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ABSTRACT With the escalating global challenges of food security and resource sustainability, innovative
solutions like deep learning and computer vision are transforming agricultural practices by enabling
data-driven decision-making. This paper provides a focused review of recent advancements in deep
learning-enabled computer vision techniques tailored specifically for greenhouse environments. First, deep
learning and computer vision fundamentals are briefly introduced. Over 100 studies from 2020 to date are
then comprehensively reviewed in which these technologies were applied within greenhouses for growth
monitoring, disease detection, yield estimation, and other tasks. The techniques, datasets, models, and
overall performance results reported in the literature are analyzed. Tables and figures showcase real-world
implementations and results synthesized from current research. Key challenges are also outlined related to
aspects like model adaptability, lack of sufficient labeled greenhouse data, computational constraints, the
need for multi-modal sensor fusion, and other areas needing further investigation. Future trends and prospects
are discussed to provide guidance for researchers exploring computer vision in the niche greenhouse domain.
By condensing prior work and elucidating the state-of-the-art, this timely review aims to promote continued
progress in smart greenhouse agriculture. The focused analysis, specifically on greenhouse environments,
fills a gap compared to previous agricultural surveys. Overall, this paper highlights the immense potential
of computer vision and deep learning in driving the emergence of data-driven, smart greenhouse farming
worldwide.

INDEX TERMS Agricultural automation, computer vision, deep learning, convolutional neural
networks(CNN), controlled-environment agriculture (CEA), greenhouse farming, smart farming, smart
agriculture, precision agriculture, image classification, image segmentation, object detection.

I. INTRODUCTION
In In the face of escalating global challenges such as
population growth, climate change, and urbanization, the
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call to reimagine our agricultural and horticultural systems
becomes more critical than ever. The shadow of these issues
hovers ominously over future food security, intertwined with
the sustainable usage of our dwindling natural resources [1].
Yet, in this realm of concerns, a beacon of promise emerges
from technological advancements, holding the potential to
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revolutionize the agricultural and horticultural landscapes [2].
Our pursuit, therefore, centers on the strategic leverage of
these cutting-edge technologies to create more sustainable,
productive, and resilient farming ecosystems worldwide.
Sustainable access to high-quality food is not just a

predicament for developing countries; even developed nations
are grappling with this issue. Current agricultural practices,
conducted predominantly in open fields, are not sufficiently
productive to meet the escalating demand. As the World
Health Organization projects, food production will need to
increase by 70% by 2050 to meet the needs of an estimated
global population of 10 billion [3], about 7 billion of whom
will be living in urban areas [4]. Thus, exploring alternative
production systems becomes not just an option but a necessity
to ensure a sustainable food supply chain.
One promising alternative is Controlled Environment

Agriculture (CEA), which includes a variety of methods
such as greenhouses, high-tunnels, vertical farms, and plant
factories [5]. In particular, greenhouse farming has emerged as
a method offering greater control over the growing conditions
of crops, thereby enhancing yield and quality. This technique
leverages controlled environments to optimize plant growth,
promising higher production rates compared to traditional
farming [6]. However, despite the potential of greenhouse
farming within the CEA framework, it faces certain challenges.
Economic sustainability remains a significant concern due
to high operational costs, complex microclimate controls,
and the need for continuous labor [7], [8]. These factors can
inhibit the scalability and efficiency of greenhouse farming.
To overcome these obstacles, it is imperative to incorporate
advanced technologies such as artificial intelligence (AI)
and deep learning (DL) into these farming systems. These
cutting-edge tools can potentially transform the operational
aspects of greenhouse farming. For instance, they can be
leveraged for improved micro-environment monitoring and
root-zone control, creating the optimal conditions for plant
growth while minimizing resource wastage [5]. Additionally,
AI and DL can facilitate the automation of labor-intensive
tasks, thereby enhancing overall operational efficiency. In this
context, the adoption and integration of AI and DL in
greenhouse farming becomes not only a strategic advantage
but a necessity to realize the full potential of Controlled
Environment Agriculture(CEA) in addressing our global food
security challenges.
Simultaneously, the sphere of horticulture presents a

distinct set of challenges and opportunities. Here, we face
the necessity of balancing the cultural and economic
value of crops with the labor-intensive nature of their
cultivation. Thankfully, modern advancements offer promising
solutions. Deep learning, in particular, holds the potential
to streamline and revolutionize horticultural practices. The
sheer volume of data that can now be collected from digital
horticulture necessitates efficient processing and analysis.
Deep learning algorithms can effectively handle such ‘big
data’, enabling precise and timely decision-making in crop
management [9].

In light of these advancements, it is crucial to remember
that the applicability of such technologies is not limited
to large-scale farming. Small indoor farms, which require
significant labor year-round, can also benefit from the
integration of intelligent automation. This inclusive approach
to technological application in agriculture is critical to ensure
food security in the long term.
Through this review, we strive to explore and underline

the recent advances in deep learning-assisted computer vision
technologies in the domains of agriculture and horticulture in
greenhouse setup. We aim to shed light on the challenges,
opportunities, and future prospects of these technologies,
underlining their potential role in securing global food supply
chains, improving horticultural productivity, and propelling
us towards a sustainable future.

A. REVIEW SCOPE
In our extensive review of over 100 research papers sourced
from esteemed scientific databases such as ScienceDirect,
Web of Science, IEEE Xplore, and Scopus, we noticed a
trend: while many surveys tackled the broader agricultural
domain, there was a distinct gap in the literature specifically
focusing on greenhouse farming. Recognizing this limited
attention to greenhouse environments, we sought to make a
significant contribution by narrowing our scope and offering
an in-depth analysis of computer vision applications within
greenhouse farming. This work emphasizes the state-of-the-art
in computer vision techniques for this specialized agricultural
setting. Table 1 provides a comparison between existing survey
papers on deep learning-based computer vision applications
in the broader agricultural domain and our niche exploration
into greenhouses. With our paper, our aim was to shed light on
every potential application of computer vision in greenhouse
agriculture. This review is intended not only for agricultural
researchers keen on understanding nuances in greenhouse
setups but also for general computer vision enthusiasts curious
about its specific applications in such controlled environments.
Furthermore, we have pointed out the real-world impacts and
challenges of scaling up these innovative solutions within
greenhouses.

B. CONTRIBUTION
Numerous research has explored the application of deep
learning and computer vision techniques in the field of
agriculture. However, there is a noticeable gap in the existing
literature about the comprehensive implementation of these
techniques, particularly within the context of greenhouse
farming. This work aims to address the existing knowledge gap
by providing a comprehensive analysis of the implementation
of deep learning techniques in the realm of greenhouse
farming, specifically emphasizing the application of computer
vision. The paper makes several notable contributions. Key
contributions are summarized as follows:

• Provides an in-depth literature review focused specif-
ically on deep learning-enabled computer vision
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TABLE 1. Comparison of Deep learning-based Computer Vision applications in agriculture-related survey papers. GM Growth monitoring, RCC Recognition
and classification of crops, DM Disease Monitoring, AH Automatic Harvesting, QI, Quality Inspection, YE Yield Estimation, PHA Plant Health Analysis, PIM
Pest and Insect Management, SQA Seed Quality Analysis, WM Weed Management.

applications in greenhouse environments, addressing a
gap in existing research.

• Investigates and synthesizes techniques, capabilities,
limitations, and future work needed for computer vision
across major greenhouse application areas including
growth monitoring, disease detection, yield estimation,
etc.

• Analyzes performance of computer vision techniques
based on results in current literature and summarizes
findings in coherent tables.

• Explains common deep learning architectures leveraged
in agricultural research to enhance reader comprehension.

• Highlights challenges that need to be addressed for
effective real-world implementation in greenhouses.

• Provides visualizations of real-world systems and
schematics to showcase practical applications.

• Outlines future directions for advancements in computer
vision technologies tailored to controlled agriculture
settings.

• Focuses the scope on an understudied niche area of
computer vision in greenhouses to fill a literature gap
and make novel contributions.

Overall, this review paper makes significant contributions
by providing a focused technical synthesis, performance
analysis, and future outlook specifically targeted to greenhouse
applications of computer vision. The findings aim to catalyze
advancements in this promising domain.
The paper is organized as follows. Section I provides an

introduction covering the background, objectives, and scope
of the literature review. Section II presents an overview of
smart greenhouses and controlled environment agriculture.
Section III delves into the fundamentals of computer vision
and deep learning, the key technologies explored. Section IV,
the core of the paper, investigates various applications of
computer vision in greenhouse farming based on current
literature, spanning areas like growth monitoring, disease
detection, yield estimation, and more. For each application,
the techniques, results, limitations, and future work are
discussed. Section V summarizes the key challenges faced in
implementing computer vision in greenhouses and provides
perspectives on the future direction of these technologies in
advancing greenhouse agriculture. Finally, Section VI gives
concluding remarks and highlights the contributions made by

this focused review paper. Overall, the logical organization
facilitates comprehension and showcases the in-depth analysis
of computer vision capabilities, specifically in controlled
greenhouse environments.

II. SMART GREENHOUSE: AN OVERVIEW
Controlled Environment Agriculture (CEA), amodern farming
method that uses greenhouses, is a powerful tool in today’s
agriculture. This method is not new; in fact, greenhouses first
started to be used in farming in The Netherlands and France
back in the 19th century [13]. Since then, the technology has
improved, and its use has spread worldwide. So, what exactly
is a greenhouse? Essentially, a greenhouse is a structure -
often built from glass or plastic that allows for year-round
crop production, irrespective of the season. The glass or plastic
walls and roof let sunlight in while keeping pests, diseases, and
bad weather out. Depending on the outside weather, different
variations of greenhouses can be used. For example, in very
cold places, smaller greenhouses called ‘‘cold frames’’ can
be used. These structures trap heat from the sun to keep the
plants warm. In hot and dry areas, ‘‘shade house’’ greenhouses
can be used. These provide shade and help to keep the plants
moist [7]. As illustrated in figure 1, a modern greenhouse is a
structure that provides a controlled environment ideal for crop
cultivation. The image depicts a typical setup, including the
protective coverings and the internal layout. This practical
example gives a clear understanding of how greenhouse
farming can defy external weather conditions and provide
suitable growth conditions for diverse crops.
The main advantage of greenhouses is the ability to

manipulate environmental parameters such as temperature,
light intensity, moisture, and nutrient levels, adapting them
to specific crop needs [15]. This facilitates an extended
growing season, improved crop quality, and efficient use
of resources. However, the management and maintenance
of greenhouses can be resource-intensive, and fine-tuning
conditions to the optimal range for various crops can be a
complex task. This is where smart greenhouses, equipped
with Internet of Things (IoT) technology, come into the
picture. Smart greenhouses integrate sensors and embedded
controllers that collect real-time data and relay it to a cloud
server. The system can then make automatic adjustments to the
internal greenhouse conditions based on this data, minimizing
human intervention [16], [17], [18]. Smart greenhouses offer
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FIGURE 1. A real-life example of a modern greenhouse. This image offers a practical perspective of the controlled environment within which diverse crops
can be cultivated irrespective of external weather conditions. Source: [14].

automatic regulation of critical factors like temperature, light,
and irrigation, as well as control over other mechanical
operations [19]. This brings a new level of efficiency to
farming, optimizing resource use and potentially improving
crop yields.

Moreover, smart greenhouses provide farmers with valuable
insights into the most suitable harvesting times, soil quality,
nutrient requirements for plants, and water quality [20]. This
data-driven approach allows for more informed decision-
making, making farming more reliable and cost-effective.
The future of farming appears even more promising with the
integration of Artificial Intelligence (AI) and Computer Vision.
These technologies can further automate the greenhouse
processes and increase their precision [21], [22], [23]. For
instance, AI can analyze the vast amounts of data collected,
predicting future needs and helping make even more accurate
adjustments [24], [25]. Computer Vision can monitor plant
growth, detect diseases early, and even identify when crops are
ready to be harvested [12], [26], [27], [28], [29]. In essence, the
marriage of greenhouse farming with IoT, AI, and Computer
Vision is ushering in a new era of efficient, data-driven
agriculture, transforming the traditional greenhouse into a
‘smart’ one (see figure 2). This integration, as illustrated
in figure 2, provides a complete picture of how smart
greenhouses are designed with various components working

harmoniously. The ultimate vision is a fully automated and
remotely controlled farm, optimizing resources, enhancing
crop yield, and paving the way for a sustainable agricultural
future.

III. VISION THROUGH LEARNING: A DEEP DIVE INTO
COMPUTER VISION AND DEEP LEARNING
Computer vision (CV) represents a sophisticated interdisci-
plinary field deeply rooted in both biological science and
engineering, converging human-like perception with machine
efficiency. Its core idea revolves around replicating how
humans see and understand their surroundings and translating
this understanding into computational models that machines
can utilize. Historically, CV began as an effort to mimic human
visual faculties. Early research aimed at understanding how
humans perceive the world and then endowing machines with
similar visual abilities. This required extensive collaboration
between neuroscience to decode the human visual system and
computer science to develop corresponding algorithms for
machines [30]. Groundbreaking applications such as optical
character recognition (OCR) [31] and vehicle plate detection
marked the initial steps in this journey, impacting diverse
areas like traffic control, law enforcement [32], and even retail
[33]. These achievements were furthered by the use of deep
learning (DL) and neural networks, allowing for the automatic
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FIGURE 2. Schematic Representation of a Smart Greenhouse components Integrated with IoT, AI, and Computer Vision Technologies.

extraction of high-level features from data, reducing the need
for human intervention.
The evolutionary development of CV expanded into more

advanced areas like medical imaging, for detecting and
diagnosing diseases [34], and autonomous driving, where
it guides self-driving cars [35]. In manufacturing, CV aids
in quality control with machine consistency, surpassing
human ability [36]. It even breathes life into virtual reality
in entertainment and social interaction [37] and enhances
personalized safety measures through facial recognition
systems in security [38], [39]. A vivid representation of these
diverse applications of computer vision across various sectors
can be seen in figure 3. An intriguing expansion of CV can
be seen in the agricultural domain [12], [40], [41], [42]. Here,
CV assists not only in crop-related tasks but also plays a
significant role in livestock management. It contributes to
monitoring animal health, tracking behavior, and managing
resources, thereby increasing efficiency and sustainability in
animal farming. For crop health, CV enables the detection of
diseases, identification of pests, and optimization of resource
allocation. With the analysis of visual data, CV tools can
automate tasks like fruit picking, guide precision farming
techniques, and even assist in tasks related to animal
husbandry, such as recognizing individual animals, monitoring
their movements, and observing their health status.

Despite these advances, achieving a computer’s understand-
ing of an image at a human child’s level remains unattainable.
This underscores the ongoing challenges in a field with nearly
limitless possibilities. The continuous progress in machine

FIGURE 3. Diverse Applications of Computer Vision Across Various Sectors.

learning and DL further amplifies what CV can accomplish.
Deep neural networks enable machines to recognize patterns
and make decisions once believed to be exclusive to humans.
CV is more than a field of study; it is a continually
evolving area that harmoniously blends human perception
with machine precision. Its applications are enriching
various societal sectors, sometimes even surpassing human
capabilities.
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FIGURE 4. Flowchart of the Computer Vision Process. This diagram
illustrates the sequential stages involved in computer vision applications,
from the initial acquisition of image data to the final interpretation and
utilization of the processed information.

A. FROM BASIC SHAPES TO COMPLEX PATTERNS
In the initial stages of computer vision, the primary focus
was on identifying simple and basic geometric forms such
as edges, curves, and corners. These early techniques were
often grounded in methods like gray-level segmentation
[43], which involves dividing an image into different regions
based on variations in brightness or color. However, these
primitive methods had significant limitations and were not
robust enough to handle more complicated visual tasks
where understanding and interpreting complex patterns
were required. To address these limitations and enhance
the interpretation of visual data, researchers sought new
approaches and began to integrate artificial neural networks
into computer vision systems [44]. Artificial neural networks,
inspired by the human brain’s interconnected neuron structure,
allowed for a more sophisticated analysis of visual data [45].
Unlike the pixel-by-pixel analysis used in more rudimentary
methods, neural networks provided a way for computer vision
systems to analyze entire sections of an image in context,
providing a more holistic understanding of the image content.
This shift in approach led to substantial improvements in both
performance and accuracy, enabling computer vision systems
to understand and recognize more intricate patterns and shapes.
Furthermore, these new methods allowed computer vision
systems to analyze dynamic visual data, such as videos,
enabling a higher level of interpretation that considered not
only the shapes and patterns within a single frame but also
how these elements changed over time [46]. The integration
of neural networks marked a turning point in the field,
transforming it from a discipline that could only handle
rudimentary visual tasks to one that could take on complex
challenges. This evolution also laid the groundwork for the
modern, advanced applications of computer vision that we see
today.

Today’s computer vision applications follow a process that
includes the acquisition of image data, the processing and anal-
ysis of that data using sophisticated algorithms and neural net-
works, and ultimately, the interpretation of the image as shown
in figure 4. These applications range from medical imaging to
autonomous vehicles, demonstrating the field’s progress from
understanding basic shapes to interpreting complex, dynamic
patterns.

FIGURE 5. Diagram of CNN’s image classification architecture mechanism.

B. THE TOOLBOX OF COMPUTER VISION: TECHNIQUES
AND TASKS
Computer vision is a diverse and exciting field that tries
to mimic how humans perceive and understand the world
around them. Its primary goal is to make sense of images,
just like our own eyes and brains do. By understanding
what is depicted in an image, computer vision systems can
provide valuable information to guide the actions of robots,
AI, and other automated systems. In the following sections,
we will delve deeper into some of these critical techniques:
image classification, object detection, segmentation, and 3-D
reconstruction, that make it all possible.

1) IMAGE CLASSIFICATION
Image classification, a fundamental technique in computer
vision, assigns predefined labels to images, categorizing
complex visuals. Its essence is the ability to capture the
essential features of a scene—such as differentiating crops
or identifying plant diseases—without focusing on each tiny
detail. The advent of Convolutional Neural Networks (CNNs)
has led to a significant transformation in this process. These
robust networks use a variety of mathematical processes to
efficiently learn from labeled images of crops(In figure 5).
The revolution began in 2012 with AlexNet [47], a novel
CNN architecture, setting a benchmark in the ImageNet Large
Scale Visual Recognition Challenge, ushering a new era for
image classification via CNNs. Between 2014 and 2017,
there was a surge in refining CNN architectures, as seen
with advancements in models like ResNet [48], VGG [49],
and DenseNet [50]. These models, by employing innovative
algorithms and connectivity patterns, heightened the ability
to discern intricate details in agricultural imagery. Post-2017
witnessed the incorporation of reinforcement learning into
CNNs, enabling these models to auto-determine optimal
architectures, enhancing adaptability in dynamic agricultural
environments. Contemporary studies further improve upon this
with variants like ZFNet [51], which leverages visualization
tools to understand neural activity, translating this into
pixel-space insights. Such advancements not only enhance
classification abilities but also unveil the working mechanisms
of CNNs, making image-based agricultural decision-making
more precise and insightful. Currently, these technologies
are of extreme significance in improving the accuracy of
image-based agricultural decision-making.

2) OBJECT DETECTION
Object detection in computer vision aims to locate and classify
all possible objects within a given image. Central to this
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FIGURE 6. CNN architecture mechanism for Object detection.

task are Convolutional Neural Networks (CNNs), which have
predominantly been employed in two main architectures: one-
stage and two-stage detection systems (in figure 6). Two-
stage models, exemplified by the RCNN family, first pinpoint
potential object regions (known as region proposals) and
then classify these regions into distinct object categories. The
evolution of this approach has led to various iterations, such
as the original RCNN [52], Fast RCNN [53], and the more
popular Faster RCNN [54]. Three pivotal advancements in the
Faster RCNN are the Region Proposal Network (RPN), which
efficiently creates object regions; ROI pooling, which extracts
consistent features from regions of varying dimensions; and
a multitask loss function, which consolidates the training
process. While Faster RCNN is acclaimed for its accuracy, its
processing speed is a limiting factor, especially for real-time
applications. In contrast, one-stage models like YOLO [55]
and SSD [56] are designed for faster processing. These

architectures generate candidate object regions from each
pixel in feature maps, which are then classified and adjusted
for accurate object boundaries. However, a key challenge
with one-stage models is the significant imbalance between
object and background regions in images. To address this,
the RetinaNet [57] framework introduced a focal loss
function, which emphasizes detection accuracy, balancing
out the disproportionate number of irrelevant regions. While
RetinaNet offers a blend of accuracy and efficiency, the
choice between one and two-stage models depends largely
on the specific application needs, with the former being
ideal for real-time tasks and the latter prioritized when
accuracy is paramount. Surprisingly, these state-of-the-art
object identification methods have significant uses outside
of traditional fields. The agricultural industry has embraced
these technological marvels, especially in the context of
greenhouse farming. Precision agriculture has entered a new
era by adopting such advanced object detection technologies
in greenhouse farming. These improvements have allowed for
exact monitoring of plant growth, effective detection of pests,
and efficient allocation of resources.

3) SEGMENTATION
Image segmentation is a fundamental computer vision task
which categorizes each pixel of an image based on the
object it belongs to. Early techniques used region division
and merging, and later algorithms leveraged metrics like
intra-regional consistency and inter-regional dissimilarity.

FIGURE 7. CNN architecture mechanism for Segmentation.

Recently, machine learning has greatly enhanced segmen-
tation, with key advancements being Mask RCNN [58],
dual attention network [59], and particularly, U-Net [60]
and its variants such as Attention U-Net [61], U-Net++

[62], ResUNet++ [63], and TransUNet [64]. These models
have not only advanced the state of image segmentation but
have also demonstrated exceptional efficacy in specialized
tasks like medical image segmentation. Building on these
semantic and instance segmentation techniques, such as the
encoder-decoder framework and detection-based methods,
further expands the versatility and precision of computer
vision applications. Semantics and instance segmentation
are vital techniques in computer vision. At a high level,
semantic segmentation assigns masks to groups of objects
with the same meaning in an image, such as all plants,
while instance segmentation focuses on individual objects.
Two primary frameworks are employed in these types
of segmentations: encoder-decoder-based frameworks and
detection-based frameworks. In the encoder-decoder approach,
models typically consist of two main phases, as shown in
figure 7. The encoder extracts meaningful feature maps
from images using convolutional neural networks (CNNs).
The decoder, on the other hand, upsamples these feature
maps into per-pixel labels using transposed convolution.
To enhance the precision of segmentation, these models
often employ a lateral connection scheme. This connects
feature maps between the encoder and decoder phases,
ensuring the preservation of the image’s semantic meaning
throughout the process. Additionally, post-processing methods
like conditional random fields (CRFs) are utilized to refine
object boundaries. Notable models in this category include
U-Net, fully convolutional network (FCN) [65], FastFCN [66]
and DeepLab [67].
Detection-based frameworks, in contrast, pivot on CNN

architectures tailored for object detection. Some early
efforts attempted to leverage object detection models, for
instance, segmentation, such as simultaneous detection and
segmentation (SDS) [68] and DeepMask [69]. However,
these approaches struggled to achieve desired performance
levels. The game-changer in this arena was the Mask RCNN,
which integrated an FCN with a Faster RCNN to create
masks for individual objects. This model has consistently
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demonstrated top-tier performance in both semantic and
instance segmentation, solidifying its reputation in the field.

4) 3-D MODELING
3-D modeling in computer vision is fundamentally about
stereo correspondence and 3-D reconstruction [70], [71].
Stereo correspondence generates a 3-D model from multiple
images of the same object or scene by finding matching pixels
across these images and mapping their 2-D positions to 3-D.
Techniques such as epipolar geometry, sparse correspondence,
and dense correspondence are commonly used [72]. On the
other hand, 3-D reconstruction creates a 3-D model from
a single image [73], [74]. The earliest approach involved
predicting object shape from visual shading, pioneered by
Horn in 1970 [75]. This was followed by other ‘‘shape from
X’’ methods like shape from texture and shape from focus.
Active range finding and model-based reconstruction, which
are often used in architectural 3-D modeling, are among other
methods. Designing an effective loss function for evaluating
predicted 3-D point clouds against ground truth remains
challenging, with options including evaluating the coverage
of the ground truth object’s silhouette by the projected 3-D
point clouds. Deep-learning-based algorithms have recently
led to significant enhancements in the performance of 3-D
reconstruction systems. In summary, the world of computer
vision is as complex as it is fascinating, comprising an array of
techniques and tasks that together help the system understand
and interact with its environment.With the rapid advancements
in machine learning and artificial intelligence, we can expect
to witness further evolution in these techniques, expanding
the possibilities of what computer vision can achieve.

C. THE ADVENT OF DEEP LEARNING
Machine learning offers a significant advancement in data
processing. Traditional methods typically necessitate manual
feature extraction. With the surge in large data sets and the
introduction of graphics processing units (GPUs), algorithmic
methodologies have seen considerable refinement. Deep
learning, an evolution from traditional machine learning,
incorporates some ‘‘deeper’’ (more complex) structures,
enabling automatic feature extraction from unprocessed data.
It often surpasses the efficacy of its predecessor in various
classification and prediction tasks [76]. By integratingmultiple
layers of abstraction, it allows hierarchical data represen-
tation [77], [78]. This multi-layered approach enhances
the analytical performance for numerous large-scale data
processing tasks [79], [80]. Essentially, deep learning is
an advanced non-linear data processing technique grounded
in representation learning and pattern analysis. Typically,
deep learning models refine data representations through
multi-layered neural networks. These networks comprise
several neurons structured in layers. Neurons in adjacent
layers connect based on weights, which are adjusted during
learning. These neurons represent diverse non-linear functions,
facilitating the creation of complex models. By connecting

multiple layers, deep learning provides solutions for intricate
real-world challenges efficiently [78].
The complex architecture and massive learning capability

of deep learning models equip them with exceptional
prediction and classification capabilities. This enables them
to adapt effectively to complex data analyses. Leveraging its
innate ability for automatic feature extraction, deep learning
addresses several challenges in agriculture, such as various
recognition, growth monitoring, yield estimation, quality
assessment, stress detection, and more. These applications
are discussed in detail in the next section.
Convolutional neural networks (CNNs) and their derived

models play a pivotal role in artificial intelligence and have led
to breakthroughs in image processing and analysis. CNNs are a
class of deep, feed-forward artificial neural networks (ANNs)
that are a family of multi-layered neural networks that have
been effectively used in computer vision applications. They
constitute a prominent method for analyzing vast amounts
of data. Our analysis indicates that a significant majority
of horticulture-related papers utilize CNNs. Typical CNNs
incorporate convolution, pooling, and fully connected layers
in various configurations to perform complex learning tasks.
A model CNN architecture displays the process of classifying
different flower species using multiple layers and components
in figure 8.
In the convolutional layer, local patterns within an image

are identified using the process of convolution. Here is how
it works: A kernel is initially positioned on the top-left
part of the image as shown in figure 9. Each pixel under
this kernel gets multiplied by the respective kernel value.
The resulting products are then summed, with a bias added
afterwards. The kernel shifts by a pixel, and the process
continues until the entire image undergoes this filtering.
Following the convolutional process, the pooling layer steps in,
aiming to down-sample and extract prominent features from
the obtained feature map. It also brings invariance to minor
translations, rotations, and scaling in the image. Two prevalent
pooling methods are max and average pooling, as shown in
figure 10. While max pooling considers the highest value
from a designated portion of the image, average pooling
computes the mean of that portion. In most CNN architectures,
convolutional and pooling layers alternate. The last key layer
is the fully connected layer, where every neuron is interlinked
to the preceding neuron. In this stage, the various features that
were obtained from earlier layers are combined and condensed
into a one-dimensional representation, preparing them for
detection or classification objectives.
The efficacy of a deep learning model depends on the

appropriate choice of hyperparameters. These include aspects
like the network architecture, number of layers, number
of neurons in the hidden layer, convolution and pooling
layer structure, learning rate, weight initiation, and activation
function. While custom architectures can be revolutionary
and innovative, they typically demand an advanced level of
computational expertise that may be beyond the capabilities
of ordinary agricultural researchers. As a result, researchers
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FIGURE 8. A Deep Convolutional Neural Network (DCNN) layout: This structure comprises an initial input layer, followed by four convolutional layers and
their corresponding ReLU activations. It also features two stochastic pooling layers, a pair of fully connected layers, and concludes with a softmax regression
output layer. Source: Prasad et al. [81].

frequently start with a pre-trained architecture that has proven
to perform well over a wide range of data structures and
challenges and then modify it to fit the issue at hand. This
approach is reliable and effective.
CNN architectures like LeNet, AlexNet, VGGNet,

MobileNet, Inception V3, EfficientNet, GoogLeNet, and
ResNet have been deployed for many computer vision tasks
discussed in the next section. These networks process input
through multiple convolution and pooling layers before
utilizing fully connected layers for classification or detection
tasks. The choice of parameters within these layers and
model selection should be tailored to the specific problem
as illustrated in Fig 11, graphical representations of the SSD
deep learning architecture have been used to detect cherry
tomatoes. The SSD utilized VGG16 as its base network, with
multiple layers appended to its tail end. During the training
process, both the image and its associated Ground-Truth Box
were simultaneously fed into the system. Following this, each
feature map across 6 layers generated a default box set, as well
as the confidence of object category within the box.

Another prevalent deep learning model used for sequential
data is the recurrent neural network (RNN). This model excels
in predicting prices [83], processing natural languages [84],
recognizing speech [85], among other applications [86], [87].
An RNN’s unique attribute is its ability to retain previous
data, which influences current outputs. Figure 12 demonstrates
the basic architecture of the RNN applied to fruit quality
assessment, illustrating how prior outputs serve as inputs due
to the presence of the hidden layer. This layer effectively
acts as a memory cell, ensuring every prior result informs
the subsequent iteration. Consequently, each unit within the
hidden layer is termed a recurrent cell.

Image segmentation tasks also benefited from deep learning
techniques. The R-CNNmethod, for instance, combines CNNs
with region proposals for object detection. Currently, Mask
R-CNN leads the segmentation task, adding a branch to the
Faster R-CNN for precise, high-quality segmentation mask
generation for each region of interest. We already covered this
in the previous section. There are many other neural network
architectures that have been applied in the realm of deep
learning. These include the Single Shot Multibox Detection
(SSD), Long Short-Term Memory networks (LSTM), the
‘‘You Only Look Once’’ (YOLO), Region-based CNN (R-
CNN), Fast R-CNN, and its successor, the Faster R-CNN etc.
Beyond RGB imagery, these structures also support varied
data formats, including videos, hyperspectral visuals, and
spectral datasets. Moreover, for ease of reference, we have
compiled a summary of the models reviewed. This includes
details such as the year of development, key concepts, and
links to source code or third-party implementation if available
(See Table 2). Furthermore, to assess the effectiveness of these
neural networks, various evaluation metrics have been used.
Here are some commonly utilized metrics in the studies we
have reviewed:

• Classification Accuracy (CA): This metric calculates
the ratio of accurately identified images or classes to
the overall number of images or classes. For problems
involving multiple classes, the CA is computed as the
average across all categories.

CA =
Number of Correctly Classified Samples

Total Number of Samples
(1)

• Precision: Defined as the ratio of True Posi-
tives (TP) to the combined count of TP and
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FIGURE 9. The process of convolutional operation.

FIGURE 10. The process of pooling operation.

False Positives (FP).

Precision (P) =
TP

TP + FP
(2)

• Recall: Denoted as the ratio of TPs to the collective sum
of TPs and False Negatives (FN).

Recall (R) =
TP

TP + FN
(3)

• F1-score: This is the harmonic mean of precision and
recall, providing a balance between the two.

F1 =
2 × (Precision × Recall)

Precision + Recall
(4)

• Root-Mean Square Error (RMSE): It measures the
root-mean square of the differences between predicted
and actual values, offering insight into the model’s
prediction accuracy.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (5)

IV. DEEP LEARNING ASSISTED COMPUTER VISION
APPLICATIONS IN GREENHOUSE FARMING
The integration of deep learning-assisted computer vision
techniques into greenhouse environments has produced
promising results, indicating significant effectiveness. Deep
learning-enhanced computer vision has a wide range of
applications within the greenhouse industry, including
recognition and classification of crops, crop yield estimation,
crop quality inspection, crop growth monitoring, automatic
harvesting, disease and pest management and so on. A small
taxonomy of these applications is illustrated in figure 13.
In this section of this paper, we explore the specific problems
addressed in academic literature across these application areas.
We investigate various computer vision techniques, models
and architectures that have been utilized, the performance of
the model adopted, discuss the underlying constraints and chal-
lenges, and offer insights to guide future research endeavors.

A. CROP GROWTH MONITORING
Ensuring the healthy growth of crops is essential in greenhouse
farming in order to achieve optimal yield, quality, and efficient
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FIGURE 11. Classical SSD deep learning network architecture based on VGG-16. Source: [82].

FIGURE 12. Architecture of RNN used for fruit quality assessment.
Source: [88].

use of resources, all of which contribute to profitable outcomes
in agricultural production. Crops require a variety of nutrient
elements, including macronutrients, secondary nutrients, and
micronutrients, for optimal growth. Traditionally, monitoring
crops has always relied heavily on human observations,
which frequently leads to inaccurate and delayed results.
Precision agriculture, especially in controlled environments
like greenhouses, emphasizes the importance of consistent
and accurate crop monitoring at varied growth stages.
By integrating computer vision into greenhouse management,
we can achieve real-time, precise monitoring. It provides
timely interventions for optimal growth by detecting minute
changes in crop health due to nutritional deficiencies far earlier
than manual inspections.
Utilizing innovative technologies to enhance agricultural

processes, especially in the realm of greenhouse farming,
is increasingly prevalent. Lee et al. [92] embarked on an
exploration using clip-type Internet of Things (IoT) cameras
to monitor tomato growth in a greenhouse setting, using deep

learning-based object detection to track flower blooming and
immature fruit development. By integrating the flower’s bloom
date with temperature forecasting, their system could predict
harvest dates with an average error of two days. While the
clip-type design effectively addressed challenges like plant
overlap in densely populated greenhouses, reliance on wired
power sources and occasional occlusions posed limitations.
The introduction of battery-powered IoT cameras and more
adaptive positioning might enhance its applicability. In a
different study, Gang et al. [93] implemented a convolutional
neural network (CNN)-basedmodel to estimate growth indices
for greenhouse lettuce, utilizing RGB-D data from stereo
cameras. Their dual-stage CNN architecture, building upon
the ResNet50V2 layers, demonstrated remarkable accuracy.
Similarly, Zhang et al. [94] showcased the capabilities
of convolutional neural networks in relation to digital
images. The study demonstrated how CNN can be useful
in monitoring growth indicators like leaf fresh weight, leaf
area, and leaf dry weight, delivering results that outperform
traditional methodologies, especially for specific lettuce
cultivars. However, while these models can extract depth
information to enhance accuracy, their real-time application
demands considerable computational power. Nevertheless, the
speed of image processing, particularly with edge devices like
Jetson SUB mini-PC, implies a potential future in real-time
monitoring.
The growing field of computer vision and deep learning

has opened up new possibilities in crop management. Pre-
trained models like YOLO, ResNet, VGG16, MobileNet,
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TABLE 2. Summary of major CNN architectures.

Detectron2, etc., have showcased remarkable capabilities in
object detection. Integrating these advanced techniques into
horticultural research has yielded impressive performance
and opened avenues for innovative applications. For instance,
Moysiadis et al. [95] highlighted the potential of using the
YOLOv5 pre-trained model for mushroom growth monitoring.
The complexities of mushroom growth patterns raise the
significance of this research. However, the accuracy of
detection underscores the challenges of using computer vision
in dense environments with overlapping objects. Similarly, in a
recent study, Shinoda et al. [96] introduced the ‘‘RoseTracker’’,
a system that combines YOLOv5, SORT, and a regression
model aimed at monitoring the growth of roses in cultivation
environments. The dataset they provided stands out due to its
specific focus on the unique stages of rose growth. Though
the results demonstrate remarkable accuracy, the system’s
adaptability across diverse global cultivation conditions and

its versatility with other floral species will be crucial factors
in determining its broader acceptance and utility.

These examples of applying deep learning-based computer
vision to greenhouse crops demonstrate its utilization for
various aspects of research and production, including species
classification, organ detection, growth stage monitoring,
and localization. Studies have implemented techniques like
convolutional neural networks, YOLO, and other object
detection models to track developmental indicators and phases
precisely. While occlusion and adaptability across diverse
environments remain challenges, deep learning enables real-
time, accurate crop monitoring to support data-driven decision-
making for optimal yields, quality, and resource efficiency
in greenhouse farming. The technology displays remarkable
potential in replacing time-consuming and imprecise manual
inspection. Overall, deep learning-based computer vision
facilitates timely, precise interventions for optimal greenhouse
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FIGURE 13. Taxonomy of computer vision applications in greenhouse farming.

crop growth by detecting growth changes earlier than humanly
possible. Further technological advances could transform
greenhouse management and contribute to more sustainable,
productive agricultural practices. Some of the studies in this
area are precisely summarized in table 3

B. RECOGNITION AND CLASSIFICATION OF CROPS
Automated recognition and classification of greenhouse crops
is a challenging task due to the vast diversity and continuous
evolution of plant species. Moreover, crops can undergo
various mutations, leading to significant variations within
a single class. As a result, flowers from different species
may share similar features such as shape, colour, and general
appearance. Therefore, the recognition and classification of
greenhouse crops presents a complex challenge with multi-
class problems. Although manual classification is possible,
it is typically labour-intensive and prone to errors, particularly
when handling large numbers of samples. Hence, the
application of computer vision-based deep learning techniques
for the purpose of identifying and classifying species or
cultivars holds immense potential as a groundbreaking
advancement in the field of smart agriculture and greenhouse
farming, thanks to their outstanding speed and accurate
recognition capabilities.

In recent advancements, the adoption of deep learning-based
computer vision techniques in the domain of greenhouse
agriculture has witnessed notable developments, particularly
when it comes to enhancing precision and efficiency. Chen
et al. [97] attempted to resolve the challenge posed by the
dense intertwining of cucumber canopy vines. By proposing
an image recognition model based on an enhanced YOLOv5,
they aimed to increase the accuracy of detecting cucumber

canopy vine tops. Notably, they introduced the CA (Coordinate
Attention) mechanism module and transitioned from GIOU
to EIOU for loss regression, resulting in a commendable
accuracy of 97.1% in recognizing cucumber canopy tops
in varied conditions. While the methodology is outstanding,
there is potential to further adapt it for broader agricultural
applications, considering the dynamism of outdoor conditions
that might affect accuracy.

Islam et al. [98] addressed the complications in separating
leaf pixels from backgrounds in thermal images due to
factors like thermal radiation and greenhouse humidity.
They proposed TheLNet270v1, achieving a remarkable 91%
accuracy in distinguishing canopy pixels. This innovative
approach underscores the capability of deep learning in
analyzing thermal images within greenhouses. While the
results are promising, it is essential to make sure the model
works well with different pixel size and adapt to the diverse
environmental shifts commonly observed in greenhouses.
Zhou et al. [99] proposed an ‘‘improved Faster-RCNN’’

architecture to detect strawberries from ground-level RGB
images. This mechanism not only aids in efficient harvesting
but also plays a pivotal role in selecting high-yield strawberry
varieties. Their method achieved a notable fruit extraction
accuracy of 86%, which surpassed the three other methods
tested. However, the complexity and environmental adaptabil-
ity of these models still necessitate further research. Future
work in this domain needs to address training complexity
and refine models to ensure robustness across various
environmental conditions.
Cong et al. [100] innovatively incorporated the Swin

Transformer attention mechanism into Mask RCNN, enhanc-
ing the model’s feature extraction capabilities. Their model
efficiently segmented sweet peppers even in complex
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scenarios, such as varying lighting conditions, pepper overlaps,
and leaf occlusions. Achieving an average FPS value of 5,
their approach holds promise for real-time monitoring of
sweet pepper growth. Nevertheless, there is still room for
improvement, especially in terms of real-time performance
(e.g., inference speed), to make it more optimized and viable
for large-scale practical applications, particularly in automated
fruit-picking systems.
In recent years, the automation of crop harvesting,

specifically tomatoes, has gained considerable attention in
agricultural robotics. Su et al. [101] targeted tomato maturity
detection, an essential aspect for determining post-harvest
logistics such as transportation and storage. Their SE-
YOLOv3-MobileNetV1 model excelled in classifying toma-
toes into four distinct maturity levels with an average precision
value of 97.5%. The incorporation of the Squeeze-and-
Excitation attention mechanism ensured accurate detection
while keeping the model lightweight, an attribute essential
for embedded development in robotic applications. However,
despite the robustness of their model, additional progress
is required to address the challenges posed by real-world
circumstances, such as the mutual occlusion caused by leaves
and fruits. Meanwhile, Yuan et al.’s [82] study focuses on
detecting cherry tomatoes in a complex greenhouse setting.
Considering the operational environment and the precision
offered by deep learning, they chose the SSD model and
further experimented with varying base networks and input
sizes. Their results demonstrate significant improvements
in automatic cherry tomato detection, with a fascinating
98.85% precision achieved using the Inception V2 network.
However, the challenge of detecting side-grown tomatoes
underscores the need to fine-tune the model for complex
scenarios. Moreia et al. [102] highlighted the crucial step
towards achieving fully automated robotic harvesting: the
development of an accurate fruit detection system. They
proposed a deep learning-based system using SSDMobileNet
v2 and YOLOv4 models to detect tomatoes and introduced
an innovative histogram-based HSV colour space model for
classifying their ripening stage. Notably, YOLOv4 displayed
an impressive performance in both detection and classification,
with an impressive F1-Score of 85.81% in the detection task.
Yet, challenges persisted in identifying the middle stages
of ripening due to subtle colour variations. This underpins
the importance of continual model refinement, especially
when differentiating closely related classes. In another
similar study, Mao et al. [103] strived to enhance the
accuracy and practicality of cucumber detection in complex
environments. They introduced a multi-path convolutional
neural network (MPCNN) with colour component selection
and a support vector machine (SVM). The methodology
effectively identified the cucumber region by reducing
the background interference and emphasizing the colour
differences between the cucumber and its surroundings. This
approach yielded satisfactory results, with over 90% pixels
in cucumber images being accurately classified. However,
it remains uncertain how this model would perform under

different environmental conditions or with other cucumber
varieties.

These applications of deep learning-based computer vision
for automated recognition and classification of greenhouse
crops shows promising results, but also persisting challenges.
Studies have utilized techniques like YOLO, Mask RCNN,
Faster R-CNN, MobileNets, and Swin Transformers to
accurately detect and classify various crop species, cultivars,
and growth stages. The complexities of distinguishing
between highly similar classes, handling occlusion, and
adapting models across diverse environments and lighting
conditions remain active research problems. However, deep
learning methodologies have achieved remarkable accuracies
surpassing traditional techniques. Continual refinement of
models and architectures tailored to specific crops, growth
conditions, and agricultural tasks is still needed for robust real-
world performance. Table 4 summarizes the technical details
of the studies presented in this subsection.

C. CROP DISEASE MONITORING
In agriculture, plant diseases always remain a major issue
that causes significant losses in the world’s food production,
particularly in controlled settings like greenhouses. It is
severely affecting the yield and quality of agricultural
products and has become a key concern in the development
of global agriculture. Traditional identification methods,
largely manual and guided by pathologists, often lack
the desired speed and precision, making them unsuitable
for the fast-paced requirements of modern agriculture.
Therefore, the development of deep learning and computer
vision presents a promising path toward fast and accurate
disease recognition; however, environmental factors such as
different lighting and leaf occlusion continue to be ongoing
challenges that researchers work to overcome in the area
of greenhouse disease monitoring. At present, advances
in imaging technology have led to the creation of several
open-source image datasets featuring various horticultural
crops. Notable datasets include ImageNet, PlantVillage,
and OUFD. These collections have significantly improved
the accuracy of image classification and recognition. Such
large-scale image datasets are extensively used, offering
plenty of feature information for training deep neural network
models in horticultural research. With PlantVillage(https://
www.tensorflow.org/datasets/catalog/plant_village),Wspanialy
et al. [104] explored diseases affecting tomato leaves and
highlighted the importance of automated disease detection
because of its cost-effective implications. Their system can
identify various tomato leaf diseases and evaluate their
severity. While the method showed the potential to detect
previously unseen diseases and yielded severity estimations
comparable to human assessments, biases in the dataset,
especially concerning the background, could limit its real-
world applicability. Future efforts should concentrate on
diversifying datasets to ensure the development of more
generalized and robust models.
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Similarly, using the PlantVillage dataset, Restrepo-Arias et
al. [105] introduced a novel diagnostic approach that highlights
the impact of genotypic and phenotypic characteristics on how
plants respond to pathogens. Their method, which emphasizes
texture-based features and uses Bayesian Optimization to train
artificial neural networks, achieved an impressive accuracy
of up to 96.31% with MobileNet. This method’s emphasis on
textural features shows promise, potentially reducing biases
arising from leaf morphology. However, exploring more plant
datasets and, experimenting with different image sizes, not
relying solely on texture, and considering various features
might enhance its classification accuracy and broaden its
applicability.
Despite the widespread use of open-source datasets like

PlantVillage, crop recognition systems are still in the
development stage and have not been established on a large
scale. As a result, most researchers prefer to experiment with
their own collected image sets. Zhao et al. [106] collected
images of healthy and diseased strawberry varieties to build
their dataset. They introduced a modified Faster RCNN
architecture, emphasizingmultiscale feature fusion. Achieving
a commendable mAP of 92.18%, their method stands out for
its efficiency and accuracy. Still, continuous refinement of
their model is required for its adaptability across a broader
spectrum of strawberry diseases. Xu et al. [107] addressed the
challenge of melon leaf disease detection using an innovatively
pruned version of YOLO v5s combined with ShufeNet v2.
Their strategy achieved an impressive 95.7% mAP@0.5.
By focusing on smaller disease features, they achieved
real-time detection in intricate greenhouse environments. The
model’s speed and efficiency, with an inference time of
just 13.8 ms, are noteworthy. Their work underscores the
power of leveraging refined neural networks for specific tasks,
though the expansion to other crops will determine its broader
relevance. Zhang et al. [108] employed the EfficientNet-B4
model to identify diseases in cucumber leaves, achieving
an impressive 97% accuracy. However, external factors
like lighting introduced challenges in distinguishing similar
diseases. While their approach offers promise for real-time
greenhouse monitoring, addressing environmental variables
and optimizing for different devices, remain crucial for broader
applicability. Zhang et al. [109] utilized color and color-
infrared (CIR) images to diagnose wheat diseases like leaf rust
and tan spots. Employing deep features extracted through the
ResNet101 model, their approach achieved notable accuracies
up to 84%. While their approach maximizes the advantages of
automated image analysis over manual observation, the deep-
learning model’s supremacy in capturing finer features stands
out, making it a promising direction for further advancements
in disease detection.
These investigations show that deep-learning models,

particularly when trained on comprehensive image datasets,
offer substantial promise in timely and accurately detecting
plant diseases in controlled environments like greenhouses.
The fusion of computer vision and advanced imaging
technology has shown the potential to revolutionize traditional

agricultural monitoring practices. A detailed summary of the
techniques and their respective performances in the discussed
research can be found in table 5.

D. AUTOMATIC HARVESTING
Historically, the agricultural landscape was dominated by man-
ual and labor-intensive processes, leading to increased costs
and limitations in efficiency. The recent advent and integration
of computer vision technology have marked a significant
agricultural transformation. Today, the use of advanced
technology in the form of intelligent harvesters equipped with
vision-based robotics is on the rise. Groundbreaking research
in this area has reshaped the paradigms of contemporary
agricultural production, both investigating and implementing
these technological advancements. For instance, Rong et al.
[110] ’s exploration into robotic harvesting of greenhouse
tomatoes sheds light on the current technological challenges
in replicating the efficiency and accuracy of manual harvesting.
They proposed an advanced system to accurately identify
tomato positions and determine the best grasping technique.
By integrating a YOLOv5m-based detection mechanism, they
achieved impressive recognition accuracies of 90.2% for
tomato bunches and 97.3% for individual fruits. However,
while their optimized strategies reduced collision impacts
on the manipulator’s grasp, yielding a promising harvesting
success rate of 72.1%, their average harvesting time of
14.6 seconds per fruit still underscores the need for speed
improvements.
Similarly, Benavides et al. [111] attempted to automate

tomato crop harvesting using a Computer Vision System
(CVS), with a primary focus on the detection and localization
of ripe tomatoes. By employing a myriad of digital image
processing tools and basic trigonometry, the system success-
fully classified around 80.8% of beef tomatoes and 87.5% of
cluster tomatoes as ‘‘collectible.’’ An outstanding achievement
was the sub-millisecond processing time, a significant leap
from previous methodologies. Despite the advancements,
challenges persist in terms of ambient lighting conditions and
the variability of the working environment, emphasizing the
need for more adaptable and robust systems.
A different study by Rong et al. [112] highlights the

need for a fully automated mushroom harvesting robot.
Their innovative robot system, employing Intel RealSense
D435i for imaging and an improved SSD algorithm for
detection, offers a promising mushroom recognition success
rate of 95%. The system’s robustness is further evidenced
by an admirable harvesting success rate of 86.8% within an
average time of 8.85 seconds per mushroom. However, their
initial approach to mushroom recognition faced challenges
with varying illumination, adhesion intricacies, and posture
identification, underscoring the need for deep learning models
with more sophisticated recognition algorithms to effectively
negotiate the intricacies involved in mushroom identification
across diverse circumstances, hence enhancing the process.
Nonetheless, the fragile nature of oyster mushrooms highlights
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the critical need for advancements in end-effector designs,
ensuring minimal damage during the harvesting process.
Recent innovations by Liu et al. [113] explored the

application of the DA-Mask RCNN model for detecting green
asparagus. The aim was to enhance detection precision during
the autonomous harvesting of green asparagus by integrating
MASK RCNN with depth information. The addition of the
depth filter showed significant promise, especially under
varying illumination conditions, achieving precision values
of up to 0.993. While the model demonstrated resilience
against false positives in bright lighting, further optimization,
particularly for nighttime scenarios, is crucial for broader
applications.
These studies underscore the transformative potential of

combining computer vision with deep-learning models in
reshaping harvesting practices. While significant advance-
ments have been achieved, the interplay between accuracy and
operational efficiency emerges as a central concern. Table 6
summarizes the technical details of the studies discussed in
this subsection.

E. YIELD ESTIMATION
Yield estimation in agricultural production is pivotal
for stakeholders across the spectrum—from farmers to
agricultural enterprises. It aids in strategically navigating
post-harvest operations, driving marketing initiatives, and
optimizing resource allocation. While traditional techniques
have dominated this space, there is an emergent reliance on
cutting-edge computational methodologies. The intersection
of computer vision and agriculture has seen innovative
developments, particularly with the employment of deep
learning models to address challenges like overlapping crops,
dense vegetation, and varying light conditions specially in
greenhouse setup. This synthesis of technology and agriculture
brings new methodologies, delivering improved precision in
predictions, even as complexities arise. Wang et al. [114]
employed an improved version of the YOLOv3 deep learning
model to estimate tomato yields in artificially lit plant
factories (PFAL). By refining the traditional YOLO algorithm,
they achieved a notable mean average precision (mAP) of
99.3%—a 2.7% improvement over the original YOLOv3.
Notably, their approach excelled in distinguishing densely
packed and obscured fruits, paving the way for real-time
crop monitoring and dynamic yield estimation. However,
challenges persist due to the complex lighting conditions
in PFAL environment and similarities between green fruit
and their surrounding vegetation. In another study, Maji
et al. [115] investigated wheat yield estimation through
SlypNet, a hybrid deep learning approach that combines Mask
R-CNN and U-Net. This approach effectively captures wheat
morphological features, attaining a high mAP of 97.57%
in spike detection. The study underscored the technique’s
resilience to natural field constraints like overlapping and
varying resolution. Yet, while SlypNet proved excellence for
its detection capabilities, it acknowledges the challenge in

precisely estimating grain yield from spikelet counts. Further
studies focused on investigating the intricate anatomical details
of spikelets could potentially enhance the precision of yield
prediction. The growth and development of generative organs
in greenhouse plants are essential for both yield estimation and
higher productivity. Given the challenges in the greenhouse
environment, such as leaf and branch obstructions and the risk
of duplicate counts, there is a pressing need for more efficient
methods. Manual counting approaches are time-consuming
and often marred by inaccuracies, highlighting the necessity
for rapid and automated solutions. Egi et al. [116] addressed
this need by innovatively incorporating a drone-based AI
system to detect and count greenhouse tomatoes. Their
emphasis was not limited to the fruits; they also targeted
the flowers. Using the YOLO V5 and Deep Sort algorithms,
their method showcased remarkable accuracies of 99% for
green tomatoes and 85% for red tomatoes. Nonetheless, their
approach faced challenges with flower detection, securing only
a 50% accuracy. While their achievements are commendable,
the potential inaccuracies from drone movements, combined
with the shortcomings in flower detection, hint at areas for
improvement. An expanded dataset could offer a potential
solution. Zhou et al. [117] utilized an ‘‘Improved ResNet’’
deep learning model to segment accurately and grade
broccoli heads in greenhouse conditions. Their method
achieved an impressive accuracy of 0.896 for broccoli head
segmentation, even in varied lighting conditions. While the
model’s performance is notable, its dependency on controlled
environments and data processing pipeline reliance on manual
settings poses challenges for real-world applications. However,
the potential integration of semi-supervised learning in
future work indicates promising strides towards refining and
optimizing crop yield estimation in greenhouse farming.

From the discussed studies centered on yield estimation in
agricultural settings, particularly in greenhouses, it becomes
evident that the scientific community is making strides
in leveraging advanced computational techniques. These
pioneering methodologies, while exhibiting remarkable
promise, also underscore the complexities of the greenhouse
environment. Further investigation and advancement in these
methods could potentially bring about a paradigm shift in
the agricultural sector—including farmers and enterprises—
strategize planting, harvesting, and marketing initiatives.
Table 7 provides more details about the complex technical
aspects of the studies discussed here.

F. CROP HEALTH ANALYSIS
In the realm of greenhouse plant health analysis, advanced
computer vision techniques have provided innovative solutions
for the prompt detection of crop biotic and abiotic stresses,
nutrient deficiencies, and water stress, ensuring superior
plant quality. The ability to promptly identify biotic and
abiotic stresses is imperative for effective greenhouse crop
management and optimal plant health. While visual inspection
is tedious and subjective, computer vision and spectral
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imaging offer great promise for automated, non-invasive
assessment of crop condition. As Taha et al. [118] employed
spectral analysis and machine learning models to estimate
nutrient contents in aquaponically grown lettuce. Using the
selected optimal wavelengths, they achieved commendable
predictive accuracies (R2 ≥ 0.94), suggesting a potential
automated solution for nutrient estimation in aquaponics.
However, the real challenge lies in translating these lab-based
experiments to real-world greenhouses where external factors
can significantly impact spectral readings. Eshkabilov et
al. [119] also employed hyperspectral imaging within the
400-1000 nm range to predict nutrient concentrations in
lettuce cultivars using PLSR and PCA models, achieving high
accuracy (R2 = 0.784-0.987) with laboratory measurements.
However, while hyperspectral imaging holds promise, its
implementation might be restrictive due to cost implications,
especially for small-scale greenhouse farmers.
RGB imaging has also been utilized for abiotic stress

detection. Lak et al. [120] developed a classification algorithm
using visible light images and MLP neural network modeling
to detect water stress in greenhouse tomatoes. After optimizing
with PCA, the technique achieved 83.3% accuracy in
distinguishing normal and water-stressed plants using only
RGB image features. Surprisingly, adding thermal imagery
did not improve results. Similarly, Levanon et al. [121] utilized
RGB and thermal imaging along with neural networks to
predict water and nutrient stress in banana plantlets. The
multi-modal data fusion approach enabled models to achieve
high prediction accuracy of over 90% for four stress classes.
However, the small sample size of 16 plants may limit
generalization.

Beyond abiotic factors, computer vision shows promise for
biotic disease screening. Najafian et al. [122] introduced a
large dataset of over 40,000 wheat kernel images to detect
Fusarium damage using deep learning models like Effi-
cientNet and ResNet. The semi-supervised approach reached
F1 scores up to 84.29% for binary classification but was
limited for multi-class tasks. Overall, the dataset provides a
valuable benchmark, but more samples are needed. Janani et al.
[123] proposed a unique method to identify nitrogen nutrient
levels in groundnut leaves using the CNN-based HVN model,
achieving a training accuracy of 95% and validation accuracy
of 92%. Although their method highlighted the significance
of leaf color in determining nitrogen concentration, they
acknowledged potential inaccuracies stemming from external
factors unrelated to nitrogen levels. Such nuances emphasize
the importance of considering all potential variables in crop
health prediction.
Overall, these studies demonstrate that computer vision

and spectroscopy can enable automated, non-destructive
monitoring of multiple crop health indicators. However,
translating these technologies into commercial systems will
require more robust models that fuse multi-modal data to
overcome environmental noise, larger datasets to improve
generalizability, and model optimization to account for
subtleties between stress symptoms and normal variations.

Table 8 provides more details about the complex technical
aspects of the studies discussed here.

G. PEST AND INSECT MONITORING
Monitoring pests and insects in greenhouses has always
been a primary concern for sustainable agriculture, impacting
both the quality and quantity of yield. It has now become
an exciting field in the agricultural domain, emphasizing
the critical need for precise, real-time solutions. Traditional
methods have shown limitations in accuracy and response
time. Consequently, computer vision and deep learning,
particularly convolutional neural networks (CNNs), are being
increasingly explored to identify pests like whiteflies and
thrips, aiming to streamline and improve the detection process
in greenhouse environments. Traditionally, farmers manually
sample, count, and identify pests, a time-consuming and
error-prone process. The integration of computer vision
presents a more effective and accurate alternative, and a wide
range of research is exploring its possibilities in the context
of integrated pest management (IPM) [124], [125], [126],
[127], [128], [129], [130], [131]. In a recent study, Liu et
al. [129] investigated real-time pest detection on crops using
advanced computer vision and deep learning. By adopting
convolutional neural networks (CNNs) and generating a
virtual database for training, they achieved an impressive
97.8% detection accuracy for various invertebrate pests on
crops. In the future, utilizing multispectral or hyperspectral
imaging may make it possible to identify well-camouflaged
pests. Furthermore, the development of ground-based robotic
system capable of performing real-time proximal detection of
invertebrate pests could be the future of pest management.
Yang et al. [128] focused their research on identifying
greenhouse pests, especially whiteflies and thrips, using
image processing. Their novel method employed dual color
spaces(HIS and Lab) combined with advanced ensemble
learning classifiers, resulting in a commendable 95.73%
recognition accuracy. While this approach substantially
minimized manual intervention, the study underscores the
challenge of uniformly illuminating complex greenhouse
environments, possibly impacting accuracy in varied scenarios.
Despite this success, there is still room for improvement.
The system could be more optimized by reducing the
number of false positive detections. Moreover, extending
the system’s capability to a broader range of environments
beyond greenhouses is on the horizon. On a similar note, Li et
al. [131] also conducted research on detecting whitefly and
thrips from sticky trap images using a deep learning model,
‘TPest-RCNN’, based on the Faster R-CNN. This model, fine-
tuned for small insect detection, showed excellent precision
with a mAP of 0.95. While the results were promising,
challenges like diverse pest densities and lighting conditions
remain. However, their approach sets a robust groundwork
for real-time monitoring, which can significantly aid timely
interventions. In a distinctive approach, Zhao et al. [130]
tackled pest detection in Brassica chinensis through images
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captured by unmanned aerial vehicles (UAV). Given the
challenges of aerial imagery such as image blur and small
object sizes, their strategy leveraged deep learning combined
with improved CenterNet algorithms, realizing a detection
performance of up to 94.7% R-squared. Despite its potential,
aerial imagery’s inherent issues, like blurring, could affect
its widespread adaptability unless integrated with superior
quality cameras or advanced image restoration techniques.
In a different study, Lins et al. [127] addressed the task
of automating the counting and classification of aphids,
particularly Rhopalosiphum padi, using a software named
‘AphidCV’. This software, rooted in computer vision and
machine learning, not only expedited the counting process
but also introduced morphometry data. While its prowess is
undoubted, some limitations in classifyingwinged aphids were
evident. Diversifying the training dataset, perhaps with data
augmentation techniques, could be beneficial. This solution
holds promise for its extension to other aphid species and
direct application in field-based pest management, reducing
reliance on labor-intensive manual methods.
Given the advancements detailed above, computer vision,

particularly when coupled with deep learning methodologies
like CNNs, showcases transformative potential in the realm
of greenhouse pest detection and management. Nevertheless,
as research progresses, it is imperative to address inherent
challenges, such as diverse pest densities and varied lighting
conditions, to ensure consistent, real-time accuracy. Embrac-
ing multi-modal data fusion, hyperspectral imaging, and more
extensive datasets can further amplify the precision and
reliability of these systems within greenhouse environments.
Table 9 details the technical aspects of the discussed studies.

H. GREENHOUSE CROP QUALITY INSPECTION
The quality control and grading of agricultural commodities
is essential for determining their market value, safety, and
appeal to consumers [132]. Manual inspection, however, can
be inconsistent, labor-intensive, and unscalable for large-
scale production. The integration of computer vision and
artificial intelligence has unlocked exciting new possibilities
for automated, non-destructive, and real-time assessment of
horticultural produce quality [133], [134], [135], [136], [137].
As explored by Tan et al. [134], deep convolutional neural
networks demonstrated high accuracy (mean average precision
of 95.52%) in classifying the maturity of tomatoes based on
color features extracted from images. The use of task-specific
architectures like Mask-RCNN allowed precise segmentation
and localization of the produce within complex backgrounds.
However, the model training time of 6 hours indicates room
for optimization in computational efficiency for real-time
adoption.
Beyond maturity, quality parameters like pest/disease

damage, ripeness, and shelf-life have also been automated
using imaging techniques. For instance, Hendrawan et al.
[135] developed a convolutional neural network model to
categorize large green chili peppers into three maturity classes

with 91.27% accuracy. The model shows promise for rapid,
objective maturity grading to standardize quality. However,
classification accuracy was lower for immature peppers,
warranting further research into data augmentation and transfer
learning to improve model robustness. In another study, Shi et
al. [136] combined deep learning and causal analysis to predict
maturity dates of leafy greens in greenhouses, achieving a
root mean squared error of only 2.49 days. While novel, the
approach struggled with crops in late static growth stages,
suggesting the need for adaptive models that emphasize
historical data over static phenotypes in late stages.
Wei et al. [137] developed a model using grape skin color

analysis and a backpropagation neural network to predict the
maturity of greenhouse-grown grapes, achieving up to 79.4%
accuracy. A two-factor color model performed better than
single-color predictors. However, prediction accuracy varied
between grape varieties depending on color changes during
ripening. Custom varietal models or adaptive techniques may
further improve prediction.
Zhu et al. [133] proposed a computer vision approach

using YOLOv5 and OpenCV to grade mushrooms in
greenhouses based on size features automatically. The model
achieved 96% accuracy in identifying and measuring occluded
mushrooms under varying illumination. However, further work
is needed to optimize mushroom recognition speed and expand
functionality for tasks like robotic spraying. Nyalala et al.
[138] presented a technique using machine learning and image
processing to estimate the weight and volume of tomatoes
on a simulated greenhouse conveyor system. Occluded
tomatoes were segmented using polygon approximation before
extraction of shape features. The best models achieved
high correlation with reference measurements, demonstrating
feasibility for in-line, non-destructive quality screening.
Nonetheless, additional testing is required across diverse
tomato varieties and shape features.
The studies presented highlight the immense potential

of computer vision and AI techniques to automate the
quality assessment of greenhouse-grown horticulture produce.
Advanced models have enabled non-destructive evaluation of
multiple quality traits, from external features like pest/disease
damage and maturity to internal parameters like texture
and shelf-life. However, enhancements in model versatility,
accuracy, and computational efficiency are needed to account
for the diversity of greenhouse varieties and environ-
ments. Current systems also have limited real-world testing
beyond controlled settings. Expanding datasets, integrating
multi-modal sensor inputs, and optimizing deep learning
architectures tailored for greenhouse conditions will be critical
next steps. While research is still progressing, computer
vision and AI solutions promise to transform quality control
practices for greenhouse horticulture. Automated, real-time
quality grading and defect detection could provide invaluable
objective data to support selective harvesting, packing, pricing,
and sales for greenhouse produce. Overall, these emerging
technologies are poised to enhance productivity, reduce waste,
and add value to the competitive greenhouse industry. Table 10
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presents the technical details of several studies conducted in
this area.

I. SEED QUALITY ANALYSIS
Seeds are crucial to modern agriculture, determining both food
supply and crop yield[118]. Traditional manual assessments
of seed quality, while essential, are laborious and prone
to inaccuracies. The commercial seed industry is now
leaning into computer vision technology, tapping into its
potential to extract seed features with precision. With the
rapid advancement of various imaging techniques, enhanced
by deep learning, this technology sets new benchmarks
for seed quality evaluation in greenhouse settings [140],
[141], [142], [143], [144], [145]. For example, Medeiros
et al. [141] investigated the application of Convolutional
Neural Networks (CNN) with X-ray imagery to determine
crambe seed quality. Their deep learning models robustly
categorized seeds based on their tissue integrity, germination,
and vigor with impressive accuracies of 91%, 95%, and
82%, respectively. This substantiates the vast potential of
X-ray imagery in furnishing critical insights into the physical
and physiological attributes of seeds. However, a lingering
concern is the reliance on digital radiographic images, which,
while powerful, might not capture the complete essence
of seed vitality in diverse scenarios. On a similar note,
Hong et al. [142] employed a combination of hyperspectral
and X-ray imaging techniques for a nondestructive viability
prediction of pepper seeds. The ensemble-based fusion model,
integrating both hyperspectral and X-ray data, stood out with
an accuracy of 92.51%. This approach demonstrates that
combining different imaging modalities can produce more
accurate categorization results. Nonetheless, the research’s
dependency on just two pepper-seed cultivars may demand
broader experimental validations for holistic reliability across
varied conditions. In a different study, Lube et al. [143]
introduced the MultipleXLab system: a flexible platform
for monitoring seed germination and root growth. Using
deep learning methodologies, they showcased the system’s
capability to screen seed vigor and evaluate seedling responses
under varied conditions. The system, however, presents two
key challenges: its restricted experimental duration due to agar
dehydration and a potential light deprivation issue for seeds
placed in specific positions. Overcoming these limitations
could elevate its utility. Gao et al. [144] presented an innovative
end-to-end platform named HyperSeed, which is adept at
providing hyperspectral information specifically for seeds.
Their application on rice seeds using a 3D convolutional
neural network (3D CNN) outperformed traditional methods
like the support vector machine (SVM) model, boasting
an impressive 97.5% accuracy. Nevertheless, the system
is constrained by its single-threaded software nature and
demands exploration of global spatial traits, hinting towards
potential future advancements. On the other hand, Sabanci et
al. [140] conducted a study to distinguish between tomato seed
cultivars, employing a multi-tier deep learning approach. They

initially utilized convolutional neural network (CNN) models
for seed image classification, with MobileNetv2 showcasing
the highest efficacy. Furthermore, they leveraged deep features
from this model to feed a Bidirectional Long Short-Term
Memory (BiLSTM) network, pushing the classification
accuracy to a notable 96.09%. Despite the promising results,
the study underscores the importance of diverse datasets for
model robustness and suggests hyperparameter optimization
to enhance performance.
To synthesize, while computer vision technologies are

profoundly redefining seed quality assessments in greenhouse
farming, there remains an imperative for further refinements
to harness their full potential. Such tools, when impeccably
optimized, can provide real-time and nondestructive solutions
to the complexities of seed quality evaluation in the modern
agricultural landscape. Table 11 provides a concise summary
of several studies conducted in this field.

J. WEED MANAGEMENT
Weed management poses a significant challenge in contem-
porary agriculture, as weeds compete with crops for vital
resources such as light, water, nutrients, and space. Weeds
are a primary factor behind agricultural yield losses. Study
[146] highlighted that weeds account for about 34% of yield
losses, substantially more than losses from pests (18%) or
pathogens (16%). Recently, the agriculture sector has seen a
growing interest in integrating modern weed management
techniques with computer vision. Extensive research has
been carried out using these cutting-edge technologies to
control and manage weed growth in greenhouses. In one
study, Koparan et al. [147] emphasized the role of image
background in deep learning models for weed detection.
The study applied advanced architectures like VGG16 and
ResNet50, highlighting a decrease in model accuracy when
transitioning from a uniform to a non-uniform background
and vice versa. However, when combined data sets from both
backgrounds were used, the performance surged to nearly
99%. Despite their rigorous approach, the limitations lie in the
model’s dependency on the image backgrounds, underscoring
the need for more diverse training data. This could enhance the
model’s adaptability across varying environmental conditions.
In another study, Wang et al. [148] underscored the challenges
posed by the limited availability of weed datasets in the field.
The study introduced ‘‘Weed25’’, a dataset encapsulating
images of 25 weed species and utilized state-of-the-art models
like YOLOv3, YOLOv5, and Faster R-CNN to achieve
impressive accuracy rates hovering around 92%. However,
the research confines its scope to only 25 species, leaving
room for the inclusion of more diverse weed types, which
could lead to further refinement of models tailored for
precision in greenhouse weed management. Oda et al. [149]
developed a multispectral camera system specifically for
recognizing weeds within crops. Their findings revealed
that the infrared band was more precise than other bands,
highlighting its importance in plant detection. This affirms
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the potential of combining computer vision with multispectral
imaging in enhancing post-emergence herbicide applications.
Nonetheless, challenges persist, including the influence of
leaf overlap and varied light intensities on detection accuracy.
Addressing these challenges head-on could pave the way for
more robust and accurate weed detection models. Koparan et
al. [150] examined the role of site-specific weed management
using RGB image texture features. Their methodology
compared the Support Vector Machine (SVM) and the
deep learning-based VGG16 models. Remarkably, their deep
learning approach, specifically the VGG16 model, showcased
an impressive f1-score value of 100% for corn classification,
which is a breakthrough for the corn crop production system.
While their method holds potential, one must consider the
vast variability of crops and regions. A significant highlight
of their work is the effectiveness of VGG16 in identifying
weeds in the presence of various crops, elucidating the
intricacies of weed-crop dynamics in precision agriculture.
In a different study, Rai et al. [151] deployed deep learning
models on edge devices, aiming to detect weeds through aerial
imagery. By comparing both heavyweight and lightweight
deep learning models, they showed that lightweight models,
specifically CSPMobileNet-v2 and YOLOv4-lite, achieved
a mean average precision(mAP) of 83.2% and 82.2%,
respectively. Their approach offers real-time detection with
commendable accuracy but, critically, must be scrutinized for
potential hardware biases and storage challenges, especially
with high-resolution aerial data. The flexibility offered by
edge computing cannot be ignored; however, securing these
devices remains a pertinent concern. Drawing insights from
those studies, it is evident that integrating computer vision
techniques holds immense potential for refining greenhouse
weed management. However, achieving precision remains a
formidable challenge. Diverse data sources, enhanced models,
and advanced imaging techniques may collectively steer the
future of this realm, allowing for more sustainable and efficient
weed control in greenhouses. A brief overview of different
studies in this area, along with their technical details, can be
found in Table 12.

V. CRITICAL CHALLENGES FACED BY COMPUTER VISION
TECHNOLOGY IN SMART GREENHOUSE OPERATIONS AND
THE WAY OUT
While computer vision has shown immense potential across
various greenhouse applications, as highlighted in this review,
significant challenges must be addressed for effective real-
world deployment.

A. LACK OF LARGE-SCALE STANDARDIZED DATASETS
A major limitation identified is the shortage of large-scale
standardized image datasets for the greenhouse domain (as
noted in [66], [102], [105]). Most studies rely on small
proprietary datasets collected by the researchers themselves,
often just a few hundred images, which restricts generalization
of techniques ([93], [98], [107]). There is a need to establish

extensive public databases encapsulating the diversity of
greenhouse environments, with variability in factors like
lighting, humidity, crop types, growth stages, and imaging
angles represented ([92], [95], [106]). Centralized repositories
like PlantVillage offer a valuable start but have limited
coverage and annotation complexity. Constructing large-scale
greenhouse image datasets with standard formatting and anno-
tations will be critical to benchmark performance of computer
vision techniques and fuel advancements ([94], [114], [115]).

B. NEED FOR SPECIALIZED AND OPTIMIZED MODELS
While deep neural networks have driven progress in many
visual recognition tasks, off-the-shelf models pre-trained on
open-field images fail to account for the unique intricacies
of greenhouse environments ([96], [97], [105]). Networks
designed for generic datasets do not transfer effectively
to greenhouses, as the specialized appearance and growth
patterns of crops in controlled settings are not represented
( [99], [108], [109]). The frequent occlusion from dense
foliage, glass surface reflections, condensation, extreme
illumination fluctuations, and evolution of visual features
across plant growth requires specialized model architectures
and training strategies ( [95], [100], [114]). For instance,
Li et al. [97] found that directly applying YOLOv3 for
cucumber canopy recognition resulted in insufficient accuracy,
requiring an enhanced model with additional coordinate
attention modules. Xu et al. [107] showed that extensive
pruning and adaptation of YOLOv5s was needed for effective
real-time melon disease detection in greenhouses. Rong
et al. [110] demonstrated that off-the-shelf YOLOv5 had
difficulties recognizing occluded tomato bunches, needing
optimization of the loss function and model architecture.
These studies underscore the need to tailor base models to
address nuances like occlusion, illumination variation, and
growth patterns unique to greenhouse environments. Beyond
architectures, the training process must also account for
greenhouse-specific factors. Models like those proposed by
Cong et al. [100], Gang et al. [93], and Liu et al. [113]
illustrate the benefits of customized training regimes using
specialized greenhouse datasets over pre-trained networks.
However, collecting exhaustive labelled greenhouse data
can be challenging. Recent work by Moysiadis et al. [95]
demonstrates the potential of simulated or synthetically
augmented data for greenhouse model training. Such emerging
data-centric solutions must be explored in combination with
adapted model architectures.

Overall, while deep learning has shown immense potential,
realizing robust computer vision for greenhouses will require
specialized model architectures and training techniques
tailored to the unique intricacies of controlled environments
([92], [94], [98]). Greenhouse-specific networks, re-training
regimes, augmented data, and continual optimization will be
instrumental in developing computer vision solutions adept at
the nuances of greenhouse conditions.
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C. CONSTRAINTS IN COMPUTATIONAL RESOURCES
Many state-of-the-art techniques like Mask R-CNN are
computationally intensive, making real-time deployment
difficult given the constrained resources of embedded
greenhouse systems ( [111], [114]). Hardware devices in
agricultural settings often have tight power budgets, restricting
the complexity of models that can be run ( [93], [116]).
While cloud-based solutions can provide greater parallel
processing power, sole reliance on the cloud introduces
drawbacks like network latency, connectivity dependencies,
and data privacy concerns. A balanced approach could be
edge-cloud co-design, with lightweight models handling
core functionality on-device while leveraging the cloud for
more intensive computations. Still, optimizing models and
inference pipelines for efficient execution on low-power
devices remains a key challenge ([112], [117]). Research on
extremely lightweight yet accurate architectures specialized
for greenhouse conditions is imperative.

D. LIMITED INTEGRATION OF DIVERSE SENSING
MODALITIES
While most research relies solely on RGB images, other
sensing modalities like hyperspectral imaging can provide
valuable crop insights ( [118], [119], [120]). However,
techniques to integrate and fuse multi-modal data sources are
still emergent. Capturing relationships between RGB, spectral,
depth, thermal, and other data could significantly enhance
model robustness and performance ([121], [122]). Developing
sensor fusion methods and tailored multi-modal networks is
an open research frontier.

E. SHORTAGE OF SPECIALIZED AND INTERDISCIPLINARY
TALENT
The effective development and implementation of computer
vision technologies for greenhouses require skilled profession-
als spanning multiple disciplines ([14], [103], [104], [105]).
Emerging deep learning solutions rely heavily on the parallel
computing capabilities of GPUs ([64]). To fully leverage
these tools requires both computer vision and agriculture
expertise ([93], [114]). However, there is a talent shortage
with competencies and experience across these domains
( [97], [99]). Computer vision involves diverse fields like
image processing, machine learning, and pattern recognition
( [14]). Integrating techniques from these areas into the
complexities of greenhouse farming demands specialized
interdisciplinary knowledge ([95], [108]). From researchers
advancing scientific innovations to technicians managing real-
world deployment, skilled personnel able to bridge computer
vision and agriculture are imperative but lacking ([100], [106]).
Closing this talent gap across computer science and agricul-
tural engineering is vital to drive progress. Initiatives to support
education, training, and collaboration across disciplines are
critical to develop professionals that can effectively apply
computer vision to transform greenhouse agriculture.

In summary, major challenges like lack of sufficient labeled
data, need for task-specific models, computational constraints,

and limited multi-modality demonstrate that significant work
remains to develop computer vision techniques adept at the
nuances of greenhouse environments. Substantial progress
has been made, but overcoming these areas through data
generation, model optimization, efficient designs, and sensor
fusion integration will be essential to realize the full potential
of computer vision for smart greenhouse agriculture.

VI. CONCLUSION
This paper presented a focused analysis of recent advance-
ments in applying computer vision and deep learning
for greenhouse agriculture automation. Spanning diverse
application areas like crop monitoring, disease detection,
yield forecasting, and quality analysis, over 100 studies were
reviewed in detail. The innovations showcased offer glimpses
into the transformative potential of data-driven intelligent
solutions for optimizing productivity and sustainability in
controlled environments. However, significant challenges
remain that must be addressed before widespread adoption.
The lack of large-scale standardized datasets restricts
model generalization and limits performance benchmarking.
Meanwhile, computational constraints of embedded systems
pose bottlenecks for real-time deployment. There is also a
need for more skilled talent with expertise across computer
vision, deep learning, and agriculture. Most importantly, the
uniqueness of greenhouse environments demands specialized,
optimized techniques - off-the-shelf solutions pre-trained on
open field data often fail to transfer effectively. Nonetheless,
the progress made indicates that an exciting future lies
ahead. Expanded collaborations for standardized dataset
development, computational advancements in low-power
devices, interdisciplinary training programs, and research
on tailored solutions for greenhouses will be critical
to drive the field forward. Computer vision and deep
learning have already shown initial success in automation
tasks like robotic harvesting and quality assessment. With
continued innovation, they are poised to transform greenhouse
infrastructure worldwide - enabling autonomous, efficient,
data-driven systems that enhance productivity, resilience,
and sustainability. This timely review provided a holistic
synthesis of the state-of-the-art, analyzed key challenges,
and outlined prospective directions. By condensing current
work and elucidating future needs, it aims to motivate and
guide ongoing research to unlock the full potential of AI
and computer vision for next-generation smart greenhouse
agriculture globally. The possibilities are boundless, and the
opportunities endless.
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