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INTRODUCTION 

Each year, over 13.7 million people suffer from a stroke and its aftereffects; the elderly are particularly vulnerable. 
Two-thirds of stroke victims experience some degree of motor impairment [1]. Multiple additional conditions and 
traumas, such as Guillain-Barré syndrome and stroke, also result in abnormal neuromotor function. However, many 
people can recover a portion of their lost motor abilities. Thus, neurotherapy can effectively initiate the underlying healing 
process if administered with sufficient intensity, such as an adequate number of repetitions and a high level of mental and 
physical participation on the part of the patient. 

 
Rehabilitation robots, a recent advancement in the fields of physiotherapy and assisted mobility, have piqued the 

interest of many scientists. Robotic upper limb rehabilitation therapy is gaining popularity in the rehabilitation industry 
as technology advances [2]. It is intended to support or expedite the recovery process by assisting with manual therapy, 
which is frequently administered by therapists and requires a great deal of repetition [3]. Research on robots is in its 
infancy due to their complex mechanical construction, the variety of assist techniques they can employ with patients with 
varying degrees of impairment, and their sensitivity to various human conditions. 

 
Therefore, therapy robots may enable clinicians to devote more time to cognitively demanding aspects of therapy, 

such as arranging therapy and observing client interactions. As the therapist concentrates more on planning and analysing 
the course of treatment, and as robot capabilities such as high-intensity training and quantitative analysis are added, it is 
anticipated that therapy quality will improve [4]. 
 

The main objective to develop controller for the rebab robot, therefore to achieve the main objective, the subsequent 
objective is to formulate the mathematical modelling of 2 DOF of upper arm, to develop upper arm rebab robot, evaluate 
the performance of the controller and facilitate the creation of new and more improved devices for physiotherapy robot. 

 
The 2-DOF robot arm consists of two interconnected joints that allow for both rotational and translational movements. 

The PID controller's objective is to control these joints to reach a desired position or trajectory while minimizing any 
errors or deviations. 

 
The Proportional-Integral-Derivative (PID) controller employs three main components to achieve control, 

proportional, integral, and derivative terms [5]. The proportional term produces an output based on the current error 

ABSTRACT – The main objective to develop controller for the rebab robot, therefore to achieve 
the main objective, the subsequent objective is to formulate the mathematical modelling of 2 DOF 
of upper arm, to develop upper arm rebab robot, evaluate the performance of the controller and 
facilitate the creation of new and more improved devices for physiotherapy robot ; therefore, this 
research will investigate rehabilitation robots, it have shown a high potential for improving the 
patient’s mobility, improving their functional movements and assisting in daily activities. However, 
this technology is still an emerging field and suffers from several challenges like compliance control 
and dynamic uncertain caused by the human–robot collaboration. The main challenge addressed 
in this thesis is to develop a controller to the rehab robot and formulate the mathematical modelling 
of 2 DOF of upper arm. Ensure that the exoskeleton robot provides a suitable compliance control 
that allows it to cooperate perfectly with humans even if the dynamic model of the exoskeleton 
robot is uncertain. The PID controller is a widely used control algorithm that aims to regulate a 
system's output by continuously adjusting its input. In the context of a two-degree-of-freedom (2-
DOF) robot arm, the PID controller plays a crucial role in achieving precise and accurate arm 
movements. The Proportional-Integral-Derivative (PID) controller employs three main components 
to achieve control: proportional, integral, and derivative terms. 
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between the desired and actual positions of the robot arm. The integral term accounts for accumulated errors over time, 
enhancing the controller's ability to eliminate steady-state errors. Lastly, the derivative term predicts and responds to the 
rate of change of the error, enabling the controller to react quickly to sudden disturbances. 

 
By tuning the PID controller's gains, a balance between stability and responsiveness can be achieved, allowing the 

robot arm to move smoothly and accurately. The controller continuously adjusts the input signals to the robot arm's 
actuators, ensuring precise control of each joint and enabling the arm to track desired trajectories or perform specific tasks 
effectively. 

RELATED WORK 
Analysis control system based on mathematical modelling, open loop analysis, closed loop analysis until last stage of 

control method application in picture or diagram form, explanation, and flow chart. The best control method is then 
selected to fulfil the objective of this research. Last but not least, the proper planning is necessary to ensure that the desired 
result can be achieved. 

 
Figure 1. Flow chart 

MATHEMATICAL MODELLING 

 
Figure 2. Free Body Diagram in Sagittal Plane 

Forward Kinematic 
The Denavit-Hartenberg (DH) parameters, a set of variables used to derive homogenous transformation matrices across 
the various frames assigned to the robot arm structure, are what govern the forward kinematics of the robotic arm[6]. The 
following definitions describe the DH parameters for a robotic arm with two degrees of freedom: 

Table 1. Forward kinematics 

Link 𝒂𝒂𝒊𝒊 𝜶𝜶𝒊𝒊 𝒅𝒅𝒊𝒊 𝜽𝜽𝒊𝒊 

1 𝐿𝐿1 0 0 𝜃𝜃1 
2 𝐿𝐿2 0 0 𝜃𝜃2 

 
The following is how the homogenous transformation matrices for the 2-DOF robotic arm in Figure 1 are derived: 
 

𝑇𝑇10   =  � 

cos 𝜃𝜃1 −sin 𝜃𝜃1 0  𝐿𝐿1cos 𝜃𝜃1
sin 𝜃𝜃1 cos 𝜃𝜃1 0 𝐿𝐿1 sin 𝜃𝜃1

0 0 1 0
0 0 0 1

 � (1) 
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𝑇𝑇21   =  �  

cos 𝜃𝜃2 −sin 𝜃𝜃2 0  𝐿𝐿2cos 𝜃𝜃2
sin 𝜃𝜃2 cos 𝜃𝜃2 0 𝐿𝐿2 sin 𝜃𝜃2

0 0 1 0
0 0 0 1

  � 

 

(2) 

The position coordinates of the manipulator end-effector is given by: 

𝑃𝑃𝑋𝑋 = 𝐿𝐿1 cos𝜃𝜃1 +  𝐿𝐿2 cos(𝜃𝜃1 + 𝜃𝜃2) 
 (3) 

𝑃𝑃𝑦𝑦 = 𝐿𝐿1 sin𝜃𝜃1 +  𝐿𝐿2   sin(𝜃𝜃1 + 𝜃𝜃2) 
 

(4) 

Inverse Kinematic 
The joint variables of an artificial arm are computed using inverse kinematics based on the position of the end-effector in 
Cartesian space. The mathematical equations of the inverse kinematics problem can be determined algebraically or 
geometrically. For robot arms with numerous degrees of freedom, it is believed that the geometric approach is 
significantly simpler [7]. Using geometric solutions, the inverse kinematics equations for Figure 2's two-degree-of-
freedom robotic limb were solved. 

 
Figure 3. Two degree of freedom Robot Arm Inverse Kinematic 

 
𝑃𝑃𝑋𝑋2 + 𝑃𝑃𝑦𝑦2 = 𝐿𝐿12 + 𝐿𝐿22 + 2 𝐿𝐿1𝐿𝐿2 cos 𝜃𝜃2 

 
(5) 

cos𝜃𝜃2 =
1

2 𝐿𝐿1𝐿𝐿2
 (𝑃𝑃𝑋𝑋2 + 𝑃𝑃𝑦𝑦2 − 𝐿𝐿12 − 𝐿𝐿22 ) 

 

(6) 

sin𝜃𝜃2 = ±  �1− cos𝜃𝜃22  
 

(7) 

 
Therefore, 

𝜃𝜃2 = ± atan
sin𝜃𝜃2
cos 𝜃𝜃2

 

 
(8) 

 
For the joint variable 𝜃𝜃1: 

𝑃𝑃𝑋𝑋 = (𝐿𝐿1 +  𝐿𝐿2 cos𝜃𝜃2) cos𝜃𝜃2 − 𝐿𝐿2 sin𝜃𝜃1 sin 𝜃𝜃2 
 (9) 

𝑃𝑃𝑦𝑦 = 𝐿𝐿2 sin 𝜃𝜃2 cos𝜃𝜃1 + (𝐿𝐿1 +  𝐿𝐿2 cos𝜃𝜃2) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1 
 

(10) 

𝑃𝑃𝑋𝑋2 + 𝑃𝑃𝑦𝑦2 = (𝐿𝐿1 +  𝐿𝐿2 cos 𝜃𝜃2)2 + (𝐿𝐿2 sin 𝜃𝜃2)2 
 

(11) 

∆ sin𝜃𝜃1 = � 
𝐿𝐿1 +  𝐿𝐿2 cos𝜃𝜃2 𝑃𝑃𝑋𝑋

𝐿𝐿2 sin𝜃𝜃2 𝑃𝑃𝑦𝑦
 � 

 

(12) 

∆ cos 𝜃𝜃1 = � 
𝑃𝑃𝑋𝑋 −𝐿𝐿2 sin𝜃𝜃2
𝑃𝑃𝑦𝑦 𝐿𝐿1 +  𝐿𝐿2 cos𝜃𝜃2

 � 

 

(13) 
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sin 𝜃𝜃1 =
∆  sin𝜃𝜃1

∆ =  
(𝐿𝐿1 +  𝐿𝐿2 cos 𝜃𝜃2)𝑃𝑃𝑦𝑦 − (𝐿𝐿2 sin 𝜃𝜃2 )𝑃𝑃𝑋𝑋 

𝑃𝑃𝑋𝑋2 + 𝑃𝑃𝑦𝑦2
 

 

(14) 

cos𝜃𝜃1 =
∆  cos 𝜃𝜃1

∆ =  
(𝐿𝐿1 +  𝐿𝐿2 cos 𝜃𝜃2)𝑃𝑃𝑥𝑥 + (𝐿𝐿2 sin𝜃𝜃2 )𝑃𝑃𝑦𝑦 

𝑃𝑃𝑋𝑋2 + 𝑃𝑃𝑦𝑦2
 

 

(15) 

 
Robot Dynamic 
Force or torque imparted to each joint was calculated using the Eular-Lagrange approach [8], which also served to 

estimate the Lagrangian (L) of the overall system. This method is based on computing the total kinetic and potential 

energy of the robot arm [9]. The partial derivative of the kinetic and potential energy attributes of mechanical systems 

determines the equations of motion in the Euler-Lagrange equation, which is represented as follows. 

ℒ( q(t),𝑞𝑞(𝑡𝑡))̇ =  𝐾𝐾𝐸𝐸( q(t),𝑞𝑞(𝑡𝑡))̇ − 𝑃𝑃𝐸𝐸( q(t) ) 

 
(16) 

� 
𝑥𝑥1
𝑦𝑦1 � = � 𝐿𝐿1 cos𝜃𝜃1

𝐿𝐿1 sin 𝜃𝜃1
 � 

 
(17) 

� �̇�𝑥1�̇�𝑦1
 � = � −𝐿𝐿1 sin𝜃𝜃1

𝐿𝐿1 cos 𝜃𝜃1
 � �̇�𝜃1 

 
(18) 

� 
𝑥𝑥2
𝑦𝑦2 � = � 𝐿𝐿1 cos 𝜃𝜃1 + 𝐿𝐿2 cos(𝜃𝜃1 + 𝜃𝜃2)

𝐿𝐿1 sin 𝜃𝜃1 + 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)  � 

 
(19) 

� �̇�𝑥2�̇�𝑦2
 � = � −𝐿𝐿1 sin 𝜃𝜃1 − 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2) −𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)

𝐿𝐿1 cos𝜃𝜃1 + 𝐿𝐿2 cos(𝜃𝜃1 + 𝜃𝜃2)    𝐿𝐿2 cos(𝜃𝜃1 + 𝜃𝜃2) �  � �̇�𝜃1
�̇�𝜃2

 � 

 
(20) 

Kinetics energy equation:  

𝐾𝐾𝐾𝐾 =  
1
2𝑚𝑚�̇�𝑥

2 

 

(21) 

𝐾𝐾𝐾𝐾1 =  
1
2𝑚𝑚1𝐿𝐿12�̇�𝜃1

2 
 

(22) 

𝐾𝐾𝐾𝐾2 =  
1
2𝑚𝑚2(𝐿𝐿1

2�̇�𝜃1
2) + 𝑚𝑚2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 ��̇�𝜃1

2 + �̇�𝜃1�̇�𝜃2�+
1
2𝑚𝑚2𝐿𝐿22(�̇�𝜃1

2 + 2�̇�𝜃1�̇�𝜃2 + �̇�𝜃2
2) 

 

(23) 

Potential Energy equation can be derived below, 
 

 

𝑃𝑃𝐾𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 

 

(24) 

𝑃𝑃𝐾𝐾1 = 𝑚𝑚1𝑚𝑚𝐿𝐿1 sin𝜃𝜃1 (25) 

 

𝑃𝑃𝐾𝐾2 = 𝑚𝑚2𝑚𝑚[𝐿𝐿1 sin 𝜃𝜃1 + 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)]  
 

 

(26) 

Create the Lagrange-Eular Equation using the Lagrangian(ℒ) to determine the force acting on the robot.  
  

𝜏𝜏𝑖𝑖 =
𝑑𝑑
𝑑𝑑𝑡𝑡
� 
𝜕𝜕ℒ
𝜕𝜕�̇�𝜃𝑖𝑖

 � −
𝜕𝜕ℒ
𝜕𝜕𝜃𝜃𝑖𝑖

 

 

(27) 
 
 

𝜏𝜏1 = (𝑚𝑚1+𝑚𝑚2)𝐿𝐿12𝜃𝜃1̈ + 2𝑚𝑚2 𝐿𝐿1𝐿𝐿2 cos 𝜃𝜃2 (𝜃𝜃1)̈ − 2𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin𝜃𝜃2 ��̇�𝜃1�̇�𝜃2� + 𝑚𝑚2 𝐿𝐿1𝐿𝐿2 cos 𝜃𝜃2 �𝜃𝜃2̈�
− 𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin 𝜃𝜃2 ��̇�𝜃2

2�+ 𝑚𝑚2𝐿𝐿22(𝜃𝜃1)̈ + 𝑚𝑚2𝐿𝐿22(𝜃𝜃2)̈ + (𝑚𝑚1+𝑚𝑚2) 𝑚𝑚 𝐿𝐿1 sin 𝜃𝜃1
+ 𝑚𝑚2 𝑚𝑚 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)  

(28) 
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𝜏𝜏2 = 𝑚𝑚2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 (𝜃𝜃1)̈ − 𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin 𝜃𝜃2 ��̇�𝜃1�̇�𝜃2� + 𝑚𝑚2𝐿𝐿22(𝜃𝜃1)̈ + 𝑚𝑚2𝐿𝐿22�𝜃𝜃2̈� + 𝑚𝑚2 𝑚𝑚 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)  
 

(29) 

Substitute into the torque equation below, 
 

 

𝜏𝜏 = 𝐷𝐷(𝜃𝜃)�̈�𝜃 + 𝐶𝐶(𝜃𝜃, 𝜃𝜃)̇ + 𝑚𝑚(𝜃𝜃) 
 

(30) 

  

𝐷𝐷(𝜃𝜃) = � 
(𝑚𝑚1+𝑚𝑚2)𝐿𝐿12 + 2𝑚𝑚2 𝐿𝐿1𝐿𝐿2 cos 𝜃𝜃2 + 𝑚𝑚2𝐿𝐿22 𝑚𝑚2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 + 𝑚𝑚2𝐿𝐿22

𝑚𝑚2 𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 + 𝑚𝑚2𝐿𝐿22 𝑚𝑚2𝐿𝐿22
 � 

 

(31) 

  

𝐶𝐶�𝜃𝜃, �̇�𝜃� = � 
−2𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin𝜃𝜃2��̇�𝜃1�̇�𝜃2� − 𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin 𝜃𝜃2 ��̇�𝜃2

2�

−𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin 𝜃𝜃2 ��̇�𝜃1�̇�𝜃2�
 � 

 

(32) 

  

𝑚𝑚(𝜃𝜃) = � 
(𝑚𝑚1+𝑚𝑚2) 𝑚𝑚 𝐿𝐿1 sin 𝜃𝜃1 + 𝑚𝑚2 𝑚𝑚 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2) 

𝑚𝑚2 𝑚𝑚 𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)  � 

 

(33) 

Mathematical Modelling of the Actuating system 

 
Figure 4. Brushless motor  

Consists of a mechanical and an electrical component, is started by the Brushless motor. We can use Newton's law, 
Kirchhoff's law, and Ohm's law to explain the electrical and mechanical properties of brushless motors [10]. 

[𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠) −𝐾𝐾𝑏𝑏𝜔𝜔𝑚𝑚] ∗
1

(𝐿𝐿𝑎𝑎𝑠𝑠 + 𝑅𝑅𝑎𝑎) = 𝐼𝐼𝑎𝑎(𝑠𝑠) 

 
(34) 

𝜔𝜔(𝑠𝑠) = 𝐾𝐾𝑡𝑡 ∗ 𝐼𝐼𝑎𝑎(𝑠𝑠) ∗
1

(𝐽𝐽𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑚𝑚) 

 
 

(35) 

The transfer function for a brushless motor is calculated by substituting the properties of an electrical component.  

𝐾𝐾𝑡𝑡
1

(𝐿𝐿𝑎𝑎𝑠𝑠 + 𝑅𝑅𝑎𝑎) [𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠) −𝐾𝐾𝑏𝑏𝜔𝜔𝑚𝑚] = 𝐽𝐽𝑚𝑚𝑠𝑠𝜔𝜔 + 𝑏𝑏𝑚𝑚𝜔𝜔 

 

(36) 

The brushless motor is a second order system, according to this equation. 

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) =
𝜔𝜔(𝑠𝑠)
𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠) =

𝐾𝐾𝑡𝑡
[(𝐿𝐿𝑎𝑎𝐽𝐽𝑚𝑚)𝑠𝑠2 + (𝑅𝑅𝑎𝑎𝐽𝐽𝑚𝑚 + 𝑏𝑏𝑚𝑚𝐿𝐿𝑎𝑎)𝑠𝑠 + (𝑅𝑅𝑎𝑎𝑏𝑏𝑚𝑚 + 𝐾𝐾𝑡𝑡𝐾𝐾𝑏𝑏)] 

(37) 

 
PID Controller Design 

𝐹𝐹 = 𝐾𝐾𝑃𝑃  𝑒𝑒 + 𝐾𝐾𝐷𝐷 �̇�𝑒 + 𝐾𝐾𝐼𝐼 �𝑒𝑒 𝑑𝑑𝑡𝑡 (38) 

Where 𝑒𝑒 = 𝑞𝑞𝑠𝑠 − 𝑞𝑞  , 𝑞𝑞𝑠𝑠 is desired joint angle, 𝐾𝐾𝑠𝑠, 𝐾𝐾𝑖𝑖 and 𝐾𝐾𝑠𝑠 are proportional, integral and derivative gains of the PID 

controller, respectively. These equations can be used to express this PID control legislation [11]. 

𝐹𝐹 = 𝐾𝐾𝑃𝑃  𝑒𝑒 + 𝐾𝐾𝐷𝐷 �̇�𝑒 + 𝜉𝜉 (39) 
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The control action F is substituted to create the closed-loop equation, gives: 

𝐷𝐷(�̈�𝑞) + 𝐶𝐶(�̇�𝑞,𝑞𝑞) + 𝑚𝑚(𝑞𝑞) = 𝐾𝐾𝑃𝑃  𝑒𝑒 + 𝐾𝐾𝐷𝐷 �̇�𝑒 + 𝜉𝜉 (40) 

We can have 

�̈�𝑞 = 𝐷𝐷(𝑞𝑞)−1[−𝐶𝐶(�̇�𝑞,𝑞𝑞)− 𝑚𝑚(𝑞𝑞)] + 𝐹𝐹 (41) 

With 

𝐹𝐹� = 𝐷𝐷(𝑞𝑞)−1𝐹𝐹 ↔ 𝐹𝐹 = 𝐷𝐷(𝑞𝑞) 𝐹𝐹� (42) 

  

So that the system could receive the new (non-physical) input, we detached it.  

𝐹𝐹� = � 𝑓𝑓1𝑓𝑓2
 � 

The physical torque inputs to the system, on the other hand, are 

(43) 

� 𝑓𝑓𝜃𝜃1𝑓𝑓𝜃𝜃2
 � = 𝐵𝐵(𝑞𝑞) � 𝑓𝑓1𝑓𝑓2

 � (44) 

The error signal of the system are  

𝑒𝑒(𝜃𝜃1) = 𝜃𝜃1𝑓𝑓 − 𝜃𝜃1 (45) 

𝑒𝑒(𝜃𝜃2) = 𝜃𝜃2𝑓𝑓 − 𝜃𝜃2 (46) 

where 𝜃𝜃𝑓𝑓 is the final positions. The final position is determined by  

� 
𝜃𝜃1𝑓𝑓
𝜃𝜃2𝑓𝑓

 � = �

𝜋𝜋
2
−
𝜋𝜋
2

� 
(47) 

The starting position is provided by  

𝜃𝜃𝑜𝑜 = �
−
𝜋𝜋
2
𝜋𝜋
2

� 
(48) 

So, in our case:  

𝑓𝑓1 = 𝐾𝐾𝑠𝑠1�𝜃𝜃1𝑓𝑓 − 𝜃𝜃1� + 𝐾𝐾𝐷𝐷1𝜃𝜃1̇ + 𝐾𝐾𝐼𝐼1 �𝑒𝑒(𝜃𝜃1)𝑑𝑑𝑡𝑡 (49) 

𝑓𝑓2 = 𝐾𝐾𝑠𝑠2�𝜃𝜃2𝑓𝑓 − 𝜃𝜃2� + 𝐾𝐾𝐷𝐷2𝜃𝜃2̇ + 𝐾𝐾𝐼𝐼2 �𝑒𝑒(𝜃𝜃2)𝑑𝑑𝑡𝑡 (50) 

The entire set of control system equations would be  

�̈�𝑞 = 𝐷𝐷(𝑞𝑞)−1[−𝐶𝐶(�̇�𝑞,𝑞𝑞)− 𝑚𝑚(𝑞𝑞)] + 𝐹𝐹� (51) 

With  

𝐹𝐹� = � 𝑓𝑓1𝑓𝑓2
 � = � 

𝐾𝐾𝑠𝑠1�𝜃𝜃1𝑓𝑓 − 𝜃𝜃1� + 𝐾𝐾𝐷𝐷1𝜃𝜃1̇ + 𝐾𝐾𝐼𝐼1 �𝑒𝑒(𝜃𝜃1)𝑑𝑑𝑡𝑡

𝐾𝐾𝑠𝑠2�𝜃𝜃2𝑓𝑓 − 𝜃𝜃2� + 𝐾𝐾𝐷𝐷2𝜃𝜃2̇ + 𝐾𝐾𝐼𝐼2 �𝑒𝑒(𝜃𝜃2)𝑑𝑑𝑡𝑡
 � 

(52) 

Recalling the physical actual torques  

� 𝐹𝐹𝜃𝜃1𝐹𝐹𝜃𝜃2
 � = 𝐷𝐷(𝑞𝑞) � 𝑓𝑓1𝑓𝑓2

 � (53) 

Then,  

𝜉𝜉1 = 𝐾𝐾𝐼𝐼1 �𝑒𝑒(𝜃𝜃1)𝑑𝑑𝑡𝑡 ↔ 𝜉𝜉1̇ = 𝐾𝐾𝐼𝐼1 𝑒𝑒1  (54) 

𝜉𝜉2 = 𝐾𝐾𝐼𝐼2 � 𝑒𝑒(𝜃𝜃2)𝑑𝑑𝑡𝑡 ↔ 𝜉𝜉2̇ = 𝐾𝐾𝐼𝐼2 𝑒𝑒2 

 

(55) 
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The system equation is 

� 𝜃𝜃1̈
𝜃𝜃2̈

 � = 𝐷𝐷(𝑞𝑞)−1[ −𝐶𝐶(�̇�𝑞,𝑞𝑞)− 𝑚𝑚(𝑞𝑞)] + � 
𝐾𝐾𝑠𝑠1�𝜃𝜃1𝑓𝑓 − 𝜃𝜃1� + 𝐾𝐾𝐷𝐷1𝜃𝜃1̇ + 𝜉𝜉1̇
𝐾𝐾𝑠𝑠2�𝜃𝜃2𝑓𝑓 − 𝜃𝜃2� + 𝐾𝐾𝐷𝐷2𝜃𝜃2̇ + 𝜉𝜉2̇ 

 � 
(56) 

EXPERIMENTAL RESULTS 

 
Figure 5. Simulink Design 

 
Figure 6. Upper Limb System 
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Table 2. This is the combination graph of desired, without controller, PI, PD and PID in Simulation  

 
 

Table 3. This error and RMSE table is based on links 1 and 2 

Error 
 Simulation (𝜺𝜺)(%) 
Link Link 1 Link 2 
Without 
Controller 

22.44 29.53 

PI 1.37 0.86 
PD 0.0056 0.0044 
PID 0.0024 0.0026 

RMSE 
 Simulation (𝜺𝜺)(%) 
Link Link 1 Link 2 
Without 
Controller 

28.88 25.4124 

PI 1.4434 0.7732 
PD 0.0195 0.0421 
PID 0.0093 0.0100 

 
Through the error and RMSE table, we can see that the PID Controller's error value and the RMSE value is the least. 
 
The response without a controller demonstrates the limitations of the motor's inherent dynamics. The inability to achieve 
the desired behaviour indicates the need for a control mechanism to regulate the motor's speed or position accurately. 
Without a controller, the system may experience significant errors, sluggish response times, and instability, making it 
unsuitable for precise rehabilitation movements. 
 
With a PI controller, the system's response shows improvement compared to the case without a controller. The integral 
action of the PI controller allows for the gradual elimination of steady state errors, enabling the system to track the desired 
response more accurately. However, the observed damping suggests a trade off between achieving accurate tracking and 
the speed of response. It may be necessary to fine tune the PI controller's gains to strike a balance between accuracy and 
responsiveness. 
 
The response with a PD controller exhibits similar behaviour to the PID controller, showcasing the benefits of 
incorporating derivative action. The derivative term allows for quicker response times by considering the rate of change 
of the error signal. Consequently, the PD controller offers improved damping, reducing overshoot and oscillations in the 
system's response. It provides more precise tracking of the desired response compared to the PI controller. 
 

SIMULATION 
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The response with a PID controller integrates the proportional, integral, and derivative actions to provide a comprehensive 
control solution. It achieves accurate tracking of the desired response, faster response times, reduced steady state errors, 
and improved damping. By balancing the three control actions, the PID controller can effectively regulate the motor's 
speed or position in the rehab robot. Fine tuning the gains of the PID controller can further enhance its performance and 
ensure the desired response is achieved optimally. 
 
In summary, the comparison highlights the necessity of a controller for precise control of the motor in a rehab robot. 
While the response without a controller exhibits limitations, the addition of a control mechanism significantly improves 
the system's performance. The PI controller reduces steady state errors but may exhibit damping, while the PD and PID 
controllers offer enhanced damping and faster response times. The PID controller, leveraging all three control actions, 
provides the most comprehensive solution by achieving accurate tracking, reducing errors, and ensuring stability. 
 
It is crucial to consider the specific requirements of the rehab robot, such as the desired response characteristics, sensitivity 
to disturbances, and trade offs between accuracy and responsiveness. Through iterative simulations and fine tuning of the 
controller parameters, the most suitable control method and its associated gains can be determined to achieve the desired 
response effectively and facilitate successful rehabilitation movements. 

CONCLUSION 
In conclusion, PID controller plays a crucial role in achieving precise and accurate arm movements. It can be concluded 
that a variety of factors, including system dynamics, tuning parameters, setpoints, simulation time, sample rate, and 
sensitivity to noise or disturbances, can be attributed to the observation that the PID and PD controllers produce similar 
results while the PI controller displays damping behavior in the simulation of position control for two DC motor with an 
encoder. A greater understanding of the behaviours of the controllers will result from looking into and addressing these 
factors, which will also make it easier to optimize them for the application in question. 
 
As a result, the main objective of developing a controller for the rehab robot and subsequent objective have been 
successfully achieved. PID Controller exhibits the best performance. Choosing a PID controller is therefore the best 
option. 
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