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A B S T R A C T   

A binary g-C3N4/NH2-MIL-125(Ti) MOF nanocomposite was fabricated through a facile sonochemical-assisted 
thermal approach for enhanced photocatalytic H2 production and CO2 reduction under visible light. 
Compared to pure g-C3N4, the g-C3N4/MOF photocatalyst showed enhanced visible light absorption with pro
moted charge carrier separation which increased the H2 production rate and the CO2 reduction into CH4 and CO. 
This enhancement was attributed to the successfully constructed Z-scheme heterojunction in addition to the 
visible-active, large surface area and highly CO2 adsorbable NH2-MIL-125(Ti) MOF. The highest H2 production of 
480 µmol g− 1 was exhibited over the g-C3N4/NH2-MIL-125(Ti) nanocomposite with 20 wt% MOF. Similarly, the 
highest CO production rate of 338 µmol g− 1 was achieved with 20 wt% MOF composite. However, for the CH4 
product gas, it was observed that the highest production rate was attained with pure g-C3N4 which reveals the 
NH2-MIL-125(Ti) MOF selectivity towards CO production instead of CH4. Among all the investigated sacrificial 
agents for H2 production, methanol was the best. The performance of CO2 reduction process was found to be 
increasing with the pressure increase. Furthermore, the stability investigations revealed continuous productions 
of H2, CO and CH4 over the C3N4/MOF photocatalyst in multiple cyclic runs without any significant photo
catalyst deactivation. This study provides new ideas for the fabrication of cheap, efficient and easy-synthesized 
nanomaterials for energy production and environmental remediation applications.   

1. Introduction 

Nowadays, fossil fuels depletion and greenhouse gas emissions pro
duced from burning these fuels are regarded as the main global issues to 
humanity [1,2,84]. Fossil fuels represent almost 80 % of our energy 
sources and the demand on these fuels is expected to rise up to 56 % by 
2040 which will lead to a severe shortage in fulfilling the energy re
quirements [3,4]. Thus, looking for sustainable and renewable tech
nologies for energy production and environmental remediation is 
essential in the future. Hydrogen-based energy is one of the strongest 
competitors in this field, as it is considered a clean alternative since 
hydrogen combustion generates no pollutants or greenhouse gases, 
moreover, hydrogen has a high energy yield of 122 kJ/g which is about 

three times greater than the hydrocarbon fuels [5,6]. However, 95 % of 
hydrogen is currently produced by energy-intensive and complex 
reforming processes of fossil fuels (mainly methane), in which high 
pressures and temperatures are required to conduct these processes 
[7,8]. Recently, a new clean and sustainable technology known as 
photocatalysis has attracted researcher’s attention for hydrogen pro
duction and CO2 reduction through solar light-assisted reaction in the 
presence of a semiconductor material known as photocatalyst. The 
photocatalyst plays a key role in this process, therefore, numerous 
studies and investigations have been reported for designing semi
conductor photocatalysts with high photocatalytic performance. 

Among all other semiconductor materials, graphitic carbon nitride 
(g-C3N4) has attracted great attention in the field of photocatalysis due 
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