

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Facile fabrication of binary $g-C_3N_4/NH_2$ -MIL-125(Ti) MOF nanocomposite with Z-scheme heterojunction for efficient photocatalytic H_2 production and CO_2 reduction under visible light

Riyadh Ramadhan Ikreedeegh^{a,b,c,*}, Sehar Tasleem^d, Md. Arif Hossen^{e,f}

^a Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates

^b Department of Analysis and Quality Control, Sarir Oil Refinery, Arabian Gulf Oil Company, El Kish, P.O. Box 263, Benghazi, Libya

^c Libyan Advanced Center for Chemical Analysis, Tripoli

^d College of Science and General Studies, Alfaisal University, 50927, Riyadh 11522, Saudi Arabia

^e Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia

^f Center for Environmental Science & Engineering Research, Chittagong University of Engineering and Technology, 4349 Chattogram, Bangladesh

ARTICLE INFO

Keywords: Photocatalytic H₂ production CO₂ reduction Solar fuels g-C₃N₄ NH₂-MIL-125(Ti) MOF Z-scheme heterojunction

ABSTRACT

A binary g-C₃N₄/NH₂-MIL-125(Ti) MOF nanocomposite was fabricated through a facile sonochemical-assisted thermal approach for enhanced photocatalytic H₂ production and CO₂ reduction under visible light. Compared to pure g-C₃N₄, the g-C₃N₄/MOF photocatalyst showed enhanced visible light absorption with promoted charge carrier separation which increased the H₂ production rate and the CO₂ reduction into CH₄ and CO. This enhancement was attributed to the successfully constructed Z-scheme heterojunction in addition to the visible-active, large surface area and highly CO₂ adsorbable NH₂-MIL-125(Ti) MOF. The highest H₂ production of 480 µmol g⁻¹ was exhibited over the g-C₃N₄/NH₂-MIL-125(Ti) nanocomposite with 20 wt% MOF. Similarly, the highest CO production rate of 338 µmol g⁻¹ was achieved with 20 wt% MOF composite. However, for the CH₄ product gas, it was observed that the highest production instead of CH₄. Among all the investigated sacrificial agents for H₂ production, methanol was the best. The performance of CO₂ reduction process was found to be increasing with the pressure increase. Furthermore, the stability investigations revealed continuous productions of H₂, CO and CH₄ over the C₃N₄/MOF photocatalyst in multiple cyclic runs without any significant photocatalyst deactivation. This study provides new ideas for the fabrication of cheap, efficient and easy-synthesized nanomaterials for energy production and environmental remediation applications.

1. Introduction

Nowadays, fossil fuels depletion and greenhouse gas emissions produced from burning these fuels are regarded as the main global issues to humanity [1,2,84]. Fossil fuels represent almost 80 % of our energy sources and the demand on these fuels is expected to rise up to 56 % by 2040 which will lead to a severe shortage in fulfilling the energy requirements [3,4]. Thus, looking for sustainable and renewable technologies for energy production and environmental remediation is essential in the future. Hydrogen-based energy is one of the strongest competitors in this field, as it is considered a clean alternative since hydrogen combustion generates no pollutants or greenhouse gases, moreover, hydrogen has a high energy yield of 122 kJ/g which is about three times greater than the hydrocarbon fuels [5,6]. However, 95 % of hydrogen is currently produced by energy-intensive and complex reforming processes of fossil fuels (mainly methane), in which high pressures and temperatures are required to conduct these processes [7,8]. Recently, a new clean and sustainable technology known as photocatalysis has attracted researcher's attention for hydrogen production and CO_2 reduction through solar light-assisted reaction in the presence of a semiconductor material known as photocatalyst. The photocatalyst plays a key role in this process, therefore, numerous studies and investigations have been reported for designing semiconductor photocatalysts with high photocatalytic performance.

Among all other semiconductor materials, graphitic carbon nitride $(g-C_3N_4)$ has attracted great attention in the field of photocatalysis due

* Corresponding author. E-mail addresses: riyadhkridiegh@gmail.com, ikreedeegh@graduate.utm.my (R.R. Ikreedeegh).

https://doi.org/10.1016/j.fuel.2023.130561

Received 22 August 2023; Received in revised form 30 September 2023; Accepted 3 December 2023 Available online 6 December 2023 0016-2361/© 2023 Elsevier Ltd. All rights reserved.