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SUMMARY In this work, the core size estimation technique of magnetic 

nanoparticles (MNPs) using the static magnetization curve obtained from a 

high-Tc SQUID magnetometer and a metaheuristic inversion technique 

based on the Particle Swarm Optimizer (PSO) algorithm is presented. The 

high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor 

coupled by a flux transformer to sense the modulated magnetization signal 

from a sample. The magnetization signal is modulated by the lateral 

vibration of the sample on top of a planar differential detection coil of the 

flux transformer. A pair of primary and excitation coils are utilized to apply 

an excitation field parallel to the sensitive axis of the detection coil. Using 

the high-Tc SQUID magnetometer, the magnetization curve of a 

commercial MNP sample (Resovist) was measured in a logarithmic scale 

of the excitation field. The PSO inverse technique is then applied to the 

magnetization curve to construct the magnetic moment distribution. A 

multimodal normalized log-normal distribution was used in the 

minimization of the objective function of the PSO inversion technique, and 

a modification of the PSO search region is proposed to improve the 

exploration and exploitation of the PSO particles. As a result, a good 

agreement on the Resovist magnetic core size was obtained between the 

proposed technique and the non-negative least square (NNLS) inversion 

technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed 

well with the values reported in the literature using the commercial low-Tc 

SQUID magnetometer with the SVD and NNLS inversion techniques. 

Compared to the NNLS inversion technique, the PSO inversion technique 

had merits in exploring an optimal core size distribution freely without 

being regularized by a parameter and facilitating an easy peak position 

determination owing to the smoothness of the constructed distribution. The 

combination of the high-Tc SQUID magnetometer and the PSO-based 

reconstruction technique offers a powerful approach for characterizing the 

MNP core size distribution, and further improvements can be expected from 

the recent state-of-the-art optimization algorithm to optimize further the 

computation time and the best objective function value.   

key words: Magnetic nanoparticle, High-Tc SQUID, magnetometer, 

magnetization curve, and magnetic core size distribution. 

1. Introduction 

Determination of the core size of magnetic nanoparticles 

(MNPs) is essential in tailoring their performances for 

specific applications such as magnetic particle imaging 

(MPI) [1], magnetic immunoassay [2], and magnetic 

hyperthermia [3]. For this purpose, the information 

regarding the core size can be measured directly by 

transmission electron microscopy (TEM) or indirectly using 

static magnetization measurement and X-ray diffraction 

(XRD) [4], [5]. Since the applications of MNPs are based on 

the magnetic properties upon application of external fields, 

the static magnetization measurement is commonly used to 

characterize the MNP core size distribution, although this 

indirect method requires solving an inverse problem of the 

MNP magnetization curve.        

 The static magnetization curve of MNPs can be 

measured using the vibrating sample magnetometer (VSM) 

using a normal induction coil where the induction coil 

senses the magnetization of an MNP sample upon 

application of a DC field. Improved measurement sensitivity 

can be obtained by using a magnetometer that is based on 

the low-Tc superconducting quantum interference device 

(SQUID), such as the commercial SQUID Magnetometer 

MPMS 3 (Quantum Design, USA). However, the usage of 

expensive liquid 4He and complex thermal insulation 

configuration has resulted in a higher running cost for low-

Tc SQUID magnetometers [6]. On the other hand, the 

application of the high-Tc superconductors discovered in 

early 1990 has been rapidly increasing such that the high-Tc 

SQUID is expected to play a major role in enabling highly 

sensitive applications owing to its low-running cost and 

simpler thermal insulation. It has been reported in [7] that 

the high-Tc SQUIDs showed a field noise of 25 fT/Hz1/2 at 1 

kHz and 77 K, comparable to the low-Tc SQUID. For an 

application that requires a high excitation field application 

to a sample, i.e., magnetization curve measurement, the flux 

transformer technique can be used to sense the 

magnetization of the sample [8]. Apart from that, the high-

Tc SQUIDs have been used to perform magnetic 

nanoparticle-based molecular diagnostics [9], magnetic 

needle biopsy [10], and magnetic detection of magnetically 
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tagged biological cells [11]–[13]. 

 Previous studies have demonstrated that the core size 

of MNPs can be reliably reconstructed using the magnetic 

moment distribution obtained from the static magnetization 

curve [14]–[16]. This core size is a critical parameter that 

predominantly determines the specific application of MNPs. 

Compared to the direct measurement of core size using 

transmission electron microscopy, estimating the core size 

from the MNP magnetization curve is relatively easy and 

faster. Typically, the core size of an MNP ensemble can be 

estimated by solving the inverse problem of its 

magnetization curve. The degree of MNP magnetization 

directly corresponds to the magnetization of individual MNP 

cores, where larger cores exhibit larger magnetic moments 

following the Langevin function. By solving the inverse 

problem, solutions are obtained, representing the 

distribution of magnetic moments, which can then be used 

to derive the core size. Various algorithms, such as singular 

value decomposition (SVD) [15], non-negative least squares 

(NNLS) [16], [17], and iterative Kaczmarz, have been 

proposed for this purpose [4]. However, these methods may 

require regularization and threshold determination 

techniques to address overfitting issues in ill-conditioned 

problems, which can lead to biased or inaccurate magnetic 

moment reconstruction. As an alternative, recent 

advancements in intelligent algorithms, particularly in 

machine learning and optimization areas, have offered 

promising solutions to engineering problems, and these 

machine learning algorithms can be utilized to solve the 

inverse problem of the MNP magnetization curve without 

the need for regularization. 

 In this study, we present a high-Tc SQUID 

magnetometer utilizing an induction coil as the flux 

transformer to characterize the magnetization curve of 

MNPs. Then, utilizing the magnetometer, we introduce a 

magnetization curve reconstruction technique based on a 

metaheuristic algorithm, namely, Particle Swarm Optimizer 

(PSO), to estimate the core size distribution of a commercial 

magnetic nanoparticle sample. By using PSO, we aim to 

obtain accurate and unbiased reconstructions of the 

magnetic moment distribution, thus enabling us to derive the 

core size distribution of the magnetic nanoparticles.  

2. High Tc-SQUID Magnetometer and Reconstruction of 

Magnetization Curve 

2.1 High Tc-SQUID Magnetometer for MNP Magnetization 

Curve Measurement 

 Figure 1 illustrates the schematic diagram of the 

custom-designed high-Tc SQUID magnetometer. The high-

Tc SQUID was developed using an advanced multilayer 

fabrication technique by the Superconducting Sensing 

Technology Research Association (SUSTERA; formerly 

known as ISTEC), Japan [7], [8], [18]. The mutual 

inductance of the 59-turn superconducting input coil was 

determined to be 1.95 nH. This input coil is connected to a 

first-order planar differential coil. Each coil of the planar 

differential coil has 200 turns, 451.6 μH inductance, 2.99 Ω 

DC resistance, and the two coils are separated by a 13.5-mm 

baseline. To enhance the cancellation of high magnetic fields, 

a manually tuned compensation coil is integrated in series 

with the differential coil. The combined configuration of the 

planar gradiometer and the compensation coil achieves a 

remarkable cancellation factor of Bdetected/Bapplied of 0.02%. 

During the magnetization curve measurement, different DC 

magnetic fields are applied to the sample consecutively. The 

resolution and range of the magnetization field are improved 

by using a pair of primary and secondary excitation coils, 

where the former enables the field excitation range up to 500 

mT, and the latter improves the field resolution based on a 

difference feedback control. The magnetization signal from 

a sample is subsequently modulated by reciprocating it 

along the baseline of the planar differential coil at a 

frequency of 11.6 Hz, and the sample magnetization is 

captured using a lock-in amplifier at a time constant of 300 

ms. 

 In this study, we investigated the core size distribution 

of multi-core Resovist (FUJIFILM RI Pharma, Japan), 

having a core size of 8.3 nm measured using a transmission 

electron microscopy (TEM) (TEM LIBRA 120, ZEISS) at 

120 kV, and hydrodynamic size of 61 nm measured using a 

particle analyzer based on the dynamic light scattering 

(DLS) technique (Litesizer 500, Anton Paar GmbH, Austria). 

The iron concentration of MNPs was diluted to 0.26 mg/mL 

from the stock solution, and a 0.77 mL sample volume was 

used for the measurement. The MNP magnetization was 

measured from 0.5 to 500 mT on a logarithmic scale. 

 

 
Fig. 1  High-Tc SQUID Magnetometer. 

2.2 Reconstruction of Magnetization Curve using Particle 

Swarm Optimizer-based Inversion Technique  

 The magnetization M of a monodisperse magnetic 

nanoparticle ensemble subjected to a magnetization field 

0H can be described using the Langevin equation 

L(m0H/kBT) = Coth(m0H/kBT) − 1/(m0H/kBT) [14]: 
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where Msat is the saturation magnetization, m is the magnetic 

moment, 0 is the vacuum magnetic permeability, H is the 

applied field intensity, kB is the Boltzmann constant and T is 

the temperature. Moreover, the resulting MNP 

magnetization curve of a finite polydisperse core size 

distribution can be expressed by [19]: 
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Here, wi(m) represents the product of the number of particles 

ni with a magnetic moment mi within the range of mi to 

mi+mi. Since the magnetization curve is formed by 

different point J of applied magnetic fields, Eq. (2) can be 

expressed in the vector form of M= L w, where vectors  M, 

L, and w can be represented by Mj  M(0Hj) (j = 1,…, J), 

Lji = L(mi0Hj/kBT) and wi(m) ni(m)mimi (i = 1,…, N), 

respectively.  

 The reconstruction of the distribution of wi(m), i.e., nm2, 

from a measured magnetization curve Mexp can be obtained 

by minimizing the mean squares deviation 2: 
2

2

exp . = −M Lw   (3) 

between the measured magnetization and magnetization 

model. This minimization process can be obtained through 

appropriate methods such as SVD, NNLS, and optimization 

algorithms such as PSO. The minimization process will 

produce the vector w, which contains individual weights of 

their Langevin equation. Then, the core size of MNP having 

magnetic moment m can be derived by assuming a spherical 

shape core: 

3
6
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sat

m
D
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Detailed explanations of SVD and NNLS methods for the 

magnetization curve reconstruction can be found in [15] and 

[16], respectively. 

 PSO is a metaheuristic optimization algorithm inspired 

by the social behavior of swarm animals, such as birds 

flocking. Briefly, PSO starts with a group of particles 

representing potential solutions to an optimization problem. 

Each particle adjusts its position based on its current velocity, 

personal best position, and the best position found by any 

particle in the swarm. By iteratively updating positions and 

velocities, particles explore the search space, aiming to 

converge toward the optimal solution. The algorithm 

continues until a termination condition is met, making PSO 

a preferable method for approximating solutions to various 

optimization problems [20], [21]. The solution obtained 

from PSO is based on the exploration and exploitation 

processes of the particles, and it should be noted that the 

solution might be trapped in local minima instead of global 

optima, resulting in a poor agreement between the 

reconstructed and measured magnetization curves [22]. 

Moreover, the constructed core size distribution may 

produce spikes and noises that do not physically resemble 

the actual core size distribution. To improve the core size 

estimation using PSO, w(m) is assumed to have a 

multimodal normalized log-normal distribution, i.e., 

summation of K modal distributions, and is expressed by  

,

2
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ln ln
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m k

k

k m k

m
w m g
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−
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where gk, m,k and m,k are the distribution weight, standard 

deviation, and mean of kth m-distribution, respectively.  

 In the PSO inversion technique, the optimal values of 

gk, m,k, and m,k are determined to minimize the objective 

function of Eq. (3). Each optimal value is searched within a 

search region set by the lower and upper bounds. In the 

conventional approach of using PSO, the lower and upper 

bounds can be set to include the entire region of possible 

solutions. However, in this study, we propose a modification 

of the PSO search region for m,k to improve the exploration 

and exploitation of the PSO particles. This modification will 

facilitate a non-overlapping search region of m,k so that an 

optimal value of m,k will be specific and unique to only the 

selected search region. This modification is implemented by 

separating the upper and lower bounds for each m,k search 

region into k regions where m,k-1 <m,k, as illustrated in 

Figure 2. In addition, separating the m,k search region will 

also help the PSO algorithm to produce a global solution 

with improved precision. 

 On the other hand, the search region of m,k, is set from 

0.5 to 1 so that the narrowest distribution will have a width 

of around one decade (logarithmic scale) while the widest 

distribution will have a width of around two decades, as 

shown in Table 1. gk is set from 0 to 1, representing the 

distribution ratio of a Ms-normalized magnetization curve. It 

was observed that m,k, less than 0.5 would result in a sharp 

distribution spike/shape, which may not be physically 

correct. The PSO and NNLS inversion techniques are 

implemented using MATLAB on a Windows 10 AMD 

Ryzen 7 4700U 2 GHz 16 GB RAM. The PSO algorithm is 

based on the MATLAB Toolbox function, and a detailed 

explanation of PSO can be found in [23].  

Table 1  Parameters of PSO Inversion Technique. 

Parameter Value/Range 

Magnetic moment m 20 moments/decade 

K 3 

gk [0, 1] 

m,k [0.5, 1] 

m,k [10-21, 10-16] Am2 

PSO Maximum Iteration 1000 

PSO Function Tolerance 1×10-9 

Swarm size 30 
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Fig. 2  Normalized log-normal distribution and its parameter search 

region. 

3. Results and Discussions 

Figure 3 shows the magnetization curve of the Resovist 

sample measured using the high-Tc SQUID magnetometer 

between 0.5 to 500 mT. 17 measurement points of the 

sample magnetization were recorded on a logarithmic scale. 

The magnetization increased in a nonlinear manner with the 

applied field, reflecting the Langevin equation characteristic. 

The reconstructed magnetization curve using the PSO 

inversion technique is shown by the dashed red line in 

Figure 3. For comparison, the NNLS inversion technique 

was also applied and is shown by the blue line in Figure 3. 

It could be said that both inversion techniques had resulted 

in a good agreement with the measured magnetization data, 

and their best objective function, i.e., the mean squares 

deviation 2, was fairly similar, as shown in Table 2. The 

convergence curve of PSO is shown in Figure 4, where the 

history of the objective function value with respect to the 

iteration number of PSO can be observed. It could be 

observed that the objective function was rapidly improved 

in the first 200 iterations, reflecting the effectiveness of the 

exploration process of the particles. The PSO inversion 

technique took 62.3 s for 1000 iterations to arrive at the best 

objective function value of 8.6805×10-6 in the total search 

region of 220 magnetic moments, as shown in Table 2. For 

comparison, the NNLS inversion technique was relatively 

fast (49.8 ms) in solving the inverse problem for the total 

search region of 120 magnetic moments. It is worth noting 

that the computation time of NNLS was improved because 

its iteration was separated into 10 subdomains, and 12 

domains were evaluated in each iteration. The values of 

domain and subdomain acted as a regularization parameter 

where they affected the distribution shape of w, despite 

improving the calculation time. The domain and subdomain 

values were optimized priorly using the trial and error 

method to obtain a closed distribution shape with fewer 

spikes/noises [16], [24], [25].   

  

 
Fig. 3  Magnetization curves of the Resovist sample and its reconstructed 

curves using NNLS and PSO inversion techniques. 

 The constructed w distributions with respect to m using 

the NNLS and PSO inversion techniques are shown in 

Figure 5. The w distribution from the PSO inversion 

technique was fundamentally constructed from the three m-

distributions, shown by the yellow, cyan, and magenta lines 

in Figure 5, and their optimal gk, m,k and m,k values are 

tabulated in Table 2. From Table 2 and Figure 5, it could be 

said that only two dominant m-distributions existed in the 

Resovist sample and agreed well with the bimodal 

distribution form obtained from the NNLS inversion 

technique. Moreover, the peak positions for both inversion 

techniques were fairly similar, reflecting the ability of the 

PSO inversion technique to estimate the dominant peaks 

even though the trimodal distribution was assumed initially. 

Moreover, the w distribution from the PSO inversion 

technique was smoother than the NNLS inversion technique, 

facilitating an easy peak position determination. 

 From the m values of the peak positions, the core size 

of the Resovist sample was estimated using Eq. (4) and the 

saturation magnetization Ms=300 kA/m [19]. The core sizes 

determined from the PSO and NNLS inversion techniques 

are listed in Table 2, where both techniques reflected a fairly 

similar core size. The highest peak from the PSO inversion 

technique resulted in a core size of 8.0484 nm, while the 

second peak reflected a core size of 20.3018 nm. The 

elemental 8.0448 nm core size agreed with the TEM results, 

and the 20.3018 nm core size was inferred due to the 

aggregation on these elemental cores. The aggregation of the 

elemental cores would produce an effective magnetic core 

with higher m than the elemental core. Furthermore, these 

core sizes estimated in this work agreed well with the 

Resovist core sizes determined in [19], [26] in which the 

commercial low-Tc SQUID magnetometer with the SVD 

and NNLS inversion techniques had been used. Moreover, 

the reported core size of Resovist in the literature ranges 

from 5 to 10 nm for the elemental cores, and 20 to 26 nm for 
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the aggregated elemental core [19], [26]–[28] and the 0.3-

nm difference of the elemental core size between the PSO 

and NNLS inversion technique would be acceptable when 

these size ranges were considered. When compared with the 

size determined from the TEM images (8.3 nm), the NNLS 

inversion technique (8.3647 nm) gave a closer value of the 

elemental core size. It was worth noting that the NNLS 

inversion technique showed the third (smallest) peak located 

at m=2.37×10-17 Am2, which corresponded to a core size of 

53.2235 nm. This core size for the Resovist sample had not 

been reported in the literature; however, the possibility of a 

small percentage of a bigger elemental core aggregation 

could not be completely ignored. Moreover, the existence of 

this peak in the NNLS inversion technique could be caused 

by the separation of domains and subdomains in the NNLS 

iteration, where the combined solution from all iterations 

could produce spikes/noises, as observed in [16], [24], [25].     

 Although the NNLS inversion technique showed a 

better computational time and objective function value, the 

PSO inversion technique had merit in terms of the shape 

smoothness of the constructed distribution and the ability to 

explore freely possible distribution numbers and width 

within expected search regions without being regularized by 

a parameter. It is worth noting that improvement in machine-

learning techniques, such as PSO, has rapidly occurred in 

recent years, where some recent algorithms have been 

reported to outperform PSO in terms of computation time 

and objective function [22], [29]–[33]. This improvement 

can be achieved by inventing and implementing a robust and 

advanced method in the exploration and exploitation 

processes of an optimization algorithm, as shown in [29]. In 

the foreseeable future, we anticipate the emergence of a 

more advanced metaheuristic algorithm compared to PSO, 

which can be employed to address the MNP core size 

estimation problem. This advancement holds the promise of 

yielding improved results in terms of the objective function 

value, computation time and generating less biased 

reconstruction for intricate MNP magnetization curves.  

 

 
Fig. 4  Convergence curve of the PSO objective function (Eq. (3)). The 

best function value was 1.2084×10-5, and the computation time took 

62.2781 s. 

 
Fig. 5  Constructed weight w distribution of the Langevin function with 

respect to m using the NNLS and PSO inversion techniques. For PSO, the 

summation of 3 modal distributions (K=3), illustrated by 1st to 3rd m-

distributions, was estimated. 

Table 2  Results of PSO & NNLS Inversion Techniques. 

Parameter Value 

g1 0.0353 

m,1 1.0000 

m,1 7.7163×10-20 Am2 

g2 0.016207411 

m,2 0.9954 

m,2 1.4210×10-18 Am2 

g3 4.7296×10-4 

m,3 0.9998 

m,3 1.0000×10-16 Am2 

PSO Best Objective 

Function 
1.2084×10-5 

PSO Computational Time 62.2781 s 

NNLS Best Objective 

Function 
8.6805×10-6 

NNLS Computational Time 0.0498 s 

1st PSO Peak Core Size 8.0484 nm 

2nd PSO Peak Core Size 20.3018 nm 

1st NNLS Peak Core Size 8.3647 nm 

2nd NNLS Peak Core Size 21.9290 nm 

 

4. Conclusion 

 In this work, we determined the magnetic core size of 

the Resovist sample using the developed high-Tc SQUID 

magnetometer and the metaheuristic inversion technique 

based on the PSO algorithm. The high-Tc SQUID 

magnetometer demonstrated a sufficiently high sensitivity to 

resolve the magnetization curve of the MNP sample at a sub-

milligram iron concentration. The proposed PSO inversion 

technique solved the nonlinear characteristic of the 

magnetization curve to derive the distribution of magnetic 

moment, i.e., core size. The estimated core sizes agreed well 

with the NNLS inversion technique and the sizes reported in 

the literature using the commercial low-Tc SQUID. This 

work demonstrated that the combination of the high-Tc 

SQUID magnetometer and the PSO-based reconstruction 

technique offers a powerful approach for characterizing and 

understanding the core size distribution of MNPs, which 

may contribute to the improvement of the MNP core size for 
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various applications in fields such as biomedicine, 

nanotechnology, and materials science. The MATLAB code 

for the PSO inversion technique is available at 

https://www.researchgate.net/publication/372494851_PSO

_MH. 
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