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This study examines the unsteady Fe3O4-CoFe2O4/H2O flow over a shrinking disk using 
both procedures (numerical and statistical). The respective boundary layer model is 
first transformed into a set of ODEs (ordinary differential equations) using the similarity 
transformations, and then solved numerically using the bvp4c solver. The duality of 
solutions is presented within specific use of the parameters such as magnetic field, 
suction strength and volumetric concentration of hybrid nanoparticles. From the 
numerical results, the velocity profile increases as the suction and magnetic 
parameters slightly increase. However, the temperature profile shows a reverse trend 
as compared to the velocity profile. Meanwhile, the justification of present physical 
factors (magnetic parameter, suction parameter) whether they are significant or not 
on the development of responses is tested using the model in Minitab. In addition, the 
generated response equation is also beneficial in predicting the flow and thermal 
distributions of this working fluid for other values of the emerging parameters. 

 

Keywords: 
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1. Introduction 
 

Numerous researchers have conducted research on boundary layer flow motivated by its 
potential applications such as automotive, aircraft airfoil design and ship friction drag. The initial 
investigations focused on the viscous fluid flow over stretching/shrinking sheet, with Crane [1] and 
Miklavčič and Wang [2] being the pioneers in this field. A stretching sheet typically enables a viable 
boundary layer solution as it induces suction towards the surface, facilitating the flow. Conversely, 
Miklavčič and Wang [2] highlighted the necessity of a suction effect to maintain the fluid movement 
against the shrinking sheet, which led to the discovery of two solutions with appropriate suction. 
Subsequently, Wang [3] observed the occurrence of two solutions in stagnation point flow towards 

 
* Corresponding author. 
E-mail address: najiyah@utem.edu.my 
 
https://doi.org/10.37934/aram.112.1.137148 



Journal of Advanced Research in Applied Mechanics 
Volume 112, Issue 1 (2023) 137-148 

138 
 

a shrinking sheet, without the need for a suction parameter in cases involving shrinking, as the 
vorticity could be confined within the boundary layer by the free stream flow. This led to further 
investigations involving different surface types (e.g., disk, wedge) and various shrinking/ stretching 
velocity (nonlinear, linear). The pursuit of optimal heat transfer performance in technological and 
industrial applications has spurred the recent invention and exploration of hybrid nanofluids (see 
Sheremet et al., [4-6], Babazadeh et al., [7], Zhang et al., [8], Devi and Devi [9,10], Bakar et al., [11], 
Takabi and Salehi [12] and several research papers [13-17]). Waini et al., [18,19] identified two 
solutions in both cases (shrinking and rigid surfaces) by considering the unsteadiness decelerating 
parameter. Conversely, Zainal et al., [20, 21] demonstrated that the accelerating parameter also led 
to dual solutions. Khashi’ie et al., [22] discovered that the incorporation of the decelerating 
parameter could positively affect the thermal rate. 

In addition to numerical interpretations, employing experimental design in research offers 
numerous advantages, especially when dealing with multiple factors or parameters and their 
corresponding outcomes. One commonly used design type is Response Surface Methodology (RSM), 
which is utilized for analyzing and modeling processes where the response is influenced by various 
variables. The methodology aims to determine the interaction effects among independent variables. 
To ascertain the statistical significance of the experiment's variables, an analysis of variance/ANOVA 
is conducted. Mehmood et al., [23] discussed the use of ANOVA and RSM for the rotating disk case. 
Furthermore, RSM and statistical data analysis have been applied to various fluid flow problems, as 
demonstrated in these studies [24-26]. 

Therefore, our primary objectives are twofold. Firstly, we intend to produce all viable numerical 
solutions with the current model. Second, we propose to analyze the data using RSM and statistical 
analysis. In order to accomplish these goals, the governing model is initially transformed via similarity 
transformation into a set of ODEs. ANOVA is carried out utilizing the Minitab software's fit general 
linear model. The central composite design in RSM is used to choose the data for analysis. By 
considering the physical factors, a fitted model for the responses is produced based on the statistical 
data analysis. These equations can be applied in real-world situations and in further studies of 
unsteady flow brought on by a shrinking disk. The major components that contribute to the formation 
of the response are further identified by statistical data analysis. Since no other study of this kind has 
been done, we think that the novelty and importance of our work are justified. We are certain that 
our study will draw a large audience of readers and scholars interested in advancing this research 
issue because it contributes to the exploration of both statistical data analysis and numerical 
solutions. 
 
2. Mathematical Formulation  

 
The present investigation highlights the unsteady magnetic nanofluid Fe3O4-CoFe2O4/H2O flow 

over a shrinking disk, as depicted in Figure 1. The fluid motion is influenced by a shrinking disk with 
velocity ( ), 1w tu r t cr α= − . Several assumptions are considered in this analysis: 

 
i. The wall temperature is denoted by wT , while T∞  represents the ambient temperature. 

ii. 0
* 1B ctB = −  is the magnetic field strength which directed perpendicular to the sheet 

with constant 0B .  

iii. ( ) 2,
1w

fc
Sv r

t
t

ν
α

= −
−

 denotes the permeable disk’s mass flux velocity with 0S >  

indicating suction and 0S <  indicating injection.  
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iv. The model does not account for the impact of sedimentation/aggregation. This 
assumption allows for a simplified analysis and interpretation of the numerical data, 
focusing on other relevant factors or phenomena that influence the hybrid nanofluid's 
performance. 

 

  
                                                  (a)                                                  (b) 

Fig. 1. The physical model for (a) shrinking disk and (b) stretching disk 
 

Hence, the governing model is: 
 

( ) ( ) 0,ru rw
r z
∂ ∂

+ =
∂ ∂

                                    (1) 

 
2

2
2 ,hnf hnf

hnf hnf

u u u uu w B u
t r z z

µ σ
ρ ρ

∗∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
                                  (2) 

 

( )
2

2 ,hnf

p hnf

kT T T Tu w
t r z C zρ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                       (3) 

 
subject to 
 

0 : , , at   0
   

.
 

   
         0   , as    

w w wt u u v v T T z
u T T z

λ

∞

≥ = = = =

→ → →


∞

                                              (4) 

 
The velocities in these equations are u  and v  while T  denotes the fluid temperature. The 

stretching/shrinking parameter is represented by λ  such that 0λ >  and 0λ <  are for the stretched 
and shrunk surfaces, respectively, whereas the static sheet is indicated by 0λ = . The following 
similarity transformation is used to simplify the system of Eq. (2)-(6) 
 

( ) ( )
( )

2 , , .
1 1w

f

f

T Tr f z
c

T
c

Tt t
ψ

α α
η

ν
θ

ν
η η∞

∞

−
= −

− −
=

−
=                                             (5) 
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Here, ψ  denotes the stream function with ( )1
1

cru f
r z t
ψ η

α
∂ ′= − =
∂ −

 and 

( )1 2
1

fc
v f

r r t
νψ η
α

∂
= = −

∂ −
 which fulfilled Eq. (1). Upon the similarity transformation, the governing 

equations in Eq. (2) and Eq. (3) with boundary condition Eq. (5) are reduced to: 
 

22 0,
2

hnf f hnf f

hnf hnf hnf hnf

f ff f Mf f f
µ µ σ σ ηγ
ρ ρ ρ ρ

 ′′′ ′′ ′ ′ ′ ′′+ − +− =


−


                    (6)  

 

( ) ( )
1 2 0,
Pr 2

hnf f

p phnf f

k k
f

C C
ηθ γ θ θ

ρ ρ
′′ ′ ′− + =                           (7) 

 

 
(0) , (0) , (0) 1
( ) 0, ( ) 0 as

f S f
f

λ θ
η θ η η

′= = =
′ → → →∞

                                                            (8) 

 
The parameters appear in Eqs. (6)-(8) are defined as Prandtl number Pr ( )p f fC kµ= , the 

magnetic parameter 2
0f fM B cσ ρ=  and unsteadiness parameter cγ α=  while other parameters 

have been specified earlier. Table 1 displays the experimentally validated correlations of properties 
for hybrid nanofluids, as presented by Takabi and Salehi [12]. These correlations are established 
based on physical assumptions and are applicable for both experimental and numerical 
investigations. They provide a means to estimate various properties of hybrid nanofluids using the 
given inputs. To facilitate computational analysis, Table 2 lists the specific properties that are 
employed in the calculations [27]. These properties serve as inputs for the modeling and simulation 
of hybrid nanofluid behavior. 

 
Table 1 
Correlations of hybrid nanofluid 
Properties Hybrid Nanofluid 

iscocityVDynamic  

 
( ) 1 22.5 ,    
1

f
hnf hnf

hnf

µ
µ φ φ φ

φ
= = +

−
 

apacityC Heat  ( ) ( ) ( ) ( )( )1 21 2
1p p p hnf phnf s s f

C C C Cρ φ ρ φ ρ φ ρ= + + −
 

Conductivity Electrical  
( )

( )

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2

2 2 2

2

hn
hnf

hnf

hn
hnf

f f f

f

f f f

φ σ φ σ φ σ φσ φ σ σ
φ

σ σ
φσ φ σ φ σ φσ φ σ σ

φ

  +
− + + +     =   + + − + +       

Thermal Conductivity 
( )

( )

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2

2 2 2

2

hnf
hnf

hnf

hnf
hnf

f f

f

f f

k k k k k k
k k

k k k k k k

φ φ φ φ φ
φ

φ φ φ φ φ
φ

  +
− + + +     =   + + − + +       

Density ( )1 1 2 2 1hnf s s hnf fρ φ ρ φ ρ φ ρ= + + −
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Table 2  
Thermophysical properties for magnetite, cobalt ferrite and water 
Thermophysical Properties Fe3O4 H2O CoFe2O4 
𝜌𝜌 (kg/m3)  5180 997.1 4908 
𝑘𝑘 (W/mK)  9.8 0.6130 3.6 
𝜎𝜎 (𝑆𝑆/𝑚𝑚)  0.74 x 106 0.05 1.1 x 107 
𝐶𝐶𝑝𝑝(J/kgK)  670 4179 700 

 
The physical quantities of interest are the skin friction coefficient and thermal transfer rate which 

are respectively given as: 
 

( ) ( )1/2 1/20.5Re 0 , Re 0hnf hnf
r f r r

f f

k
C f Nu

k
µ

θ
µ

−′′ ′= = −                                    (9) 

 
where Rex w fru ν=  denotes the local Reynolds number. 
 
3. Results and Discussion  
 

In this section, the bvp4c is used to compute the similarity solutions for Eq. (6) and Eq. (7) as well 
as its boundary condition Eq. (8). The performances of Fe3O4-CoFe2O4/H2O are investigated for 
specific conditions: Pr 6.2= , 2λ γ= = − , 0 0.5M≤ ≤ , 3 4S≤ ≤  and 0.01 0.03hnfφ≤ ≤ . The 
corresponding Figure 2 and Figure 3, illustrate the effects of magnetic and suction parameters on the 
profiles of temperature and velocity. It is worth noting that the presence of multiple solutions is 
observed within the given parameters. Usually, the first solution which fulfilled the boundary 
conditions is denoted as the physical stable solution. Hence, for the RSM part, only the first solution 
is considered. It is apparent that both solutions asymptotically fulfilled the far field condition which 
verified the accuracy of the present solution.  

The impact of magnetic parameter is presented in Figures 2(a) and 2(b) respectively for the 
velocity and temperature. The velocity enhances with the addition of magnetic parameter whereas 
the temperature is reduced. Meanwhile, the second solution shows the opposite trend. Figures 3(a) 
and 3(b) demonstrate the impact of suction on the hybrid nanofluid profiles. Both the momentum 
and thermal boundary layers' thicknesses are reduced by the suction parameter. As a result, it 
improves the velocity profile while decreasing the temperature profile. This effect can be attributed 
to suction's ability to reduce the momentum boundary layer thickness, leading to improved flow 
(increased velocity). Additionally, suction induces the movement of heated fluid particles towards 
the wall, resulting in increased heat transfer and a decrease in temperature. 
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                                                     (a)                                                          (b) 

Fig. 2. (a) Velocity and (b) temperature profiles when Pr 6.2= , 2λ γ= = − , 3S =  and 0.02hnfφ =  
 

  
                                                    (a)                                                     (b) 

Fig. 3. (a) Velocity and (b) temperature profiles when Pr 6.2= , 2λ γ= = − , 0.5M =  and 0.02hnfφ =  

 
4. Response Surface Methodology (RSM)  
 

The experimental design plays a crucial role in addressing the boundary layer flow problem and 
analyzing the data. It allows us to determine the influential and beneficial factors that optimize the 
responses, such as the skin friction coefficient and thermal rate. Statistical data analysis helps to 
identify the factor that contributes to enhancing the responses. In Table 3, the RSM employing the 
central composite design is highlighted, which consists of 19 runs for 3 factors. The magnetic 
parameter, suction, and hybrid nanoparticles concentration are denoted as A, B, and C, respectively. 
These factors are classified into low (-1), medium (0), and high (+1) levels to represent their 
magnitudes. The total number of runs for these three factors follows the formula mentioned as 

2 2kR C k= + +  whereby C , 2k  and 2k  denotes the center point, axial point and factorial point, 
respectively [23]. In this study, the five center points with 3k =  are used. Based on Table 3, a general 
response surface equation (10) can be computed. This equation considers intercept ( )0r , linear 

effects ( )A B C, ,r r r , quadratic effects ( )2 2 2A B C
, ,r r r , and interaction effects ( )AB CA BC, ,r r r . Since this 

study focuses on two responses, two surface equations are considered.  
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2 2 2
2 2 2

0 A B C AB CA BC A B C
A B C AB CA BC A B Cy r r r r r r r r r r ε= + + + + + + + + + +                          (10) 

 
   Table 3  
   RSM for the case of Pr 6.2=  and 2λ γ= = −  

Runs Real Coded Responses 
M  S  hnfφ  A B C 1/20.5Rer fC  1/2Rer rNu−  

1 0.25 3.5 0.02 0 0 0 13.9160 42.8810 
2 .50  3 30.0  1 -1 1 12.0612 36.5658 
3 0.25 3.5 0.02 0 0 0 13.9160 42.8810 
4 0 3.5 0.02 -1 0 0 13.8287 42.8805 
5 0.25 3.5 0.02 0 0 0 13.9160 42.8810 
6 0 4 10.0  -1 1 -1 13.2917 42.9606 
7 50.  4 10.0  1 1 -1 15.7001 49.1985 
8 0.25 3.5 0.01 0 0 -1 13.3778 42.9610 
9 0.5 3.5 0.02 1 0 0 14.0022 42.8815 
10 0.25 3.5 0.02 0 0 0 13.9160 42.8810 
11 0.25 3.5 30.0  0 0 1 14.4531 42.8009 
12 0 4 0.03 -1 1 1 16.8004 49.0181 
13 0.25 4 0.02 0 1 0 16.2522 49.1083 
14 0 3 0.03 -1 -1 1 11.8399 36.5641 
15 520.  3 0.02 0 -1 0 11.5015 36.6355 
16 0.25 3.5 0.02 0 0 0 13.9160 42.8810 
17 0.5 3 10.0  1 -1 -1 11.1562 36.7068 
18 0.5 4 30.0  1 1 1 16.9482 49.0187 
19 0 3 10.0  -1 -1 -1 10.9410 36.7052 
20 0.25 3.5 0.02 0 0 0 13.9160 42.8810 

 
Table 4 displays the statistical analysis results, analyzing the effects of A, B, and C and their 

interactions on the skin friction (response 1) and heat transfer rate (response 2). The F-value indicates 
that the factors A, B, C and the interactions AB, AC and BC provide a significant effect on the 

1/20.5Rer fC  (p-values < 0.05). Meanwhile, for the 1/2Rer rNu− ,  only factor B as well as the interactions 
AB, AC and BC are significant to the heat transfer data. The high value of R-squared (R-sq) and R-sq 
(adj) for the skin friction and heat transfer indicate that both models fit the data well. The fitted 
models by considering the effects and its interactions are:  
 

1/2
2 2

2

0.5Re
13.9570 0.317A+2.149B 0.764C 0.265 AB  0.282AC 0.369BC 0.104A 0.142B

0.104C
r fC

y + + + − += − −

−
 

(11) 

  
1/2

2 2

2

Re
42.9940 0.624A 5.613B 0.544C 0.779 AB 0.780AC 0.770BC  0.284A 0.293B

0.284C
r rNu

y − + + + + −= + − −

−
 (12) 
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  Table 4  
  Statistical analysis result 
Source DF Adj SS Adj MS F-Value P-Value 
Response 1: Skin friction coefficient 
A 1 1.0024 1.0024 9.41 0.012 
B 1 46.1941 46.1941 433.85 0.000 
C 1 5.8308 5.8308 54.76 0.000 
A*A 1 0.0295 0.0295 0.28 0.610 
B*B 1 0.0556 0.0556 0.52 0.486 
C*C 1 0.0295 0.0295 0.28 0.610 
A*B 1 0.5618 0.5618 5.28 0.044 
A*C 1 0.6353 0.6353 5.97 0.035 
B*C 1 1.0899 1.0899 10.24 0.010 
Error 10 1.0648 0.1065   
Lack-of-Fit 5 1.0648 0.2130 * * 
Pure Error 5 0.0000 0.0000   
Total 
R-sq  

19 
98.13% 

56.8289 
R-sq (adj) 

 
96.44% 

  

Response 2: Heat transfer rate 
A 1 3.897 3.897 4.84 0.052 
B 1 315.022 315.022 391.52 0.000 
C 1 2.954 2.954 3.67 0.084 
A*A 1 0.221 0.221 0.27 0.612 
B*B 1 0.235 0.235 0.29 0.600 
C*C 1 0.221 0.221 0.27 0.612 
A*B 1 4.860 4.860 6.04 0.034 
A*C 1 4.863 4.863 6.04 0.034 
B*C 1 4.743 4.743 5.89 0.036 
Error 10 8.046 0.805   
Lack-of-Fit 5 8.046 1.609 * * 
Pure Error 5 0.0000 0.0000   
Total 
R-sq 

19 
97.68% 

347.096 
R-sq (adj) 

 
95.60% 

  

 
In addition, the contour plot of the interactions between two factors (A/magnetic parameter, 

B/suction parameter and C/volumetric concentration of the hybrid nanofluid) for both skin friction 
coefficient and heat transfer rate is displayed in Figure 4 and Figure 5, respectively.  
 

  
(a)                                             (b) 
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(c) 

Fig. 4. Interactions between the parameters (a) B and A, (b) C and A, and (c) C and B for the skin friction 
coefficient 

 

  
                                             (a) (b) 

                                           
(c) 

Fig. 5. Interactions between the parameters (a) B and A, (b) C and A, and (c) C and B for the heat transfer 
rate 
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5. Conclusions 
 

The study focuses on investigating the Fe3O4-CoFe2O4/H2O flow behavior subjected to different 
factors/physical parameters over a shrinking disk. To simplify and transform the PDEs, a similarity 
transformation is applied, resulting in a set of ODEs. The steady similarity solutions are numerically 
computed using the bvp4c program. The numerical solutions are then presented for variables such 
as velocity, temperature, thermal rate and skin friction coefficient, considering these different 
factors. In addition to numerical analysis, statistical evaluation is also performed using the RSM. This 
approach allows for the examination of the relationship between the input parameters and the 
responses. To summarize the findings, the details of the study's outcomes are as follows: 

 
i. Dual solutions are detected within the specific use of physical factors, however the stable 

first solution is selected based on the first fulfillment of the far field condition.  
ii. For the present problem, the magnetic field, suction parameter and total volumetric 

concentrations of the hybrid nanoparticles give a significant impact to the skin friction 
coefficient. 

iii. Meanwhile, for the heat transfer rate, only suction parameter significantly affects the heat 
transfer rate. 

iv. Both magnetic and suction parameters enhance the velocity profile while reduce the fluid 
temperature. 

v. However, the present findings are only conclusive to this problem only with the used 
values of the parameters. There are limitations in choosing the parameters’ values. 

vi. More investigations are necessary to observe the hybrid nanofluid flow and response 
surface analysis. 
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