
MEKATRONIKA
e-ISSN: 2637-0883
VOL. 5, ISSUE 2, 23 – 31
DOI: https://doi.org/10.15282/mekatronika.v5i2.9973

*CORRESPONDING AUTHOR | M. Zulfahmi Toh |  zulfahmi@umpsa.edu.my 23
© The Authors 2020. Published by Penerbit UMP. This is an open access article under the CC BY license.

ORIGINAL ARTICLE

© The Authors 2023. Published by Penerbit UMPSA. This is an open access article under the CC BY-NC 4.0 license.

Efficiency and Accuracy of Scheduling Algorithms for Final Year Project Evaluation
Management System
Loo Chang Herng1, M. Zulfahmi Toh1,*, Ahmad Fakhri Ab. Nasir1, Nur Shazwani Kamaruddin1, and Nur Hafieza Ismail1
1Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan Pahang, Malaysia.

ARTICLE HISTORY
Received: 2nd Sept 2023
Revised: 20th Sept 2023
Accepted: 6th Oct 2023
Published: 24th Oct 2023

KEYWORDS
Scheduling Algorithm
Genetic Algorithm
Hill Climbing Algorithm
PSO Algorithm

INTRODUCTION

The Final Year Project (FYP) represents a vital component of higher education, being a mandatory requirement for
many courses in universities worldwide. Successfully completing an FYP contributes to the development of students' soft
skills, such as creative problem-solving and effective time management [1]. Nevertheless, the substantial volume of FYPs
to be managed poses a daunting challenge for instructors, particularly during the evaluation phase [2]. The manual
management of student project evaluations is both time-consuming and inefficient [3]. For instance, creating an evaluation
schedule involving a large number of evaluators and students is a laborious task [3,4]. This significantly impacts the
efficiency of the FYP coordinator, as they must manually handle and cross-reference all schedules with the evaluators'
timetables. Within a final year project evaluation management system, the management of evaluation schedules stands as
one of the primary modules. Automating the scheduling of evaluation slots not only conserves a significant amount of
time for the final year project coordinator but also mitigates the risk of human errors such as scheduling conflicts,
unavailability of evaluators, or the repetition of students in multiple time slots.

The evaluation process for a final year project is intricate and can be assessed from various perspectives, as outlined
in reference [5]. It can be divided into multiple stages, including document evaluation, final product assessment, and
presentation evaluation. Furthermore, the manual arrangement of the evaluation schedule presents its own set of
challenges due to numerous parameters such as venue, time slots, students, evaluators, and constraints like evaluator
availability and student-evaluator relationships. These constraints and parameters contribute to a more complex
algorithmic concept, necessitating extended algorithmic logic to address this issue. In a later section, we will delve into
the study of three scheduling algorithms: genetic algorithm, hill climbing algorithm, and particle swarm optimization.
These algorithms have been selected for their widespread use in tackling scheduling problems, as indicated in reference
[6].

PROBLEM DESCRIPTION
Handling schedules that involve numerous parameters and extensive datasets can be a challenging task, especially

when done manually. Therefore, the implementation of scheduling algorithms becomes essential for managing the
presentation schedule within the final year project evaluation management system. This approach not only accelerates the
scheduling process but also alleviates the workload of the final year project coordinator while minimizing the potential
for human errors. It is imperative to consider all parameters and constraints when generating the schedule. The choice of
scheduling algorithm holds great significance as each algorithm possesses its own set of strengths and weaknesses.
Consequently, a comprehensive study of three scheduling algorithms, selected from among the most commonly utilized
ones, becomes essential for determining the optimal scheduling algorithm to be integrated into the system.

ABSTRACT – Scheduling algorithms play a crucial role in optimizing the efficiency and precision
of scheduling tasks, finding applications across various domains to enhance work productivity,
reduce costs, and save time. This research paper conducts a comparative analysis of three
algorithms: genetic algorithm, hill climbing algorithm, and particle swarm optimization algorithm,
with a focus on evaluating their performance in scheduling presentations. The primary goal of this
study is to assess the effectiveness of these algorithms and identify the most efficient one for
handling presentation scheduling tasks, thereby minimizing the system's response time for
generating schedules. The research takes into account various constraints, including evaluator
availability, student and evaluator affiliations within research groups, and student-evaluator
relationships where a student cannot be supervised by one of the evaluators. Considering these
critical parameters and constraints, the algorithm assigns presentation slots, venues, and two
evaluators to each student without encountering scheduling conflicts, ultimately producing a
schedule based on the allocated slots for both students and evaluators.

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

24 journal.ump.edu.my/mekatronika ◄

Parameters and constraints serve as fundamental elements within a scheduling algorithm, as noted in reference [7]. It
is crucial to account for all these parameters and constraints, and this represents the most challenging aspect of creating
a schedule without conflicts, as highlighted in references [8] through [10]. The parameters within the schedule encompass
students, time slots, classroom venues, and the assignment of two evaluators to evaluate a single student in a room
concurrently. The schedule is subject to several constraints, which include:

1. The student undergoing evaluation cannot have one of the evaluators as their supervisor.
2. Each student must receive evaluations from two evaluators belonging to the same research group.
3. The time slot allocated to an evaluator must not overlap with their teaching timetable.
4. The schedule must remain free of conflicts in terms of venue, time slot, and the presence of two evaluators.

METHODOLOGY
Genetic Algorithm

The genetic algorithm is widely applied across various sectors due to its adaptability, as outlined in reference [11]. It
employs chromosome arrangements to represent different instances of a variable and employs this approach to establish
a model for machine learning. It further enhances the output by addressing any conflicts or inadequacies. The process
involves the use of mutation and crossover methods to refine the combinations in the next generation, based on defined
probabilities [12]. When the fitness of a particular generation reaches a value of 1, indicating a perfect fit with the expected
output, the reproduction of the next generation is halted, and the output represents the best solution. As a result, the genetic
algorithm guarantees the identification of the best solution, ensuring that the generated schedule is free from conflicts.
The pseudocode for the genetic algorithm in presentation scheduling is provided below.

ALGORITHM 1: GENETIC ALGORITHM
 Input: List of students, venue, timeslot, evaluator1, and evaluator2
 Output: Assigned schedule for each student
 Initialization of variables: Assign 50 to NUM_GENERATIONS,

POPULATION_SIZE

1 function Tournament_selection(parameters: population)
2 Randomly select 10 individuals from population.
3 foreach selected individual do
4 if best is null or fitness of the individual > fitness of best do
5 best = individual;
6 end if
7 end foreach
8 return best;
9 end function
10

11 function fitness (parameters: individual)
12 Initialize conflicts to 0;
13 get global variable of students.
14 foreach student in students as student1 do
15 foreach next student in students as student2 do
16 if (evaluator1 and evaluator 2 of student1 is same) or (evaluator1 and

evaluator 2 of student2 is same) do
17 conflicts += 1;
18 else if timeslot of student1 and student2 is same do
19 if (venue of student1 and student2 is same) or (evalautor1 of stu-

dent1 and student2 is same) or (evaluator2 of student1 and
 student2 is same) or (evaluator1 of student1 and evaluator2 of

student2 is same) or (evaluator2 of student1 and evaluator1 of
student2 is same) do

20 conflicts += 1;
21 end if
22 end if
23 end foreach
24 end foreach
25 return 1 / (conflicts + 1);
26 end function
27

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

25 journal.ump.edu.my/mekatronika ◄

28 function crossover (parameters: parent1, parent2)
29 Get global variable of students.
30 foreach student in students do
31 if random number >= 0.5 do
32 assign all properties of parent1 to a child;
33 else
34 assign all properties of parent2 to a child;
35 end if
36 end foreach
37 return child;
38 end function
39

40 function mutation (parameters: individual)
41 Get global variable of students, timeslots, venues, evalautor1, and evalu-

ator2;
42 Initialize student as random selected student from array of students;
43 foreach student in students do
44 Assign random selected properties to individual[student];
45 end foreach
46 return individual;
47 end function
48

49 Generation of an 2-dimension array population from array of evaluator1,
evaluator2, students, timeslot, and venue;

50 for generation = 0 to NUM_GENERATIONS do
51 Declare an empty array, new_population;
52 while count of new_population is less than POPULATION_SIZE do
53 parent1 = call function tournament_selection(population);
54 parent2 = call function tournament_selection(population);
55 child = call function crossover(parent1, parent2);
56 if random number < 5 then
57 child = mutation(child);
58 end if
59 push child into new_population;
60 end while
61 population = new_population;
62 foreach individual in population do
63 if fitness(individual) 1 do
64 break;
65 end if
66 end foreach
67 end for
68 Declare variable best_individual;
69 foreach individual in population do
70 if best_individual is null or fitness(individual) > fitness(best_individual)

then
71 best_individual = individual;
72 end if
73 end foreach
74 end

The genetic algorithm has the potential to yield optimal results, albeit at the cost of demanding substantial

computational power due to its high algorithmic complexity. This complexity arises from the presence of nested for loops,
which significantly extend the execution time. Conversely, the genetic algorithm is relatively straightforward to
comprehend and apply to real-world problems, requiring less time and effort for implementation in scheduling tasks.

Hill Climbing Algorithm
The Hill Climbing algorithm is a commonly used local search strategy that focuses on refining the search for an

optimal solution based on an initial solution, as mentioned in reference [13]. Starting with a randomly generated initial
solution, it proceeds to adjust the combination and assesses the resulting solution using a fitness function. Crashes or

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

26 journal.ump.edu.my/mekatronika ◄

conflicts are identified through this fitness function and are evaluated by assigning a fitness value. It's worth noting that
the specific method and algorithm used for evaluating fitness can vary depending on the problem at hand, which can
impact the algorithm's efficiency [14]. Hill Climbing algorithm can also be employed in conjunction with other
optimization algorithms such as simulated annealing or particle swarm optimization to enhance the quality of the solutions
produced [15], [16]. The fundamental concept of implementing the Hill Climbing algorithm for this problem can be
illustrated in the following pseudocode.

ALGORITHM 2: HILL CLIMBING ALGORITHM

 Input: List of students, venues, timeslots, evaluator1, and evaluator2
 Output: Assigned schedule for each student
 Initialization of variables: Assign zero to best_fitness, iterations, assign 20

to max_iterations

1 function fitness_function(parameter: timetable
2 Assign zero to conflict.
3 foreach student1 in timetable do
4 foreach student2 in timetable do
5 If (student1 not equal to student2) and (timeslot of student1 and

student2 is same) and (venue of student1 and student2 is same) do
6 conflicts += 1
7 else if timeslot of student1 and student2 is same and venue of stu-

dent1 and student2 is different do
8 if (evaluator1 of student1 and student2 is same) or (evaluator1 of

student1 and evaluator2 of student2 is the same) or (evaluator2
of student1 and evaluator1 of student2 is the same) or (evalua-
tor2 of student1 and student2 is the same) do

9 conflicts += 1
10 end if
11 end if
12 end foreach
13 end foreach
14 return 1 / (conflicts + 1);
15 end function
16

17 while best fitness < 1 do
18 if iterations == 0 do
19 Initialize a new timetable;
20 Assign the timetable to best_timetable;
21 Assign fitness(best_timetable) to best_fitness;
22 end if
23 Initialize an empty array, neighboring_timetables;
24 foreach student details in timetable do
25 foreach timeslot in timeslots do
26 if timeslot of the student is not equal to the timeslot then
27 Assign current timetable to neighboring_timetable;
28 Assign current timeslot to timeslot of the student;
29 Push the generated neighbouring_timetable into neighbor-

ing_timetables array;
30 end if
31 end foreach
32 foreach evaluator in evaluator1 do
33 foreach evaluator in evaluator2 do
34 if evaluator1 is not equal to evaluator2 then
35 Assign current timetable to neighboring_timetable;
36 Assign current evaluator1 to evaluator1 of the student;
37 Assign current evaluator2 to evaluator2 of the student;
38 Push the generated neighbouring_timetable into neighbor-

ing_timetables array;
39 end if
40 end foreach

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

27 journal.ump.edu.my/mekatronika ◄

41 end foreach
42 foreach venue in venues do
43 if venue of the student is not equal to the current venue then
44 Assign current timetable to neighboring_timetable;
45 Assign current venue to venue of the student;
46 Push the generated neighbouring_timetable into neighbor-

ing_timetables array;
47 end if
48 end foreach
49 end foreach
50 Initialize an empty array, neighboring_fitnesses;
51 foreach neighboring_timetable in neighbouring_timetables do
52 Push fitness_function(neighbouring_timetable) into neighbouring_fit-

nesses array;
53 end foreach
54 Assign the maximum value of fitness in the neighbouring_fitnesses array

to a variable best_neighbouring_fitness;
55 if best_neighbouting_fitness is higher than current fitness then
56 Assign the timetable with maximum fitness to best_timetable;
57 end if
58 if fitness == 1 then
59 break;
60 end if
61 Assign the best_timetable to current timetable;
62 Iterations = iterations + 1;
63 if iterations == max_iterations do
64 Assign 0 to iterations;
65 end if
66 end while
67 end

With some adjustments made to the original algorithm, the Hill Climbing algorithm consistently produced conflict-

free timetables. However, it's important to note that the algorithm's complexity increased significantly due to the presence
of nested foreach loops, and these loops repeated multiple times. This complexity leads to exponential increases in
execution time as the dataset size grows.

Partical Swarm Optimization
Particle Swarm Optimization (PSO) is an optimization technique inspired by the swarming behavior observed in

nature, such as fish schooling, as described in reference [17]. This approach has proven to be effective in addressing real-
world optimization problems spanning various fields, including robotics, wireless networks, operating systems,
classification, and scheduling issues, as mentioned in reference [18]. In PSO, an initial solution is randomly assigned,
referred to as the "position". This solution evolves and improves through velocity adjustments, which update the particle's
position and generate a new solution, as outlined in reference [19]. Subsequently, an evaluation function is employed to
assess this solution for conflicts or crashes. This iterative process continues until the algorithm arrives at the best solution
for the given problem. The framework for updating a particle's position can be represented as follows.

𝑥𝑥𝑘𝑘+1𝑖𝑖 = 𝑥𝑥𝑘𝑘𝑖𝑖 + 𝑣𝑣𝑘𝑘+1𝑖𝑖 (1)

where the 𝑥𝑥𝑘𝑘+1𝑖𝑖 is the position of particle 𝑖𝑖 at iteration 𝑘𝑘 + 1 after the changes of the velocity vector 𝑣𝑣𝑘𝑘+1𝑖𝑖 . Updated

particles will be the next solution and the process continues until the best solution is generated. The fundamental concept
pseudocode for PSO is provided as follows.

ALGORITHM 3: PARTICLE SWARM OPTIMIZATION
 Input: List of students, venues, timeslots, evaluators1, and evaluators2
 Output: Assigned schedule for each student
 Initialization of variables: Assign 10 to num_particles, 200 to max_itera-

tions, 1.5 to c1, 2.0 to c2, 0.7 to w

1 function evaluate (parameters: position)
2 Get global variables timeslots, venues, evaluators1, evaluators2;

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

28 journal.ump.edu.my/mekatronika ◄

3 Initialize an empty array, schedule;
4 for i = 0; i < max count of position; i +=4 do
5 timeslot = timeslots[position[i]];
6 room = rooms[position[i+1]];
7 evaluator1 = evaluators1[position[i+1]];
8 evalautor2 = evaluators2[position[i+1]];
9 Assign timeslot, room, evaluator1, evaluator2 into an array and assign

to schedule.
10 end for
11 Initialize zero to cost.
12 for i = 0 to max count of schedule do
13 Initialize conflicts as 0.
14 for j = i + 1 to max count of schedule do
15 if evaluator1 and evaluator2 of studenti is the same or evaluator1

and evaluator2 of studentj is the same do
16 conflicts ++
17 else if (evaluator1 of studenti and evaluator 2 of studentj is the same)

or (evaluator2 of studenti and evaluator1 of studentj is the same) or
(evaluator1 of studenti and evaluator1 of studentj is the same) or
(evaluator2 of studenti and evaluator2 of studentj is the same) or
(room of studenti and studentj is the same) do

18 if timeslot of studenti and studentj is the same do
19 conflicts ++;
20 end if
21 end if
22

23 cost += conflicts;
24 end for
25 return 1 / (cost + 1);
26 end function
27

28 function generate_particles()
29 Initialize an empty array, particles;
30 Get global variables timeslots, venues, evaluators1, evaluators2,

num_particles.
31 for i = 0 to num_particles do
32 initialize an empty array, position;
33 for j = 0 to length of students array do
34 Assign random element of timeslots to position array;
35 Assign random element of rooms to position array;
36 Assign random element of evaluators1 to position array;
37 Assign random element of evaluators2 to position array;
38 end for
39 Initiate an array, particles and assign an array of position = position, ve-

locity = each number from 0 to 80, best_position = position, best_fitness
= evaluate(position), fitness = evaluate(position) to it.

40 Assign position array to particles[position] and particle[best_position]
41 Assign an array of size 40 with all values of 0 to particles[velocity]
42 Assign evaluate(position) to particles[fitness] and particles[best_fit-

ness]
43 end for
44 return particles;
45 end function
46

47 Assign generate_particles() to a variable, particles.
48 Assign position of first array of particles to best_position.
49 Assign fitness of first array of particles to best_fitness.
50 Assign zero to iterations.
51

52 while best_fitness less than 1 do

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

29 journal.ump.edu.my/mekatronika ◄

53 if best_fitness < 0 and iterations == 100 do
54 Assign iterations to 0.
55 Call generate_particles function and assign the result to particles.
56 Assign position of first array of particles to best_position.
57 Assign fitness of first array of particles to best_fitness;
58 end if
59 for i = 0 to num_particles do
60 for j = 0 to (4 * count of students) do
61 Assign 2 random number to r1 and r2.
62 particles[i][velocity][j] = (w * particles[i][velocity][j]) + (c1 * r1 *

(particles[i][best_position][j] – particles[i][position][j])+ (c2 * r2 *
(best_position[j] – particles[i][position][j])

63 end for
64 for j = 0 to (4 * count of students) do
65 particles[i][position][j] += particles[i][velocity][j];
66 if j%4 == 0 and particles[i][position][j] >= max count of timeslots do
67 particles[i][position][j] = max count of timeslots – 1;
68 else if j%4 == 1 and particles[i][position[j] >= max count of venues

do
69 particles[i][position][j] = max count of venues – 1;
70 else if j%4 == 2 and particles[i][position][j] >= max count of evalu-

ators1 do
71 particles[i][position][j] = max count of evaluators1 – 1;
72 else if j%4 == 3 and particles[i][position][j] >= max count of evalu-

ators2 do
73 particles[i][position][j] = max count of evaluators2 – 1;
74 else if particles[i][position][j] < 0 do
75 Assign zero to particles[i][position][j].
76 end if
77 end for
78 Assign evaluate(particles[i][position]) to particles[i][fitness].
79 if particles[i][fitness] > particles[i][best_fitness] then
80 Assign particles[i][position] to particles[i][best_position].
81 Assign particles[i][fitness] to particles[i][best_fitness].
82 end if
83 if particles[i][fitness] > best_fitness then
84 best_position = particles[i][position]
85 best_fitness = particles[i][fitness]
86 end if
87 if best_fitness == 1 then
88 break;
89 end if
90 iterations += 1;
91 end for
92 end while
93 end

The PSO algorithm consistently delivers optimal results, ensuring the avoidance of crashes in any parameter. In terms

of algorithm complexity, it shares similarities with the genetic algorithm and hill climbing algorithm, as they all involve
nested for loops. However, PSO features fewer nested loops, leading to faster execution times. While PSO is more
intricate than the genetic algorithm, making it somewhat challenging to grasp and apply to real-world problems, a
successful implementation can lead to substantial improvements in scheduling efficiency.

EXPERIMENTAL RESULTS
The three algorithms discussed above have been compared and summarized in a Table 1, considering various factors

such as their ability to guarantee the best results, computational power requirements, ease of understanding the algorithm,
average execution time in seconds, and the difficulty of implementation. All three algorithms were capable of generating
timetables without encountering issues with evaluators, time slots, and venues. However, their performance varied, with
execution times ranging from 0.17 seconds to 0.85 seconds, as determined from the average execution time over 20 runs

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

30 journal.ump.edu.my/mekatronika ◄

of these algorithms. Additionally, factors like ease of understanding and the complexity of implementation were taken
into account, as these aspects can influence the timeline during the development phase.

Table 1. Comparison of the scheduling algorithms.
Properties/Algorithms Genetic Algorithm Hill Climbing Algorithm PSO
Best Result Guarantee Yes Yes Yes
Computational Power High High Medium
Average Execution 0.8530 0.3632 0.1725
Understandibility Easy Medium High
Implementation Easy Medium High

In Figure 1, the Particle Swarm Optimization algorithm exhibits the shortest average execution time among the three

scheduling algorithms. However, it is not as consistent as the Genetic Algorithm, with variations in execution times
ranging from approximately 0.6 seconds to below 0.3 seconds. The Genetic Algorithm, on the other hand, takes more
time to schedule for 10 students but demonstrates greater stability compared to the other two algorithms, with execution
times ranging between 0.8 to 1 second. As for the Hill Climbing Algorithm, its execution time is generally lower than
that of the Genetic Algorithm but higher than Particle Swarm Optimization. However, its performance is also less stable,
with the widest execution time range, spanning from 0.1 second to 1.3 seconds.

Figure 1. Execution time of the scheduling algorithms in 20 attempts.

CONCLUSION
Scheduling algorithms have had a significant impact across numerous fields, enhancing work efficiency and precision

while reducing both time and labor costs. A well-designed scheduling algorithm can excel in generating schedules, even
when dealing with a large number of parameters and extensive datasets, all in a remarkably short time. Among the
scheduling algorithms examined in this study, the Particle Swarm Optimization algorithm emerges as the top performer,
exhibiting the shortest execution time and greater stability compared to the Hill Climbing algorithm. Despite its potential
complexity in understanding and implementation compared to the Genetic Algorithm and Hill Climbing Algorithm,
investing effort into exploring Particle Swarm Optimization is highly worthwhile. Successfully integrating Particle
Swarm Optimization into a scheduling system has the potential to enhance its overall performance significantly.

While the Genetic Algorithm and Hill Climbing Algorithm did not perform optimally in this paper, with the Genetic
Algorithm having a longer average execution time and the Hill Climbing Algorithm exhibiting instability, it is essential
to consider potential factors such as algorithm design. Complex algorithm structures can indeed impact execution times,
or these algorithms may not be well-suited for this particular scheduling problem. Further research aimed at refining and
improving these algorithms should be pursued to explore their potential applicability in addressing scheduling challenges.

REFERENCES
[1] M. W. Rodrigues, S. Isotani, and L. E. Zarate, “Educational Data Mining: A review of evaluation process in the e-learning,”

Telematics and Informatics, vol. 35, no. 6, pp. 1701–1717.
[2] X. Zhao, N. Liu, S. Zhao, J. Wu, K. Zhang, and R. Zhang, “Research on the Work-rest Scheduling in the Manual Order

Picking Systems to Consider Hu- man Factors,” J Syst Sci Syst Eng, vol. 28, no. 3, pp. 344–355, Jun. 2019, doi:
10.1007/s11518-019-5407-y.

[3] M. J. Pahlevanzadeh, F. Jolai, F. Goodarzian, and P. Ghasemi, “A new two- stage nurse scheduling approach based on

Loo et al. │ Mekatronika │ Vol. 5, Issue 2 (2023)

31 journal.ump.edu.my/mekatronika ◄

occupational justice considering as- surance attendance in works shifts by using Z-number method: A real case study,” RAIRO
- Operations Research, vol. 55, no. 6, pp. 3317–3338, Nov. 2021, doi: 10.1051/ro/2021157.

[4] M. V. Rane, V. M. Apte, V. N. Nerkar, M. R. Edinburgh, and K. Y. Rajput, “Automated timetabling system for university
course,” in 2021 International Conference on Emerging Smart Computing and Informatics, ESCI 2021, Insti- tute of Electrical
and Electronics Engineers Inc., Mar. 2021, pp. 328–334. doi: 10.1109/ESCI50559.2021.9396906.

[5] M. W. Rodrigues, S. Isotani, and L. E. Zarate, “Educational Data Mining: A review of evaluation process in the e-learning,”
Telematics and Informatics, vol. 35, no. 6, pp. 1701–1717

[6] H. Alghamdi, T. Alsubait, H. Alhakami, and A. Baz, “A Review of Optimiza- tion Algorithms for University Timetable
Scheduling,” 2020. [Online]. Avail- able: www.etasr.com

[7] R. Ganguli and S. Roy, “A Study on Course Timetable Scheduling using Graph Coloring Approach,” 2017. [Online].
Available: http://www.ripublication.com

[8] P. G. Daniel, Dr. A. O. Maruf, and Dr. B. Modi, “Paperless Master Timetable Scheduling System,” Int J Appl Sci Technol,
vol. 8, no. 2, 2018, doi: 10.30845/ijast.v8n2a7.

[9] C. Kalu, S. Ozuomba, and S. Isreal, “Development of Mechanism for Handling Conflicts and Constraints in University
Timetable Management System,” Com- munications on Applied Electronics, vol. 7, no. 24, pp. 22–32, Dec. 2018, doi:
10.5120/cae2018652804.

[10] [O. Abayomi-Alli, A. Abayomi-Alli, S. Misra, R. Damasevicius, and R. Maskeliunas, “Automatic Examination Timetable
Scheduling Using Particle Swarm Optimization and Local Search Algorithm,” in Data, Engineering and Applications: Volume
1, R. K. Shukla, J. Agrawal, S. Sharma, and G. Singh Tomer, Eds., Singapore: Springer Singapore, 2019, pp. 119–130. doi:
10.1007/978-981-13-6347-4_11.

[11] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl,
vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.

[12] A. Amindoust, M. Asadpour, and S. Shirmohammadi, “A hybrid genetic algo- rithm for nurse scheduling problem considering
the fatigue factor,” J Healthc Eng, vol. 2021, 2021, doi: 10.1155/2021/5563651.

[13] S. H. Jacobson, “Analyzing the Performance of Generalized Hill Climbing Al- gorithms *,” 2004. [Online]. Available:
http://www.insead.edu/facul- tyresearch/tm/yucesan

[14] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function design to improve evolutionary structural testing.”
[15] N. Dordaie and N. J. Navimipour, “A hybrid particle swarm optimization and hill climbing algorithm for task scheduling in

the cloud environments,” ICT Express, vol. 4, no. 4, pp. 199–202, Dec. 2018, doi: 10.1016/j.icte.2017.08.001.
[16] A. Lim, B. Rodrigues, and X. Zhang, “A simulated annealing and hill-climbing algorithm for the traveling tournament

problem,” Eur J Oper Res, vol. 174, no. 3, pp. 1459–1478, Nov. 2006, doi: 10.1016/j.ejor.2005.02.065.
[17] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural

Networks, IEEE, 1995, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.
[18] A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Archives of Computational

Methods in Engineering, vol. 29, no. 5, pp. 2531–2561, Aug. 2022, doi: 10.1007/s11831-021-09694-4.
[19] G. Venter and J. Sobieszczanski-Sobieski, “Particle Swarm Optimization,” AIAA Journal, vol. 41, no. 8, Aug. 2003,

Accessed: Apr. 25, 2023. [Online]. Available: https://arc.aiaa.org/doi/pdf/10.2514/2.2111?download=true

	Introduction
	PROBLEM DESCRIPTION
	METHODOLOGY
	Genetic Algorithm
	Hill Climbing Algorithm
	Partical Swarm Optimization

	Experimental Results
	Conclusion
	References

