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A B S T R A C T   

Glycerol dry reforming (GDR) is one of the alternatives for syngas production by utilizing glycerol, a by-product 
of biodiesel. This current work focusing on the effect of Ce, Ru and Pd as promoters on Ni–Co/Al2O3 catalysts. 
Ultrasonic-assisted impregnation was utilized to synthesize the catalysts and GDR was carried out by varying the 
reactant partial pressure CO2 to glycerol ranging from 10 to 40 kPa at 1073 K. Characterization studies showed 
that incorporation of promoter reduced Ni–Co agglomeration and increased metal dispersion on Al2O3 support. 
This resulted in smaller crystallite size and more consumption of H2 and CO2 based on H2-TPR and CO2-TPD 
analyses. Irrespective of reactant partial pressure, the catalytic performance was increased with following trend; 
Ni–Co/Al2O3 < Ce–Ni–Co/Al2O3 < Ru–Ni–Co/Al2O3 < Pd–Ni–Co/Al2O3. The best reactant partial pressure (CO2 
and glycerol) was achieved at 20 kPa and the effect of competing reactant caused a significant decline in catalytic 
performance beyond 20 kPa. Oxygen storage capacity, basic nature and redox cycle of promoters assisting in the 
carbon reduction on catalysts surface. Overall, Pd–Ni–Co/Al2O3 recorded the highest catalytic activity and 
lowest carbon formation (7.25%) compared to other promoted catalysts credited to their smallest crystallite size 
(7.12 nm), great metal dispersion (77.4%, 2.95), highest H2 production, CO2 consumption and oxygen storage 
capacity.   

1. Introduction 

Global energy consumption has continued to grow, contributing to 
climate change and global warming by hastening the depletion of non- 
renewable fossil fuels and the emission of energy-related CO2 gas into 
the atmosphere [1]. In order to lessen the reliance on non-renewable 
sources in the existing energy system, it is essential to explore renew-
able, diverse with sustainable energy sources to replace 
hydrocarbon-based energy with cleaner solutions. Syngas or 
hydrogen-based energy is a form of renewable energy that is universally 
recognized as a clean energy source, and it can help reduce greenhouse 
gas emissions, smoke, and acid rain when used as fuel [2,3]. On a 
commercial basis, methane reforming is employed to produce syngas. 
Nevertheless, this approach has certain drawbacks, including generation 

of by-products and the unsustainable consumption of natural gas [4]. 
Therefore, the use of biomass-derived feedstocks, particularly glycerol, 
has lately piqued the interest of numerous reforming methods. Studies 
show that the biodiesel transesterification process produces over 1.4 
million tonnes of glycerol, which is up to 63% of total global production 
of glycerol. Besides, the manufacturing of glycerol progressively 
increased from 2015 to 2021 and is anticipated to reach 4046.9 million 
liters in 2026 [5]. The presence of several impurities, such as alcohol, 
unreacted glycerides and fatty acids, render crude glycerol unfit for 
direct application. Furthermore, there are persisting difficulties associ-
ated with disposal and environmental considerations in industrial-scale 
production of glycerol. This situation makes glycerol reforming to be a 
desirable option as feedstock for reforming reaction [6,7]. 

Using glycerol, a by-product of biodiesel manufacturing, in 
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