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ABSTRACT 

 

This paper presents an experimental study of surface integrity in end milling of 

Hastelloy C-2000. The experiment was carried out using two different cutting inserts 

under wet conditions – namely Physical Vapor Deposition (PVD) coated carbide with 

TiAlN and uncoated carbide. Design of experiment (DOE) was implemented with Box-

Behnken design. The surface integrity of workpiece was analyzed through scanning 

electron microscope (SEM) and chemical element changes were inspected by energy 

dispersive X-ray (EDX) test. The surface integrity of Hastelloy C-2000 was better when 

machining with coated carbide compare to uncoated carbide cutting insert mainly due to 

coating layer of coated carbide which acted as protecting layer to the cutting tool insert. 

Surface defects such as feed marks, surface tearing, plucking, cracking and adhered 

chips were found during machining process. The chemical element changes happened 

due to the adhesion and diffusion mechanism which were identify using SEM and EDX.  

 

Keywords: Nickel based superalloy; coated carbide; end mill; uncoated carbide; 

adhesion wear; diffusion wear. 

 

INTRODUCTION 

 

Hastelloy C-2000 is a nickel-chromium-molybdenum (Ni-Cr-Mo) C-type alloy which is 

used in the aerospace, marine and food processing, chemical process industries (Razak 

et al., 2012). The alloy can contain carbides and abrasive particles that can create high 

tool wear.  According to Shokrani et al. (2012), difficulties as well as high costs were 

expected in machining of this alloy because it was designed to retain its strength at 

elevated temperatures. Thus, great efforts were being made to find an economical 

method of machining these alloys to enhance its performance. The condition of a 

machined surface may be innate or else it acquired surface integrity analysis by 

mechanical, metallurgical, chemical and topological state of the surface. Changes in 

corrosion resistance, hardness variation, surface roughness, residual stress, etc. then 

used to measure these states. The surface integrity is given so much attention during 

machining (Ulutan and Ozel, 2011). The reported thermal and mechanical cycling, 

microstructural transformations, and mechanical and thermal deformations during of 

machining processes caused these impacts (Axinte and Dewes, 2002). In the case where 

the fatigue life of a machined part is deemed central, the smoothest possible surface was 

important (Novovic et al., 2004).  A greater strength of nickel based alloys was due to 

elevated temperature, high ductility and high tendency to work hardening. Thus, the 

heat treatment strengthened the superalloys because of their sensitivity to microstructure 

change (Dudzinski et al., 2004). Another factor that can be essentially critical to the 
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machined surfaces is the shape of the cutting tool. By feeding in a machine with round 

shape cutting insert the surface finish and minimum surface damage can be rectified. 

The hardness of the surface layer and the machined surfaces are inversely proportional 

when exposed to extend machining. The reason for this is a high flank wear. As a result 

the component forces and cutting temperature increases because of higher contact area 

and relation motion between the flank land of the tool nose region and the freshly 

machined surface of the workpiece (Che Haron et al., 2007). The residual stresses, 

chemical change between the work piece and tool materials, micro cracking, tears, 

plastic deformation, metallurgical transformations and changes in hardness of the 

surface layer declared as the foremost changes in the machined surface layer. This paper 

presents the surface integrity of end milled characterization of Hastelloy C-2000.   

 

METHODS AND MATERIALS 

 

Design Of Experiments 

 

Design of experiments (DOE) used to reduce the number of experiments and time 

consumption. The study uses the Box-Behnken design because it has fewer design points 

and less expensive to run than central composite designs with the same number of factors. 

The Box-Behnken design was used to optimize the experiment of judging effects of 

important parameters by using response surface method (RSM) (Khan et al., 2011; Zhao 

et al., 2006; Rahman et al., 2010, 2011a,b,c).  Three levels of cutting parameters were 

selected to investigate the machinability of this alloy as shown in Table 1. The parameter 

inputs were recommended by Table 2 shows parameter settings in the DOE.  

 

Table 1. Machining parameters and their levels. 

 

Process  

Parameters 

Level 

-1 0 1 

Feed rate (mm/tooth) 0.1 0.15 0.2 

Axial depth  (mm) 0.4 0.7 1 

Cutting speed (mm/min) 15 23 31 

 

Experimental Details 

 

Surface of Hastelloy C-2000 blocks of 46 mm × 120 mm × 20 mm dimensions were 

prepared using moist cloth and sand paper. As the sticking dust makes the block very 

rough, so it is very beneficial to clean it before processing further. The top surface is 

machined from the block. A dynamometer is attached to the slot and was clamped to the 

block. A wet cutting condition was conducted to test the effectiveness of HAAS TM-2 

CNC milling machine. The machine was equipped with 5.6 KW motor drive, 400 rpm 

spindle speed and 5.1 m/min feed rate. The coated carbide (CTW 4615) and uncoated 

carbide (CTP 1235) were used in the cutting tool. For each 15 different experiments, a 

new set of cutting tool was used every time to get authentic data. Along with the 

dynamometer, a workpiece block was fastened on the table of CNC milling. On the 

other side, a CNC program was applied to cut the block in 120 mm length.  
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Table 2. DOE of Hastlelloy C-2000.   

 

Expt. No. Feed      rate (mm/tooth) Axial Depth (mm) Cutting speed (m/min) 

1 0. 15 0.4 31 

2 0.15 1 15 

3 0.1 0.7 15 

4 0.2 1 23 

5 0.2 0.7 31 

6 0.15 0.7 23 

7 0.15 0.7 23 

8 0.2 0.7 15 

9 0.1 0.4 23 

10 0.15 1 31 

11 0.15 0.4 15 

12 0.1 0.7 31 

13 0.1 1 23 

14 0.15 0.7 23 

15 0.2 0.4 23 

 

A portable roughness tester (MarSurf PS) was used to measure surface 

roughness of block. A Scanning Electron Microscope was used to analyze the integrity 

of the block surface. An advanced optical video computing system was used to evaluate 

the effectiveness of the cutting tool. The tool holder was removed from the panel of the 

testing machine, during measurement operation. Flank wear was tested by using it on 

cutting 120 mm long block. After the first half, the tool wear at the face of the flank was 

measured to get the accurate result.  The frequency of the tool wear was depended upon 

the rate of growth when the wear. The actual life of the tool was calculated by the total 

time of the cutting the cutting-part to get a specific tool life. During the milling 

operation, the Kistler charge Amplifier model 5070 and Kistler dynamometer model 

1679A5 were used to measure the cutting force. These tools save the data of the critical 

forces into the computer for future analysis. At the end of this experiment, the chips 

were examined to know the mechanism of them. The workpice was removed from the 

clamp and then undergone the grinding and polishing process before conducting the 

surface integrity of the workpiece by scanning electron microscope. A mixture of epoxy 

and hardener was poured in a little container of size 30 mm in diameter. Before the next 

stage, the specimens were kept to dry out and get hardened. Then with a Cameo 

Platinum with a wheeler having speed of 150 rpm was used to grind the fixed workpiece. 

The polishing starts with a Cameo silver disc of 6 micron having a speed of 150 rpm, 

then again a Cameo White FAS Disc of 3 micron with a diamond mixture, along with 

the diamond mixture of 1 micron and red cloth plus a micro extender of speed 200 rpm. 

Before the last process of giving the ultrasonic bath to get rid of the coolant and residue, 

polishing was done with colloidal silica of 0.05 micron along with imperial cloth and 

water having a wheeler speed of 150 rpm. The ultra sonic bath was given by Aqua 

Regia-Glycerol an etching compound, and before this specimen was cleaned with an 

ultrasonic cleaner. The chemical and physical properties of the workpiece material 

Hastelloy C-2000 are given in Table 3 and Table 4 respectively. The composition of the 

cutting insert shows in Table 5.  
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Figure 1 shows the shape of cutting insert. CTW 4615 is a coated carbide grade 

with TiAlN coating PVD with grade designation P35 M50. Titanium-aluminum nitride 

(TiA1N) is very effective in cutting stainless steels and aerospace alloys. The 

advantages of hard material layers consist in reduction of friction, heat, oxidation and 

diffusion CTP 1235 is uncoated carbide with grade designation K15. The following are 

the details of the tool geometry of inserts when mounted on the tool holder: (a) special 

shape ; (b) axial rake angle:  19.5°; (c) radial  angle: 5°; and (d) sharp cutting edge. Fig. 

1 shows the experimental set up and shape of uncoated carbide inserts (a) workpiece at 

CNC milling machine, (b) CNC milling machine, (c) shape of cutting insert, (d) SEM 

viewing of uncoated carbide before machining. Table 5 shows the composition of 

cutting inserts. 

 

 
 

(a) Workpiece at CNC milling machine 

                        
 

(b) Shape of cutting  insert               (c) SEM viewing  

 

Figure 1. Experimental Set up 

 

Table 3. Chemical composition (%) of material Hastelloy C-2000. 

 

Ni Cr Mo Fe Cu Al Mn Si C 

BAL 23 16 3 1.60 0.50 0.50 0.08 0.01 

 

Nozzles 

Tool holder 

Cutting insert 
Clamp 

Dynamometer 

Workpiece 

Net 
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Table 4. Physical properties of workpiece material (Hastelloy C-2000 at room 

temperature).  

 

Parameters and unit Value 

Density (g/cm
3
) 8.5 

Thermal conductivity (W/m°C) 9.1 

Mean coefficient of thermal expansion (μm/m°C) 12.4 

Thermal Diffusivity (cm²/s) 0.025 

Specific heat (J/kg°C) 428 

Modulus of elasticity (GPa) 223 

 

Table 5. The composition of the cutting inserts. 

 

Code name Composition Coating Grain size 

CTW 4615 6% Co,4% carbide,90% WC PVD-TiA1N,TiN 1µm 

CTP 1235 6% Co, 94 % WC - 4µm 

 

RESULTS AND DISCUSSION 

 

Micrographs of coated and uncoated carbide inserts can be observed in Figure 2 since it 

shows the images of scanning electron microscope (SEM). A feed rate of 0.2 mm/tooth, 

axial depth 0.7 mm and cutting speed 15 m/min has been used for the images that are 

taken and a surface defect has been found due to the low cutting speed. During the 

machining of the workpiece of the coated carbide cutting insert, there are several kinds 

of surface defects which occured. Out of these few the surface flaw, feed marks and 

chip redeposition were the most common kinds of defects that occur as shown in Figure 

2(a). The severity of a feed mark can be changed by optimizing the feed rate or than 

varying it in order to carry out effective machining process (Ginting and Nouri, 2009). 

Furthermore, plucking of particles from the surface and their redeposition to the surface 

create two different defects. The particles have the ability to cause tearing and dragging 

effect on the surface of the next pass. In the case of uncoated carbide, the same kind of 

surface plucking and tearing would take place. The uncoated carbide has a very 

different surface texture from the coated carbide which is mainly because the coating 

layer helps make the tool harder and tougher with a good surface finish. The residual 

stress which is present on the surface machine is improved along with reducing the 

cutting temperature and enhancing of the machine surface with the help of the coating 

layer (Outeiro et al., 2008). It was observed that the compressive stresses increases 

when increase of the thermal softening of the material  and such  surface  flaws clear out 

of the machined  surface and enabling the workpiece near- surface  to reconstruct itself 

easily (Pawade et al., 2007).  

Prolonged machining tends to increase the hardness of surface layer and also 

deteriorates the surface finish of machined workpiece due to the fact that the contact 

area and motion that exists between the tool, flank area and workpiece machine surface 

is increased hence causing surface defect, increase component cutting forces and 

temperature and flank wear. With presence of nickel based alloys, many issues arise 

since the cutting parameters affect the defects to an extent. To avoid these problems the 

cutting condition optimization is essential. The machining processes have been observed 

to have many defects in the surface specifically in the micron precisions. It is unfeasible 

to entirely remove the cutting parameters or even adjust them to an extent. There are 
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carbide particles in the structure of nickel based work piece materials along with coating 

inserts material with carbide particles. Detachment of the carbide particles with the 

machine surface or the tool inserts occurred when the work piece is machined or stuck 

on the work piece surface. Such process is referred to as carbide cracking and may 

cause an increase in the level of stress when the cutting takes place due to plucking in 

the surface cavities (Zou et al., 2009). Figure 3 shows the carbide cracking formation. 

Residual cavities and cracks occur in the machine surface which may cause several 

issues in terms of the micro-scale surface integrity. The chemical composition of the 

material when machining takes place of the coated and uncoated carbide tool inserts is 

shown in Table 4. Cobalt has been formed in the EDX test when checking the texture of 

the machined surface; hence proving that adhesion mechanism does take place as shown 

in Figure 4. This Cobalt, Co is a new element of the Hastelloy C-2000 which is present 

due to the high temperature of machining and the chemical change that takes place 

between the cutting tool insert and the work piece. 

 

                                                     
 

                    (a) Coated carbide                                        (b) Uncoated carbide  

 

Figure 2. SEM viewing of Hastelloy C-2000 texture at 500x. 

 

                                         
                  (a) Magnification, 500x                            (b) Magnification, 800x 

 

Figure 3. SEM viewing of experimental no 3 with two different magnifications for 

uncoated carbide insert. 
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Figure 4.  Adhesion and diffusion base on EDX result at magnification 100x at coated 

carbide inserts. 

 

The formation of cobalt happened due to adhesive mechanism during machining 

where the coated carbide itself contains the component of cobalt. The rake face is 

protected with the help of the adhering element (Co) as it became a stable built-up-edge 

(Itakura et al., 1999). Diffusion took place where vast increase or decrease occurred in 

the elements of carbon (C), Aluminum (Al) and Molybdenum (Mo). Due to this 

mechanism, the atom present in the metallic crystal lattice changes from the higher 

atomic concentration to the lower concentration level. The case of diffusion also occurs 

when applying uncoated carbide, however, with no adhesion formation found as 

happened in coated carbide as shown in Figure 5. It take place during cutting condition 

of feed rate of 0.2 mm/tooth, axial depth 1.0 mm and cutting speed 23 m/min. Here, 

decrease is found in composition of chromium (Cr), manganese (Mn), copper (Cu), 

ferum (Fe) and Nickel (Ni) and an increase is observed in molybdenum (Mo), aluminum 

(Al), silicon (Si), and carbon. The changes of chemical composition when machining 

Hastelloy C-2000 with coated and uncoated carbide insert can be seen at Table 6. 

 

 

 

 
 

Figure 5. The diffusion based on EDX result at magnification 100x for uncoated carbide 

insert. 

Table 6. Chemical composition (%) of material (Hastelloy C-2000), before and after 

machining for coated and uncoated carbide inserts 

 

Feed mark 

Adhered chip 



8 
 

 

Components Before machining After machining 

Coated carbide Uncoated carbide 

Ni 55.310 54.00 54.22 

Cr 23.000 12.83 15.28 

Mo 16.000 24.53 24.84 

Fe 3.000 1.05 0.45 

Cu 1.600 2.16 1.25 

Al 0.500 1.20 0.58 

Mn 0.500 0.57 0.29 

Si 0.008 0.76 0.71 

C 0.010 1.89 2.38 

Co - 1.01 - 

 

CONCLUSIONS 

 

The uncoated carbide has a very different surface texture from the coated carbide which 

is mainly because the coating layer helps make the tool harder and tougher with a better 

surface finish. The residual stress on the surface machine is improved along with 

reducing the cutting temperature and enhancing of the machine surface with the help of 

the coating layer.  Prolonged machining tends to increase the hardness of surface layer 

and also deteriorates the surface finish of machined workpiece. The contact area and 

motion that exists between the tool, flank area and workpiece machine surface is 

increased hence causing surface defect, increase component cutting forces and 

temperature and flank wear. There are carbide particles in the structure of nickel based 

work piece materials along with coating inserts material with carbide particles.  
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