Ahmad

Name of Supervisor

Date: 26.6.2022

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date: 26.6.2022

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis, and, in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Bachelor of Electrical

Engineering (Electronics) with Honours.

 (Supervisor’s Signature)

Full Name : Prof. Madya Dr. Hamzah Bin Ahmad

Position : Senior lecturer

Date : 26.6.2022

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at University

Malaysia Pahang or any other institutions.

 Aini

 (Student’s Signature)

Full Name : Siti Nuraini Binti Che Huhaimi

ID Number : EA18120

Date : 26.6.2022

INVESTIGATION OF ROS BASED VEHICLE

STATE ESTIMATION WITH UNCERTAINTIES

 SITI NURAINI BINTI CHE HUHAIMI

Thesis submitted in fulfillment of the requirements

for the award of the

Bachelor of Electrical Engineering (Electronics) with Honours

College of Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2022

1

ACKNOWLEDGEMENTS

 In the Name of Allah, the Merciful, the Compassionate.

First and foremost, I want to express my heartful appreciation to Prof Madya Dr. Hamzah

bin Ahmad, my beloved supervisor, for providing me with invaluable assistance and

regular suggestions as a supervisor during this project. Working and studying under his

direction was a wonderful honors and privilege. From the first day I met him till now, I

appreciate his unwavering support. The route to complete the Final Year Project will be

more difficult without his help.

My family, especially my parents, deserve thanks for their love, support, prayers, and

sacrifices throughout my life. I owe my parents a debt of gratitude for their patience and

constant care for me. Thank you for assisting me in surviving all the stress and for not

allowing me to give up. Also, thank you to my siblings for constantly brightening and

delighting my days.

My profound gratitude also goes to my friends for assisting me in finishing the thesis

when I became overwhelmed and confused, as well as for their unwavering support.

Finally, I would want to express my gratitude to everyone who was directly or indirectly

involved in the completion of my Final Year Project, I much appreciate your efforts.

Thank you very much.

2

ABSTRAK

Tesis ini dicadangkan untuk mengkaji anggaran keadaan kenderaan berasaskan ROS

(Sistem pengendalian Robot) dengan mengambil kira ketidakpastian. ROS ialah perisian

tengah antara perisian dan perkakasan. Ia juga berurusan dengan “Kalman Filter” (KF)

melalui kajian kes yang berbeza di mana pendekatan ini bertujuan untuk memberikan

anggaran yang lebih baik untuk robot mudah alih. Berdasarkan kajian kes yang berbeza

ROS memainkan peranan penting untuk menilai prestasi robot mudah alih merujuk

kepada persekitarannya. ROS menyediakan beberapa pakej mudah dengan nod ROS dan

algoritma SLAM yang menjadikan masalah pembentukan lebih mudah untuk

diselesaikan. Penderia pengesanan dan julat cahaya (LiDAR) digunakan untuk memberi

maklumat untuk analisis ini bagi mendapatkan maklumat daripada persekitaran yang

membantu turtlebot3 mengelak halangan. Sensor LiDAR 360 darjah juga dilengkapi

dalam burger turtlebot3 yang digunakan dalam persediaan makmal. Simulasi itu juga

melibatkan simulator 3D gazebo dan pemetaan dalam visualisasi Rviz untuk penjanaan

peta. Selain itu, algoritma SLAM digunakan untuk memberi gambaran robot untuk

dipetakan secara serentak semasa mengesan dirinya. Keputusan awal eksperimen ini

menggambarkan bahawa Burger Turtlebot3 dapat mengelak halangan dalam perjalanan

dengan berkesan dari mana-mana titik permulaan sehingga burger Turtlebot3 boleh

sampai ke destinasi dengan selamat dan dapat mengelakkan sebarang jenis halangan.

3

ABSTRACT

This thesis proposed to examine ROS (Robot operating system) based vehicle state

estimation considering uncertainties. ROS is a middleware between software and

hardware. It also deals with the Kalman filter (KF) via different case studies where This

approach is aimed to provide better estimation for mobile robots. Based on different case

study ROS play an important role to evaluate mobile robot performance referring to its

environment. ROS provides some convenient packages with ROS nodes and the SLAM

algorithms that make the formation problem easier to solve. The light detection and

ranging (LiDAR) sensor as obstacle detection are used to give information for this

analysis in order to gain information from the surrounding where it helps to avoid

obstacles. The 360-degree LiDAR sensor also was equipped in the turtlebot3 burger that

was used in the laboratory setup. The simulation also involved a gazebo 3D simulator

and mapping in Rviz visualization for map generation. Besides, the SLAM algorithm is

used to give a picture of the robot to simultaneously map while locating itself. The

preliminary result of this experiment illustrates that the Turtlebot3 Burger can avoid the

obstacle on its way effectively from any starting point until that Turtlebot3 burger can

reach its destination safely and it is expected the turtlebot3 burger can avoid any type of

obstacle.

4

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS 1

ABSTRAK 2

ABSTRACT 3

TABLE OF CONTENT 4

LIST OF TABLES 7

LIST OF FIGURES 8

LIST OF EQUATIONS 10

LIST OF ABBREVIATIONS 11

CHAPTER 1 INTRODUCTION 12

1.1 Project Background 12

1.2 Problem Statement 13

1.3 Objective 14

1.4 Scope of Work 14

1.5 Thesis Outline 15

CHAPTER 2 LITERATURE REVIEW 16

2.1 Introduction 16

2.2 Flow Of Literature Review 16

2.2.1 Robot Interface Using ROS 16

2.2.2 An Implementation of Kalman Filter 19

5

2.2.3 Simultaneous Localization and Mapping (SLAM) 20

2.2.4 System Design Based on ROS and Lidar Sensor 21

2.2.5 Mobile Robot Localization Using the Kalman Filter and a Single

fixed camera (capable of detect the landmarks) 23

2.2.6 Lidar-based Obstacle Avoidance for the Autonomous Mobile

Robot 24

2.2.7 Autonomous Obstacle Avoidance Using Lidar 26

2.3 Summary 27

CHAPTER 3 METHODOLOGY 28

3.1 Introduction 28

3.2 Kalman Filter’s implementation in Mobile Robot 32

3.3 Robot Operating System (ROS) 37

3.3.1 What are ROS and Gazebo? 37

3.3.2 Installation of Robot Operating System (ROS) 40

3.3.3 ROS Command 41

3.4 Design Development (Turtlebot3 Burger) 42

3.4.1 Turtlebot3 Burger specification 43

3.4.2 Block diagram of Turtlebot3 Burger system 45

3.4.3 Turtlebot3 Burger Setup 46

3.4.4 Turtlebot3 Burger Bringup 47

3.4.5 Launching the obstacle avoidance node to Turlebot3 burger 49

3.4.6 Slam Algorithm of the Turlebot3 burger 50

CHAPTER 4 RESULT AND DISCUSSIONS 51

4.1 Introduction 51

4.2 Result from the Hardware Part 51

6

4.2.1 Detection of obstacle and avoidance data 51

4.2.2 Cases study 53

4.2.2.1 SLAM Algorithm of Turtlebot3 in Environment 1 53

4.2.2.2 Environment 1 with Kalman filter and without Kalman filter 55

4.2.2.3 Environment 2 with different type of obstacle 57

4.2.2.4 Environment 3 58

4.2.3 Summary of Turtlebot3 Burger Performance 59

4.2.4 Result Comparison 60

4.3 Result from the Simulation Part 62

4.3.1 Simulation based Obstacle Avoidance in Gazebo world 62

4.3.2 Simulation for State Estimation by applying Kalman Filter in

Turtlebot3 model 63

CHAPTER 5 CONCLUSION 68

5.1 Conclusion 68

5.2 Future Recommendations 69

REFERENCES 70

APPENDIX A SAMPLE APPENDIX 1 73

7

LIST OF TABLES

Table 1 Variable Kalman filter System Model of Equation (1) 34

Table 2 Variable Kalman filter Measurement Model of Equation (2) 34

Table 3 Variable Predict and Update 36

Table 4 Lidar measurement 52

Table 5 Comparison with Kalman Filter and without Kalman Filter 56

Table 6 Summary of Turtlebot3 Performance 59

Table 7 Type of Obstacle in environment 2 setup 60

Table 8 Percentage error between cases with KF and WKF in x and y position 64

8

LIST OF FIGURES

Figure 1 Evolution of Robot 13

Figure 2 Message Communication between ROS nodes 17

Figure 3 Schematic diagram of ROS message delivery 18

Figure 4 Trajectory estimation with the Kalman Filter 19

Figure 5 Incremental Map 21

Figure 6 Cartographer' ROS framework 22

Figure 7 Result Experimental 22

Figure 8 The mobile robot navigation in a room without obstacle 25

Figure 9 The mobile robot navigation in a room with obstacle 25

Figure 10 In (a) LiDAR detecting an obstacle. In (b) collected data based on

measurement location 26

Figure 11 Progression Flowchart for Simulation 29

Figure 12 Progression Flowchart on Hardware 31

Figure 13 Block Diagram Process of Kalman Filter 32

Figure 14 System Mobile Robot 33

Figure 15 Prediction Part (a) and Update Part (b) 35

Figure 16 Command to launch the turtlebot3 burger in empty world 38

Figure 17 Turtlebot3 Burger simulation in empty world 39

Figure 18 Turtlebot3 Burger in house environment in the gazebo 39

Figure 19 ROS.org website 40

Figure 20 ROS Noetic Ninjemys 40

Figure 21 Turtlebot3 Burger 42

Figure 22 General specification of Turtlebot3 Burger 43

Figure 23 General specification of turtlebot3 model type burger 44

Figure 24 Block Diagram of the Turtlebot3 system 45

Figure 25 OpenCR Board 47

Figure 26 Run roscore from PC 48

Figure 27 Bringup Turtlebot3 48

Figure 28 Visualization on the terminal of the successful turlebot3 bringup 49

Figure 29 Turtlebot3 node run 49

Figure 30 The map after launch RViz for the first time before scanning process 50

Figure 31 The map after 30 minutes the turtlebot3 runs 50

Figure 32 Data error collision 52

9

Figure 33 Final map generation from Lidar sensor for Environment 1 53

Figure 34 2D Navigation in Rviz of Environment 1 54

Figure 35 Environment 1 with Kalman filter 55

Figure 36 Environment 1 without Kalman filter 55

Figure 37 Environment 2 57

Figure 38 Environment 3 58

Figure 39 Comparison Environment 2 with different type of obstacle 60

Figure 40 Table of comparison from other research paper 61

Figure 41 Simulation of turtlebot3 in Gazebo world 62

Figure 42 x-y Position of the Turtlebot3 with help of Kalman filter 63

Figure 43 Error between Kalman filter estimate & measured 64

Figure 44 Velocity Estimation Error of x position 66

Figure 45 Covariance matrix 67

10

LIST OF EQUATIONS

Equation 1 Kalman Filter Equation 33

11

LIST OF ABBREVIATIONS

ROS Robot Operating System

OSRF Open-Source Robotics Foundation

KF Kalman Filter

SLAM Simultaneous localization and mapping

LiDAR Light Detection and Ranging

LDS Laser Distance Sensor

AI Artificial Intelligence

12

CHAPTER 1

INTRODUCTION

1.1 Project Background

 Nowadays, with the innovation of artificial intelligence technology, the varieties

of intelligent robotics technology have become growingly widely available, and their

autonomy has been continuously enhanced, from the first market floor cleaning robot and

delivery service robot, escorting robots, education robot, rehabilitation robot, grocery

store robot, and other direction advancement, service areas, and service objects. The

majority of service robots are mobile because they can support humans or machines. The

mobility of the robots enables them to perform the tasks for which they are intended

without difficulty.

A mobile robot is a machine that is driven by software and detects and moves around its

environment using sensors and other technology. Mobile robots work by mixing AI and

physical robotic parts such as wheels, tracks, and legs. A mobile robot also is an

autonomous agent capable of navigating intelligently anywhere. One of the most

important roles of mobile robots is autonomous navigation. The control system is the

major element of a mobile robot since it controls the performance of movements such as

accuracy, stability, and ability. Autonomous navigation involves localization, path

planning, and motion control of the mobile platform. Autonomous vehicles have seemed

to be the next big thing in the vehicle industry.

The fast development of self-driving or autonomous technology necessitates new

strategies for slowing down the rate of accidents. The most challenging aspect of

autonomous vehicles is the potential to react accurately and safely to potential hazards

while driving. As a necessity, autonomous vehicles must be designed with sensors that

can respond immediately and a processing unit that can understand all this data in real-

time.

13

Figure 1 Evolution of Robot

1.2 Problem Statement

Mobile robot nowadays is worldwide application to perform many tasks. Therefore, its

capability in detecting and then avoiding from any obstacle is one of the limitations.

Then, it is an issue when many sensors have a very limited coverage, detection distance

and its complexity. Thus, it provides limits for the mobile robot to predict collision-free

paths automatically in various condition. Next, by using this sensor, mobile robot then

needs to be able to identify its exact position. This issue can be solved by implementing

a good estimation to ensure mobile robot obtain better performance.

A mobile robot should be effectively navigating to any location, however, without the

perfect system it may cause a problem. Thus, a suitable design with a good system can

reduce hazard for both human and the robot. This would reduce the losses cost of

maintenance for mobile robot. Thus, a mobile robot without the obstacle avoidance

technique is unsafe for both human and the robot itself. Which may lead to a critical

accident that may cause major losses.

14

1.3 Objective

The aim of this project is:

1) To design the navigation of mobile robot with obstacle via ROS in different

environment.

2) To develop the state estimation for better performance of turtlebot3 in

MATLAB simulation.

1.4 Scope of Work

There are several project scopes that covers most of the project objectives to accomplish

this project. It includes:

1) Set up the ROS Version based on Ubuntu Linux that provided in WikiRos.org

websites in the PC. ROS systems are used to design the navigation of

turtlebot3 burger to move from one point to another point in different

environment

2) The turtlebot3 burger able to avoid the obstacles on the flat surface, from any

starting point by using the obstacle avoidance behaviour.

3) The solving method used in this project is using a Kalman filter to decrease

the influences or measurement noise on the final error level reached to quickly

estimate the true value, position, velocity of the turtlebot3 in simulation via

MATLAB and ROS (Robot Operating System) with the using of Turtlebot3

Burger in real time experiment to analyse the turtlebot3’s movement in

different condition.

15

1.5 Thesis Outline

This thesis has five chapters which include Introduction, Literature Review,

Methodology, Result and Discussion, and Conclusion.

 Chapter 1 is about the introduction of the research. In this chapter will covered on

the project background, problem statement, objective, and the scope of this project.

 Chapter 2 is on literature review of the research topic. This chapter explored our

topic of focus by comparing it to what other researchers had mentioned in their study

publications. The results of this discussion will be utilised as the framework for our

project.

 Chapter 3 is about the methodology for this project. In this chapter, the components

and tools used will be discussed in detail with the implementation process of the

turtlebot3 navigation.

 Chapter 4 discussed on the result, finding and outcome of the navigation system.

The data of the navigation system are collected and recorded before discussion being

made about the system performance.

 Chapter 5 is on conclusion of the project. In this chapter, the limitation of the

system will be discussed. Further improvement will then be proposed for the upcoming

research related to this topic.

16

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter briefly discusses the literature review and conclusions from earlier studies

that other researchers conducted that related to my topic. This research will be more

focusing on ROS (Robot Operating System), an implementation of Kalman filter in

mobile robot estimation, SLAM (Simultaneous Localization and Mapping) Algorithm,

System Design based on ROS, Lidar Sensor, and others. All these elements will be

utilized in my project that needs to develop the system via ROS to analyse the mobile

robot movements.

2.2 Flow Of Literature Review

2.2.1 Robot Interface Using ROS

 (Péter Fankhauser 2017) stated in his paper that ROS (Robot Operating System)

was originally developed in 2007 at the Stanford Artificial Intelligent Laboratory then

after 2008 it was promoted and maintained by Willow Garage. Since 2013, ROS were

managed and supported by the OSRF (Open-Source Robotics Foundation). In Open

Robotics, they work with industry, academics, and government to create and support open

software and hardware for use in robotics, from research and education to product

development.

17

 ROS is not a real operating system it is more like an environment. The big strength

of ROS is the ability to connect nodes together and nodes are the pieces of software that

can be written in C++, Python language, and others. In (Li and Shi 2018) research, they

stated that ROS features point-to-point design, can support multiply programming

languages, simplification, and integration is easy to test, application for large-scale

program development, and for open-source code which greatly shortens the development

cycle of robot software and reduces the development cost of robots. ROS can take care

of a small subset of tasks for example reading a sensor or controlling a servo, and those

nodes connect together thanks to a publisher or subscriber protocol what does it mean,

mean that if a node has a piece of information to share it will share this information using

a topic and if another node is interested in that information, its subscribers to that topic

and reads the information. (Yu 2019) in their research paper stated that instead of a single

ROS process, numerous ROS processes are running in a robot. These ROS processes are

referred to as nodes. ROS communicates messages between nodes via a network. Because

ROS allows several robots to collaborate, a centralized PC is used to communicate

between nodes on the same or separate machines. The nodes are classified into three types

which are master, publisher, and subscriber. Figure 2 and figure 3 below depicts an

example of message communication between ROS nodes and schematic diagram of ROS

messages delivery respectively.

Figure 2 Message Communication between ROS nodes

18

Figure 3 Schematic diagram of ROS message delivery

 In the research of (Thale 2020), the author stated that Instead of developing the

entire system in hardware, ROS is used to construct a virtual environment, produce a

robot model, execute the algorithms, and view it in the virtual world. Gazebo and RVIZ

are used to create the virtual environment.

ROS also includes several established feature packages that may be utilised directly, such

as the cartography software package for robotic positioning and mapping, as well as

navigation kit includes for autonomous navigation and obstacle avoidance. In the paper

of (Takaya 2016, October) the author stated that the advantage of using ROS is ROS

allows effective development of the new robotic system and when used together with a

simulation middleware like Gazebo (co-Simulink of ROS) it produces reliable

development and high performance. The Gazebo has high-quality graphics,

programmatic and graphical interfaces. Now there are multiple versions of ROS, there is

ROS 1 and ROS 2 and a lot of the distribution of ROS will be using a kinetic. In my

project, I will use ROS 2 because it is the latest version and has more advanced functions

compared to ROS 1, which ROS 1 does not have. The goal of the ROS 2 project is to

adapt to these changes by leveraging what functions well in ROS 1 and improving what

doesn't.

19

2.2.2 An Implementation of Kalman Filter

 The robot localization problem is critical in the development of totally autonomous

robots. It might be difficult to identify what to do next when a robot does not know where

it is. A robot can localise itself using relative and absolute measurements that provide

input on its driving actions and the state of the environment around it. The robot must

identify its location as precisely as possible using this information. What makes this

difficult is the existence of uncertainty in both the driving and the sensing of the robot.

Thus, the Kalman filter will be used to estimate the system mobile robot state. The

Kalman filter has been widely used for mobile robot navigation and system integration.

Kalman filter is the iterative mathematical process that uses a set of equations and

consecutive data inputs to quickly estimate the true value, position, velocity of any object

or mobile robot that is being measured when the measured value contains unpredicted or

variation or random error that is also known as uncertainty. Kalman filter proved to have

a smarter way to integrate measurement data into an estimate by recognizing that

measurements are noisy and that sometimes they should be ignored or have only a small

effect on the state estimate which has been stated in the research of (Suliman 2009). It

smooths out the effects of noise in the state variable being estimated by incorporating

more information from reliable data than from unreliable data. In that research paper,

they also proved the result that they obtained by simulating the Kalman filter case that

they were implementing in MATLAB. They show a very simple case where a robot

follows a path obtained from the system model and figure 4 below presents the estimated

path of the mobile robot compared with the real path. The Kalman filter performed very

well and as the result, the estimates path with the help of the Kalman filter is closer to the

real path.

Figure 4 Trajectory estimation with the Kalman Filter

20

2.2.3 Simultaneous Localization and Mapping (SLAM)

 Navigation and control systems are the most discussed topics in autonomous mobile

robots. For the mobile robot, the control system is the most major part, which can decide

the performance of the movement. On the flip side, autonomous navigation is one of the

crucial functions of mobile robots. SLAM (Simultaneous Localization and Mapping) is

a rudimentary part of the navigation, which is used to construct the map of the

environment for the mobile robot. In the paper of (Meng 2020, September) the author

stated that SLAM is mainly used to solve the problem of localization and mapping when

the robot moves in an unknown environment. By using SLAM robot can understood to

determine its position and posture in an uncertain environment by scanning the

surroundings with its sensors.

 (Zhi 2018) had investigated the performance of navigation and control systems of

mobile robots based on ROS. In their paper which is using the G-mapping package to

construct the map with the data of laser scan, encoder, and IMU sensor.

 First, in their result based on laser radar SLAM based on ROS, they claimed that

autonomous mobile technology can produce mobile robots to become more intelligent.

In the unmapped environment, the robot will move from an unknown position. From the

action of moving, the robot will be positioned according to the position estimation and

map. Simultaneously, an incremental map is constructed based on its own positioning,

which can be used to notify the autonomous localization and navigation of the robot.

Sensors like laser-scanner, sonar sensors, and cameras were used most for constructing

the map of the environment. They use laser scans to obtain the message of the

environment or surroundings. The function of laser scan is to detect the location of the

environment or obstacles by transmitting laser beams. They claimed that SLAM used the

data of the scanning laser. Hence for the result, they get incremental map data of their

place in figure 5 below.

21

Figure 5 Incremental Map

2.2.4 System Design Based on ROS and Lidar Sensor

 A laser radar sensor estimates distance without making contact. When a laser beam

is reflected onto a target, it is processed to generate an environmental image. Traditional

laser sensor systems include a distance sensor that measures a feature point, a two-

dimensional scanning plane of lidar, and a three-dimensional lidar [2,3]. (Zhu 2019) in

their paper research used the two-dimensional laser radar RPLIDAR A2 that was

developed by Siwei Technology Co. Ltd, which uses laser triangulation technology, is

equipped with RPVision 2.0 high-speed visual ranging engine, and can rotate clockwise

to 8000 times per second within a radius of 18m in the surrounding environment

360degree detection to obtain an environmental image or information. In their system

software design, they use ROS which includes the Cartographer software package for

robotic positioning and obstacle avoidance. Cartographer is an open-source SLAM

library that contains the ROS interface which was developed by Google. In the

Cartographer’s ROS framework there are cartogrpaher_node which is the main node

where /scan is the data obtained by the lidar scanning and /imu is the data released from

IMU.

22

Figure 6 Cartographer' ROS framework

For closed-loop optimization, the cartography algorithm employs another technique

known as Branch-and-bound scan matching. In their research they claimed that using the

brand and bound can optimize the search, improve efficiency, and achieve real-time

loopback. In that paper, they prove that their experimental result is successful as based

on the identified obstacle information, the robot will calculate a possible path and avoid

the obstacles as shown in figure 7 below.

Figure 7 Result Experimental

23

2.2.5 Mobile Robot Localization Using the Kalman Filter and a Single fixed

camera (capable of detect the landmarks)

 A mobile robot is vulnerable by its own ability to move all on sides (from all

directions or everywhere). The most important and basic functionalities are needed to

know where exactly that mobile robot moves. Poor localization will cause the vehicle or

robot to hit a wall or nosedive over a drop. Global localization or finding position relative

to some non- robot reference frame is essential for any strategy that requires movement

to a specific location even if the vehicle or robot can avoid these obstacles and others in

the local area around that robot. Global position estimation is “the ability to determine

the robot’s position in an a priori or previously learned map, given no other information

than that the robot is somewhere on the map. Once a robot has been localized in the map.

Local tracking is the problem of keeping track of that position over time” [Dalleart 1999

(ICRA)]. Kalman filters have been used for navigation, tracking, and many other

applications because compared to other filtering techniques that require less processing

power to implement, Kalman filters provide better performance at a lower computational

cost which has been stated in the research (Burnett 2006). The Kalman filter also

estimates the future state of a system using its internal transition model. In addition, the

filter replicates a measurement in that future condition. It updates the state based on the

difference between the predicted and actual measurements.

24

2.2.6 Lidar-based Obstacle Avoidance for the Autonomous Mobile Robot

 In some dangerous sites, such as chemical industries, polluted environments, and

mining areas that can put the worker and residents at the risk of harm around them. These

will have an impact on both monetary and human losses. Therefore, the usage of robots

can be the solution to these issues. Nowadays, mostly all autonomous mobile robots were

equipped with several sensors that can investigate in a room or in an open area, as well

as in industrial fields, and also were equipped with obstacles avoidance features as one

type of intelligent robot. (Hutabarat 2019, July) in his paper stated that the obstacle

avoidance behaviour ensures and guarantees that the robot never collides with an obstacle

in its way. In his research, he uses light detection and ranging (Lidar) sensors. As we

know, Lidar technology is widely used as an obstacle avoidance system on autonomous

mobile robots. Lidar has been developed to avoid obstacles and was equipped with a

motor so that it can rotate 360-degree as we know to provide a view of the environment

and it can measure and find distance and other information from target so that the robot

can avoid the obstacle. Figure 8 and figure 9 below show the experiments by this author

which is the mobile robot navigation in a room without obstacle and with obstacle

respectively.

25

Figure 8 The mobile robot navigation in a room without obstacle

Figure 9 The mobile robot navigation in a room with obstacle

26

2.2.7 Autonomous Obstacle Avoidance Using Lidar

 From the paper of (Nikolaos Baras, May 2019), the author stated that self-driving

cars appear to be the next big thing in the automobile business. The constant advancement

of self-driving technology necessitates new strategies for reducing the frequency of

accidents. One of the most difficult aspects of autonomous cars is the potential to react

accurately and safely to potential hazards while driving. As a result, these vehicles must

be equipped with sensors that can respond fast and a processing unit that can analyse all

this data in real time. In his paper the author used the LiDAR sensor among the other

sensors. He said the LIDAR carries a high implementation complexity that makes it

particularly suitable for autonomous driving. The fundamental technology for achieving

safety in Autonomous Vehicles is Obstacle Avoidance (OA). In his experiment, the

author considers two separate Obstacle Avoidance methods which are first based on the

already known environment (offline processing algorithms) and the second based on the

gathered sensors information in real time. For the experiment, the two main hardware

components in his research in his implementation for an autonomous vehicle are

Raspberry Pi and RPLidar A2. In his experiments, the author setup with the environment

with the multiple obstacles of various sizes located in random places. The vehicle

managed to navigate from the starting point (SP) to the goal point (GP) in 5 minutes and

31 second.

Figure 10 In (a) LiDAR detecting an obstacle. In (b) collected data based on

measurement location

27

2.3 Summary

 In this part we can conclude that from the research review stated that the Kalman

Filter is a technique from estimation theory that by using the Kalman filter the output not

too far from the measurement of the system model. The filter has been successfully

applied in wide range of applications. The Kalman Filters estimates the state of a noisy

system using noisy measurements. The KF makes a few assumptions on the system,

measurements and different noises that are involved in the estimation problem. the

Kalman Filters calculates the belief by performing two alternating steps which are

prediction step and update step. From the research paper also stated the most autonomous

mobile robot nowadays has been developed were equipped with Light Detection and

Ranging (LiDAR) sensor to avoid obstacle. Many kinds of sensor also can be

implemented on a mobile robot to determine its environment conditions. The sensors

commonly used other than LiDAR sensor are camera, ultrasonic and others.

28

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter has shown the procedure for this project. it will be explained by using the

method and technique that was proposed to accomplish the project’s objective and the

hardware setup. As stated in chapter 1, the objectives of this project are to design the

navigation of mobile robot with uncertainties (obstacle) via ROS in different environment

and to develop the state estimation for better performance of turtlebot3 in MATLAB

simulation. In general, Robot Operating System (ROS) software was being used for the

simulation and hardware also Gazebo is a co-Simulink of ROS that has a high-quality

graphics, programmatic and graphical interfaces that provide 3D dynamic simulator. For

the mobile robot in our project, we used the Turtlebot3 Burger as it is equipped with

LiDAR that can rotate 360-degree to give a view of the environment. Simultaneous

Localization and Mapping (SLAM), G-Mapping, and the control node which is python

will be implemented in our project. SLAM is a method used for autonomous vehicles that

give us to create a map and localize our vehicle on that map at the same time which will

be discussed in this chapter.

 Below is the flowchart for the technique that will be used in this project to build

the simulation environment, starting with ROS and Gazebo as the operating system and

3D simulation environment. In Gazebo, a Turtlebot3 Burger will be created in the virtual

world as the mobile robot in this project. Then, the SLAM will be implemented to provide

mapping in that virtual world. The Turtlebot3 will move and scan every corner in the

virtual world or the real room and create the map using g-mapping. Once the map

generation is complete, the map will be saved for further progress in this project. The

29

main Turlebot3 will be programmed to avoid any obstacle detected by its sensor. All

details will be discussed in this chapter.

Figure 11 Progression Flowchart for Simulation

30

 Next, for the hardware part, the first important procedure will start with the

Personal Computer (PC) setup as the ROS master and follow with Single-Board

Computer (SBC) setup for raspberry pi. After the SBC setup, then the OpenCR setup

(Arm Cortex-M7). The PC setup will start by installing the correct Ubuntu and ROS

versions for example the Ubuntu OS 16.04 for ROS Kinetic, Ubuntu 18.04 for ROS

Melodic, Ubuntu 20.04 for ROS Noetic, and more types of ROS. In our project, we will

use ROS Kinetic and ROS Noetic. Then all dependent ROS package and turtlebot3 burger

package is installed. We can refer to all the steps from PC setup until Bringup the

turtlebot3 burger on ROBOTIS e-Manual website. In the step of PC setup, it will have

the network configuration which is to connect the PC to a Wi-Fi device and find the

assigned IP address of ROS_MASTER_URI which is the Ip address of the PC itself, and

IP address ROS_HOSTNAME which is the Ip address of the Raspberry Pi with the

command ifconfig. In the SBC setup, we need to download Turtlebot3 SBC Image and

install the Raspberry Pi Imager to burn the image file to a microSD card that will be

inserted into Raspberry Pi on the Turtlebot3 Burger robot and follow with other setups

on the SBC setup until all it has done.

 Then follow with the OpenCR setup by connecting the OpenCR to the Raspberry

Pi using the microUSB cable. Then all the required packages on the Raspberry Pi were

installed to upload the OpenCR firmware. After all the setup was done and the firmware

uploaded successfully, the OpenCR Test will be done to make sure the Turtlebot3 Burger

robot has been properly assembled. Next, we will have the hardware assembly and then

follow with Bringup Turtlebot3 Burger. RViz will be launched to detect the environment

of the turtlebot3 burger in the RViz visualization. The obstacle avoidance node will be

applied, and we can see the turtlebot3 burger robot can avoid the obstacle in front of it

from starting point until its destination goal. We will have a data analysis and after that,

we will apply Kalman filter node to test the performance of turtlebot3 burger by applying

the Kalman filter technique to it in different environment.

31

Figure 12 Progression Flowchart on Hardware

32

3.2 Kalman Filter’s implementation in Mobile Robot

 In this thesis, The Kalman Filter was used as the solution to the navigation of

mobile robots combining the measurement and the prediction to find the optimal estimate

of the mobile robot’s position. There are three steps (procedure) of Kalman Filter based

on figure of block diagram below which are:

Figure 13 Block Diagram Process of Kalman Filter

1) Calculate the Kalman Gain

2) Calculate Current Estimate (Update estimate)

3) Calculate New Error in Estimate

 These three equations or calculations are iterative that might have to happen

repeatedly for the estimate to zoom into the actual correct value. Hence, we need to

calculate the Kalman Gain. Next, calculate the Current Estimate and must follow with

calculating the New Error in Estimate (uncertainty or noise like obstacle or other).

33

 Above in the figure 13 of the block diagram gives a picture of Kalman Filters.

Kalman Gain aims to figure out the weightage of measured value and estimation in order

to use the update from the previous value of the estimate. Hence, this value will be

considered as a new value. Next, the current estimate is also called an update estimate.

To obtain the current estimate it refers to the previous estimate and measured value where

the previous estimate is an original estimate, and the measured value comes from the data

input as shown in the diagram above. In the last step, the value from the new error in the

estimate is repeated as an iteration until it narrows down to the true value. As we know

that the Kalman filter can be used to estimate the system when it cannot be measured

directly. At the initial time step k-1, the actual mobile robot position can be anywhere

around the estimate 𝒙𝑘−1 and this uncertainty is described by this probability density

function.

Figure 14 System Mobile Robot

 Equation 1 Kalman Filter Equation

34

 In equation 1 above explain that the Kalman Filter combine the measurement and

the prediction to find the optimal estimate of the mobile robot’s position. This is where

the Kalman filters comes into play, it combines these two pieces of information to come

up with the best estimate of the mobile robot’s position in the presence of process and

measurement noise. This formula was stated in the research of (Maqsood 2018).

For “standard” Kalman filtering, everything must be linear and below the specified

variable of Kalman Filter equation that can refer as:

𝒙𝑘=A𝒙𝑘−1+𝐵𝒖𝑘−1+𝒘𝑘−1 (1)

 A The matrix A is the state transition matrix which is applied to the

previous state vector 𝒙𝑘−1

 B The matrix B is the control input matrix which is applied to the

control vector 𝒖𝑘−1

𝒘𝑘−1

Unknown system noise or disturbance in process model

Q
Covariance or Process noise or uncertainties

Table 1 Variable Kalman filter System Model of Equation (1)

y k=C𝒙𝑘+v𝑘 (2)

y k Measurement model

C Matrix C is measurement matrix

v𝑘 Measurement noise vector

 Table 2 Variable Kalman filter Measurement Model of Equation (2)

35

 Equations 1 the system model and equation 2 show the measurement model

(sensor) data. From table 1 and table 2 above, all variables and their own description.

State variable, x as the input value. So, this input value of x will be predicted by this filter.

In simple words, the predicted process by the filter is to determine the location of the

model or mobile robot using information about that model or mobile robot’s position,

velocity, or angular acceleration. While the state variable, y as the measurement model

that will be measured. Equation 2 is the measurement model for external sensors that can

detect the location of the mobile robot or environment landmarks.

 Kalman filter algorithm have a two-step process which are the prediction part and

the update part. Every part has their own equation like figure below:

Figure 15 Prediction Part (a) and Update Part (b)

36

Below are the variable and their own description:

Prediction Part Update Part

as a prior state estimate as the state estimate

as the Error covariance as the Posteriori error covariance

as the Kalman Gain

Table 3 Variable Predict and Update

 Hence, the system model is used to calculate a prior state estimate, xk^- and the

error covariance, Pk^-. In the single-state system, P is the variance of the prior estimate,

and it can be thought of a measure of uncertainty in the estimate state. This variance

comes from the process noise and propagation of the uncertain, 𝒙𝑘−1. At the very start

of the algorithm, 𝑘−1 values for 𝒙 and P comes from their initial estimates.

 The second step of the algorithm uses a prior estimate calculated in the prediction

step and update step to find a posteriori estimates of the state and error covariance. In the

prediction step, the Kalman Filter predicts the new values from the original value and

then predicts the uncertainty or error based on the prior process noise appearing in the

system, which is also known as the state error covariance, Q.

 While in update step, the actual measured value comes from the device system.

The difference between the predicted value and the measured value was decided by

calculating the Kalman Gain. From this point, the new value of estimation error can be

calculated. As a result, the output from the update step is employed back in the prediction

stage, and the process is repeated until there are differences between the predicted and

measured values, which are likely to be reduced to zero. Hence, the calculated value is

the predicted guess or estimation done by the Kalman Filter.

37

3.3 Robot Operating System (ROS)

3.3.1 What are ROS and Gazebo?

 As stated in chapter 2, The literature review on Robot Operating systems (ROS) is

a Linux-based and open-source meta operating system. However, ROS is not an operating

system, but middleware for robotics which makes ROS such an adjustable framework for

building robot software and aims to make the difficult task of developing complex and

robust robot solutions easier. Linux needs an operating system which is Ubuntu Operating

System to allow itself to run. This is accomplished via the use of diverse libraries and

toolsets built by combining the knowledge and experience of people from various

backgrounds. ROS provides a variety of services such as controlling low-level devices,

hardware abstraction, implementing commonly used functionality, transferring messages

between many processes, and control packages. ROS allows us to use pre-created

packages such as G-mapping and teleop_key that can reduce development time. In this

paper, ROS used to publish messages in the form of topics between different nodes. So

rather than building the entire system in hardware, ROS is used to construct a virtual

environment, produce robot models, apply algorithms, and view them in the virtual

world. The virtual environment is built with Gazebo and ROS visualization.

 The Gazebo is a co-Simulink of ROS and 3D dynamic simulator that will be used

in this project for simulating the complex mobile robot which is turtlebot3 burger. The

environment or location may be selected between indoor and outdoor. The Gazebo

simulator also can connect directly to the ROS via packages. These packages include the

interfaces required to simulate a Gazebo robot including ROS messages, services, and

dynamic reconfiguration. Gazebo offers a capability that allows you to evaluate the

performance of mobile robots in any environment, including severe environments. This

is a useful feature since mobile robots may be tested before being used in real-world

applications. ROS requires a description of the robot's kinematics to function properly

with it. Trajectories, navigation, and other tasks can be designed and carried out in this

technique. ROS way of describing a robot is by specifying its properties in URDF

(Universal Robot Description Format) files. URDF supports XML and xacro (XML

macro) languages. To operate properly with Gazebo, several additional simulation-

specific tags must be added to use a URDF file in Gazebo.

38

 The relationship between ROS and Gazebo is the same as the relationship between

ROS and real-world robot hardware. The controller in ROS collects information from

both models on one topic and publishes data on other topics to both models. Simulation

and real robot control can be performed at the same time. Their behaviours and

performance may so be easily compared. In fact, ROS makes no difference whether it

controls real robot hardware or a simulation model of a robot. The biggest concern here

is to implement the relevant nodes and have the proper communication topics. The figure

below shows the 3D model turtlebot3 burger simulated in a gazebo and the figure shows

the turtlebot3 burger also as a mobile robot model that was tested in the indoor

environment.

Figure 16 Command to launch the turtlebot3 burger in empty world

39

Figure 17 Turtlebot3 Burger simulation in empty world

Figure 18 Turtlebot3 Burger in house environment in the gazebo

40

3.3.2 Installation of Robot Operating System (ROS)

We can find or download on Wiki Ros.org website as stated in figures below and to install

we need to change our computer system from window to Ubuntu Operating System.

Figure 19 ROS.org website

Figure 20 ROS Noetic Ninjemys

41

3.3.3 ROS Command

This section contains a list of the commands required to communicate with ROS as well

as their often-used parameters.

• roscore bringup a ROS Master, which when the TurtleBot is not online, is useful

for experimenting with ROS on one's workstation. However, to utilize this master

instead of the TurtleBot3s, the following must be done in each relevant shell: $

ROS MASTER URI=http://localhost:11311 which is the IP address of the Remote

PC (PC).

• roscreate-pkg <package> [dependencies] creates package folders containing

the source code for one or more modules. The package directory structure will be

generated within the current folder in a new subdirectory named package, which

must have been in the $ROS_PACKAGE _PATH.

• rosmsg <verb> <arguments> shows display information about the message

kinds that are presently specified and may be passed over topics. When a verb is

shown and the inputs are <package>/<message-type>, for example, an "API

reference" of the type and names of the elements in the struct hierarchy

corresponding to the message are displayed.

• rosrun <package> <node> is the command that is simply used to run or execute

a node once the package has been merged with make.

• rostopic <verb> <topicpath> acts as a link to presently advertised topics over

messages that already passed.

http://localhost:11311/

42

3.4 Design Development (Turtlebot3 Burger)

 For this project, a Turtle Bot 3 Burger is used to determine the proposed technique

performance (Kalman Filter) to guarantee the performance. The Turtle Bot is a small

ROS based on a mobile robot and since it is highly customizable and fully open-source

hardware, and low-cost it is very suitable for product prototyping. The Turtle Bot 3

Burger can be customised in many ways depending on how we reconstruct the

mechanical parts and use optional parts such as computer and sensor. The TurtleBot 3’s

core technology is SLAM and can run a SLAM algorithm to build a map and can drive

around our room, house, and others. It can be controlled remotely from a laptop or Pc and

Android-based smart phone. Below is the figure of the Turtle Bot 3 Burger and all the

package contents in that Turtle Bot.

Figure 21 Turtlebot3 Burger

43

The Turtlebot3 Burger has a Raspberry Pi 3 and a LiDAR sensor. The Raspberry Pi 3 is

a single-board computer that is one of the important parts of the hardware components in

the implementation of an autonomous vehicle. The Raspberry Pi 3, also known as a data

collector, from the lidar sensor and communicates with the lidar sensor to find the

position or location of the turtlebot3 burger and receive measurements regarding the

surrounding environment of that turtlebot3. The Raspberry Pi supports many operating

systems, including Raspbian, Ubuntu, and Windows IoT.

When a lidar sensor scans in all directions (360 degrees) and counts reflected pulses at

all angles using a sensor. The distance to the nearest obstacle is calculated using the time

and wavelength of the received pulse. After that, all the measurements must be processed

to detect obstacles and navigate. As a result, a Raspberry Pi 3 board was used to perform

the processing.

3.4.1 Turtlebot3 Burger specification

 In the figure below, the details for the turtlebot3 burger specifications. Turtlebot3

burger is a small ROS- based mobile robot. Since it fully open-source hardware, it is

very suitable for product prototyping. TurtleBot is the most popular open-source robot

for education and research. TurtleBot3 is the most affordable robot among the SLAM-

able mobile robots equipped with a 360° Laser Distance Sensor LDS-01.

Figure 22 General specification of Turtlebot3 Burger

44

Figure 23 General specification of turtlebot3 model type burger

45

3.4.2 Block diagram of Turtlebot3 Burger system

 The turtlebot3 hardware system consists of four major components which are the

Data Communication Unit, the Data Processing Unit, the Data Acquisition Unit, and the

Robot Actuator Unit. The data communication unit is essentially a PC with Python nodes,

with the ROS system serving as the master. It will power and connect to the ROS slave

in the data processing unit, which is a turtlebot3 equipped with a raspberry pi. This data

processing process will determine the component's behaviour in acquisition unit data.

The actuator unit, which is a Dynamixel XL 430-W250 actuator motor, will be the output

of this input.

Figure 24 Block Diagram of the Turtlebot3 system

46

3.4.3 Turtlebot3 Burger Setup

 Since the turtlebot3 is equipped with a raspberry pi 3 and OpenCR, both must be

properly setup to ensure turtlebot3 functionality. The Raspberry Pi setup, also known as

the SBC setup, requires an SD card to burn the downloaded recovery image. This file

must be the correct image file version for the hardware and ROS version. The Raspbian

OS downloaded will be unzipped and saved to the local disc. The image file will then be

burned using the Raspberry Pi imager. The whole step to setup this SBC and OpenCR

can be found in Emanual Robotics websites.

 After burn the image file in microSD card finish, the SD card need to insert into

the Raspberry pi slot in the turtlebot3 burger. Then need to follow with boot up the

raspberry pi by start with connect the HDMI cable of the monitor to HDMI port of

raspberry pi. The monitor will be used to find the Ip address of that raspberry pi. Then,

follow by connect the input devices such as a keyboard and mouse to the USB port of the

raspberry pi 3. After that, the power supply will be connected to turn on the raspberry pi.

It can be either USB or by OpenCR which using the battery. The raspberry pi needs to

configure by connecting with the same Wi-Fi network that connect to the PC. For both

PC and monitor that connected to raspberry pi, need to determine with the command $

ifconfig to know the Ip address for both. Usually, the Ip address for raspberry pi can be

found under wlan0 section. Then, from the PC, new terminal will be open and connect

with the raspberry pi with its Ip address. The default password is set as “turtlebot”. Its

command is $ ssh pi@{IP_ADDRESS_OF_RASPBERRY_PI}. After getting both Ip

address for PC and raspberry pi 3, the new terminal will be open, and its command is $

nano ~/. bashrc then, the Ip address for both PC and raspberry pi 3 need to copy then

paste in nano file under the section export ROS_MASTER URI and export

ROS_HOSTNAME respectively. Then apply changes by using the $ source ~/. bashrc

command.

 The OpenCR is connected to the Raspberry Pi via a micro-USB cable for the

OpenCR setup. The necessary packages are installed on the Raspberry Pi to upload the

OpenCR firmware. The firmware then was uploaded to the OpenCR. The OpenCR test

can be used to validate a successful firmware setup. In this test, the button SW1 and SW2

need to push to see whether the left and right DYNAMIXEL’s wheels can be move. Next,

the red power led will be turn on or blinking after the turn on the power of OpenCR. The

47

turlebot3 need to place on the flat surface in a wide area for testing. Press and hold button

sw1 and sw2 for a few second to command the robot to move about 12 inches forward

and rotate 180 degrees in place respectively.

Figure 25 OpenCR Board

3.4.4 Turtlebot3 Burger Bringup

 The $roscore command in the terminal is the first step in bringing up the turtlebot3

burger. This command runs from the PC. Using the $ifconfig command to get the Ip

address and the $nano /. bashrc command to set the Ip address PC as

ROS_MASTER_URI and the turtlebot3 burger also known as raspberry pi Ip address as

ROS_HOSTNAME like in SBC setup before. Connect the Raspberry Pi to the PC by

typing $ ssh pi@{IP_ADDRESS_OF_RASPBERRY_PI} into a new terminal. Then,

using the command $ roslaunch turtlebot3_bringup turtlebot3_robot.launch, bring up all

the turtlebot3 packages to start the Turtlebot3 application. A successful connection will

be depicted in the figure below.

48

Figure 26 Run roscore from PC

Figure 27 Bringup Turtlebot3

49

Figure 28 Visualization on the terminal of the successful turlebot3 bringup

3.4.5 Launching the obstacle avoidance node to Turlebot3 burger

Figure 29 Turtlebot3 node run

50

3.4.6 Slam Algorithm of the Turlebot3 burger

 The PSM Laboratory room was chosen as a place to run the SLAM of the hardware

part. This part shows initial and final map generation of turtlebot3 of the Lab room before

setup with any obstacle. The first figure of the map is the visual of the room right after

launching the SLAM Node to scan the map and before the turtlebot3 burger is running

and scanning using the LDS or Lidar sensor. The second figure is the result after 30

minutes the turtlebot3 burger runs to scan the map of the environment in the room.

Figure 30 The map after launch RViz for the first time before scanning process

Figure 31 The map after 30 minutes the turtlebot3 runs

51

CHAPTER 4

 RESULT AND DISCUSSIONS

4.1 Introduction

 In this chapter, the result for this thesis will be discussed. It is to actively

demonstrate the expected outcomes for this thesis where the design of a mobile robot will

be based on the simulation by applying the Kalman filter to the system model in

MATLAB. Another scope of this thesis is to analyse the mobile robot’s movement in

different conditions using ROS, Gazebo and Rviz and the output compared by applying

Kalman filter and without Kalman filter of turtlebot3’s performance effects. Next, the

effectiveness of lidar sensor also were proved.

4.2 Result from the Hardware Part

4.2.1 Detection of obstacle and avoidance data

 Table 4 below shows the minimum and maximum data taken from the reading of

the lidar sensor from turtlebot3. The minimum distance measurement was set to be 0.25

meters, which means that it will never touch below 0.25 meters and the maximum values

is 4.5 meters and the average error of lidar sensor measurements of 0.4%. The tests are

performed with varied environmental different object colour and type to verify the

trustworthiness of the LiDAR data.

52

Distance (m) Read Distance (m) Error (%)

0-0.24 0 -

0.25 0.251 0.40

0.26 0.261 0.38

0.30 0.301 0.33

0.56 0.561 0.18

0.82 0.827 0.85

1.5 1.450 0.33

2.5 2.509 0.36

3.5 3.517 0.48

4.5 4.531 0.68

Average 0.4

Table 4 Lidar measurement

Figure 32 Data error collision

53

 In the figure of 32 above show the data error collision that get from the terminal.

In the terminal it will display the info, warning, and error. If the turtlebot3 collide with

any obstacle on its ways in the terminal will show the error that stated, the robot cannot

move anymore due to presence of obstacle in front of it. When the lidar sensor detect the

obstacle, in the terminal will stated warn.

4.2.2 Cases study

4.2.2.1 SLAM Algorithm of Turtlebot3 in Environment 1

Figure 33 Final map generation from Lidar sensor for Environment 1

 In figure 33 above shows the final map of the room for environment 1 with the

obstacle. This is the visual of the room after 20 minutes the turtlebot3 providing velocity

and avoid any obstacle around it. This is a good result from the turtlebot3 as it proven

that the turtlebot3 can move around the room in environments 1 without any problem.

This is also proved data from the Lidar sensor is fully functioning during turtlebot3 is

moving around in this environment.

54

Figure 34 2D Navigation in Rviz of Environment 1

 Figure 34 above shows the 2D navigation in Rviz of environment 1 after launching

the command of the run navigation nodes. The purpose of navigation is to move the

turtlebot3 from one point to the set destination as clarified on Emanual Robotics websites.

In Rviz, generating a map also consists of information such as furniture, object, and wall

in an environment. As described in the previous SLAM section in figure 33 above, the

map was created with the distance information obtained by the lidar sensor and the pose

information of the turtlebot3 itself.

55

4.2.2.2 Environment 1 with Kalman filter and without Kalman filter

Figure 35 Environment 1 with Kalman filter

Figure 36 Environment 1 without Kalman filter

56

 With Kalman Filter Without Kalman Filter

Obstacles 4 4

Time (s) 121s 138s

Path Length (m) 4.20m 4.20m

Table 5 Comparison with Kalman Filter and without Kalman Filter

 In figure 35 and figure 36 above show the environment 1 setup, both with the same

condition. In both figures also have a same number of obstacles were setup. Then, table

5 showing a result of Turlebot3 Burger move to avoid the obstacle by applying the

Kalman filter and without applying Kalman filter into it, which is considered in terms of

distance and time taken. As illustrated in table 5, when the Kalman filter is applied, the

turtlebot3 taken only 121 second to reach its goal without any collisions. While, without

the Kalman filter, the turtlebot3 takes longer to reach the goal because the mobile robot

seems confused about its next path and tend to lose its way to get there without colliding

with any obstacles in its path.

57

4.2.2.3 Environment 2 with different type of obstacle

Figure 37 Environment 2

 Figure 37 above show environment 2, in this environment four different types of

obstacles were set up to see whether the turtlebot3 still can detect different type of

obstacle with different colours. After the experiment was done, it was found that the

turtlebot3 also can reach the goal point while avoiding the obstacle on its way even

though with various types of obstacles in front of it.

58

4.2.2.4 Environment 3

Figure 38 Environment 3

 While figure 38 above shows the environment 3. In this environment, it is to show

a different motion of turtlebot3 burger movement. This section is only to show a variation

motion for the robot movement other than the other 2 environments.

59

4.2.3 Summary of Turtlebot3 Burger Performance

No Environment Running time (s) Path length (m)

1 1 121s 4.20m

2 2 115s 4m

3 3 74s 2.52m

Table 6 Summary of Turtlebot3 Performance

 Table 6 above show the summary of the turtlebot3 performance compared in all

environments. For environment 1, the time taken for turtlebot3 burger to running from

starting point to goal point while avoiding the obstacle is 121 second with the path length

4.20 meters. While for environment 2, the running time for turtlebot3 to reach its goal is

115 second and the path length is 4 meters. Last but not least, the time taken for the

turtlebot3 running from start point to goal point is only 74 second with the path length

2.52 meters in the environment 3. We can see from the summary of environment results

1, 2, and 3 above that the complex path takes the longest time for the turtlebot3 to reach

its goal. Because the complicated route restricted the robot's movement

60

4.2.4 Result Comparison

 In this section, the effectiveness of the LiDAR sensor to detect the different types

of obstacles ahead of the turtlebot3 burger was proven by supporting our results with

another research paper result which is from the paper (Hutabarat, 2019).

Figure 39 Comparison Environment 2 with different type of obstacle

Type of obstacle Collisions

Box No

Chair No

Bag No

Bottle No

Table 7 Type of Obstacle in environment 2 setup

61

Figure 40 Table of comparison from other research paper

 Table 7 above shows the different type of obstacles that were used in the

experiment which is a box, chair, bag, and bottle. From the result of the environment 2,

turtlebot3 burger can reach its destination while avoiding the different types of obstacles,

it proved that there are none of these four types of the obstacle was hit by the turtlebot3.

 (Hutabarat 2010) stated that the LiDAR sensor is a scanner technology that detects

the properties of emitted light to determine distance and other information from a target.

The author support that by doing an experiment and showing the result in figure 40 above,

his mobile robot with a lidar sensor can avoid different object, of different size namely

glass bottle, jerry can, and cardboard. However, his result shows, that the transparent

objects, such as acrylic and polycarbonate bottles, cannot be avoided by the robot. The

author said it can be caused by the laser pulses emitted by lidar do not reflect to the object

or obstacle.

62

4.3 Result from the Simulation Part

4.3.1 Simulation based Obstacle Avoidance in Gazebo world

 In the Gazebo world, test conditions are created. The turtlebot3 burger is positioned

at (0,0) and was ordered to move to its destination at (4,0). (Meter distance). The

turtlebot3's linear and angular velocity are limited to 0.15m/s and 5 rad/s, respectively.

Figure 41 Simulation of turtlebot3 in Gazebo world

 Simulation environment with cluttered-like obstacles also was developed in

Gazebo as shown in figure 41 above. Due to the existence of obstacles between the

starting and finishing point, the robot is unable to proceed with the straight line, it needs

to avoid the obstacle on its ways to reach the goal point.

63

4.3.2 Simulation for State Estimation by applying Kalman Filter in Turtlebot3

model

This result from the simulation on state estimation using Kalman filter that were

implemented on MATLAB. This result is to estimate the position and velocity of a

turtlebot3 in the x and y directions. This estimate based on noisy position measurement

from the sensor measurements.

Figure 42 x-y Position of the Turtlebot3 with help of Kalman filter

 The figure 42 above shows the x-y position of the turtlebot3 from the MATLAB

simulation. The blue color represented the actual position of the turtlebot3, while the

green color indicates the measurement result that get from the sensor. The red color

represented the estimation position of the turtlebot3 by using Kalman filter.

64

Figure 43 Error between Kalman filter estimate & measured

 While the above figure 43 above shows the result of error between the Kalman

filter estimate and measured. The graph was plotted to show the position measurement

and estimation error.

Position

 Kalman filter

(KF)

Without Kalman

filter (WKF)

Error (%)

x(m) 2.40 4.35 28

y(m) 2.17 3.26 20

Table 8 Percentage error between cases with KF and WKF in x and y position

65

 From the graph in figure 43 above, we extract into comparison the percentage %

of error between cases with Kalman filter and without Kalman filter in position x and y

coordinates (m) that show in table 8 above. In x coordinates or position it shows that

without Kalman filter produces larger error compared between Kalman filter where when

implementing the Kalman filter, it produced 2.40 and without Kalman filter produced

4.35 in x position. While, in y position, without Kalman filter also produced a larger error

which is 3.26 compared with the Kalman filter produced 2.17. To conclude, in x position

the error calculated between Kalman filter and without Kalman filter is 28% error and in

y position the error that calculated between KF and WKF is 20% error. In Kalman filter-

based navigation, the main concern is to access the estimation errors. Because the small

error will provide a better estimation. Thus, it ensures better performance especially in

terms of robot navigation. Kalman filter performance also gives the efficiency of the

estimation, it has been mentioned in the previous research paper of (Hamzah Ahmad

2021, November).

66

Figure 44 Velocity Estimation Error of x position

 The graph in figure 44 above shows the x velocity estimation error, the Kalman

filter estimations accurately match the actual velocity patterns. The noise level decreases

when the turtlebot3 is move at a higher velocity. There are two larges’ spikes at time

(second) equal to 50 and 200. These occur when the turtlebot3 makes a sharp turn. The

velocity changes at these points are hugely more than predicted by the Kalman filter.

Unfortunately, after a few seconds, the filter estimations finally match again the actual

velocity.

67

Figure 45 Covariance matrix

 Figure 45 above shows the covariance matrix. This covariance matrix was plotted

to determine the accuracy of the filter. The graph is converged to a value referred to in

this case is 0. Then, we can determine that the Kalman filter provides a better estimation

for the mobile robot as the graph does not diverge. As clarified in the paper (Casanova,

O.L. 2008). They claimed that divergence in the covariance matrix indicates that the

Kalman filter does not work properly. Hence, this simulation has proof that the Kalman

filter gives a better estimation.

68

CHAPTER 5

CONCLUSION

5.1 Conclusion

 Taking everything into account, this project was focused on evaluating

performance mobile robot using ROS. Considering Kalman filter estimation to provide

better estimation. The result has been presented by simulation in MATLAB to show state

estimation of mobile robot by applying Kalman filter algorithm. In addition, in ROS we

had setting up turtlebot3 burger also in Gazebo and Rviz. In simulation depicts that using

Kalman filter and without Kalman filter has around 28% less error in x position and 20%

error in y position. In this work, Lidar was equipped in turtlebot3 to avoid the obstacle.

It shows that using Lidar can avoid many types of obstacles during observation where it

shows that mobile robot does not collide with any of the obstacle. Next, it also illustrates

that by using Kalman filter the turtlebot3 can reach its goal much faster without involve

in any collision compared between without applying Kalman filter. In addition, all of the

simulation and hardware setup result shows the similar output with theoretical analysis

from previous study. All in all, it is compulsory for mobile robot to apply a good

technique to solve any issues especially in navigation.

69

5.2 Future Recommendations

 In the future work of Artificial Intelligence in an autonomous vehicle, through

more software development, hardware implementation, and analysis, the existing effort

can attain greater precision in navigation. Adjustments to the algorithm are also important

and might potentially be made to detect various obstacle movements, and motions, more

complex routes and navigate more efficiently in dynamic areas. In the future, we also aim

to merge fuzzy logic and lidar sensor with the filters proposed in this research to improve

position estimation. Furthermore, in order to accomplish more accuracy in motion

tracking, smooth movement, and precise positions, other systems including a speed

controller and an inertial sensor must be included. This is recommended for future

research on this topic.

70

REFERENCES

1) Li, Y. and C. Shi (2018). Localization and Navigation for Indoor Mobile Robot Based

on ROS. 2018 Chinese Automation Congress (CAC).

2) Yu, Y.-S., Chih-Heng Ke, Yeong-Sheng Chen, and Pin-Yuan Y (2019). "Development

of Following Vehicle Prototype Using Robot Operating System." In 2019 8th

International Conference on Innovation, Communication and Engineering (ICICE):

142-144.

3) Suliman, C., Cruceru, C., & Moldoveanu, F. (2009). "Mobile Robot Position

Estimation Using the Kalman Filter." Acta Marisiensis. Seria Technologica, 6,: 75.

4) Zhi, L., & Xuesong, M. (2018). "Navigation and control system of mobile robot based

on ROS." In 2018 IEEE 3rd Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC): 368-372.

5) Zhu, J., and Li Xu (2019). "Design and Implementation of ROS-Based Autonomous

Mobile Robot Positioning and Navigation System." In 2019 18th International

Symposium on Distributed Computing and Applications for Business Engineering and

Science (DCABES): 214-217.

6) Burnett, J. R. (2006). "Mobile robot localization using a Kalman filter and relative

bearing measurements to known landmarks

7) Maqsood (2018). "Kalman Filters."

8) Hutabarat, D., Rivai, M., Purwanto, D., & Hutomo, H. (2019, July). "Lidar-based

Obstacle Avoidance for the Autonomous Mobile Robot." In 2019 12th International

Conference on Information & Communication Technology and System (ICTS): 197-

202.

9) Péter Fankhauser, D. J., Martin Wermelinger, Marco Hutter (2017). Programming for

Robotics–Introduction to ROS.

10) Takaya, K., Asai, T., Kroumov, V., & Smarandache, F. (2016, October). "Simulation

environment for mobile robots testing using ROS and Gazebo." In 2016 20th

International Conference on System Theory, Control and Computing (ICSTCC). IEEE.:

96-101.

11) Caro, G. A. D. (2010). Introduction to ROS. Introduction to Robotics.

12) Panich, S. (2010). "Indirect Kalman Filter in Mobile Robot Application." J. Math. Stat,

6(381384.43).

71

13) Bersani, M., Vignati, M., Mentasti, S., Arrigoni, S., & Cheli, F. (2019, July). Vehicle

state estimation based on Kalman filters. In 2019 AEIT International Conference of

Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE) (pp. 1-

6). IEEE.

14) Shepelev, D., & Ustyuzhanin, A. (2015, April). Towards development of reliable

mobile robot navigation system. In 2015 2nd International Conference on Information

Science and Control Engineering (pp. 1006-1010). IEEE.

15) Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y.

(2009, May). ROS: an open-source Robot Operating System. In ICRA workshop on

open source software (Vol. 3, No. 3.2, p. 5).

16) Meng, Z., Wang, C., Han, Z., & Ma, Z. (2020, September). "Research on SLAM

navigation of wheeled mobile robot based on ROS." In 2020 5th International

Conference on Automation, Control and Robotics Engineering (CACRE). IEEE.: pp.

110-116.

17) Thale, S. P., Prabhu, M. M., Thakur, P. V., & Kadam, P. (2020). "ROS based SLAM

implementation for Autonomous navigation using Turtlebot." In ITM Web of

conferences (Vol. 32, p. 01011). EDP Sciences.

18) Kwon, S. J., Yang, K. W., Park, S. D., & Ryuh, Y. S. (2005). A Kalman Filter

Localization Method for Mobile Robots. pp 973-978

19) Kang, Y., Roh, C., Suh, S. B., & Song, B. (2012). A lidar-based decision-making

method for road boundary detection using multiple Kalman filters. IEEE Transactions

on Industrial Electronics, 59(11), 4360-4368.

20) Negenborn, R. (2003). Robot localization and Kalman filters. Utrecht Univ., Utrecht,

Netherlands, Master's thesis INF/SCR-0309.

21) Al Khatib, E. I., Jaradat, M. A. K., & Abdel-Hafez, M. F. (2020). Low-cost reduced

navigation system for mobile robot in indoor/outdoor environments. IEEE Access, 8,

25014-25026.

22) Elnagar, A. (2001, July). Prediction of moving objects in dynamic environments using

Kalman filters. In Proceedings 2001 IEEE International Symposium on Computational

Intelligence in Robotics and Automation (Cat. No. 01EX515) (pp. 414-419). IEEE.

23) Mahmud, M. A., Aman, M. S., Jiang, H., Abdelgawad, A., & Yelamarthi, K. (2016,

March). Kalman filter based indoor mobile robot navigation. In 2016 International

Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp.

1949-1953). IEEE.

72

24) Budiharto, W., Santoso, A., Purwanto, D., & Jazidie, A. (2011, October). A navigation

system for service robot using stereo vision and Kalman filtering. In 2011 11th

International Conference on Control, Automation and Systems (pp. 1771-1776). IEEE.

25) Smith, C. M., Feder, H. J. S., & Leonard, J. J. (1998, December). Multiple target

tracking with navigation uncertainty. In Proceedings of the 37th IEEE Conference on

Decision and Control (Cat. No. 98CH36171) (Vol. 1, pp. 760-761). IEEE.

26) Baras, N., Nantzios, G., Ziouzios, D., & Dasygenis, M. (2019, May). Autonomous

obstacle avoidance vehicle using lidar and an embedded system. In 2019 8th

International Conference on Modern Circuits and Systems Technologies (MOCAST)

(pp. 1-4). IEEE.

27) Rozsa, Z., & Sziranyi, T. (2018). Obstacle prediction for automated guided vehicles

based on point clouds measured by a tilted LIDAR sensor. IEEE Transactions on

Intelligent Transportation Systems, 19(8), 2708-2720.

28) Ahmad, H., Peeie, M. H., Ramli, M. S., Shafie, A. A. B., & Rahiman, M. H. F. (2021,

November). Investigation of ROS Based Environment Modelling and Mobile Robot

Position Estimation with Dead Reckoning and Uncertainties. In 2021 IEEE Industrial

Electronics and Applications Conference (IEACon) (pp. 19-24). IEEE.

29) Casanova, O. L. (2008). Robot Position Tracking Using Kalman Filter.

73

APPENDIX A

SAMPLE APPENDIX 1

Gantt Chart

