Contents lists available at ScienceDirect

International Journal of Hydrogen Energy

journal homepage: www.elsevier.com/locate/he

Nonthermal plasma-assisted catalysis NH_3 decomposition for CO_x -free H_2 production: A review

Omar I. Awad ^{a,b,c}, Bo Zhou ^{d,*}, K. Kadirgama ^e, Zhenbin Chen ^a, M.N. Mohammed ^c

^a School of Mechanics and Electronics Engineering, Hainan University, Haikou, 570228, China

^b College of Engineering, University of Kirkuk, Kirkuk, Iraq

^c Mechanical Engineering Department, College of Engineering, Gulf University, 26489, Bahrain

^d Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China

e Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia

ARTICLE INFO

Handling Editor: Prof. J. W. Sheffield

Keywords: Nonthermal plasma NH₃ decomposition H₂ production Hydrogen Ammonia Plasma catalysis

ABSTRACT

Hydrogen (H₂) is recognized as a viable and environmentally friendly energy source, utilized across various domains, from large-scale chemical energy exports to small-scale power generation in remote areas. However, the storage and distribution costs of H₂ present significant challenges. Ammonia (NH₃) emerges as a carbon-free hydrogen carrier, backed by a robust international transport and storage infrastructure. On-site hydrogen production can be efficiently achieved through NH₃ decomposition, predominantly via thermal catalysis. One innovative approach involves plasma technology, which utilizes NH₃, alcohols, or hydrocarbons to produce pure hydrogen in plasma reactors. Nonthermal plasma (NTP) in particular, for NH3 decomposition and H2 production, has garnered considerable interest owing to its higher energy efficiency than thermal plasma systems. Furthermore, integrating NTP with catalysis, termed plasma-assisted catalysis, creates a synergistic effect, enhancing NH₃ decomposition efficiency for H₂ production through improved plasma-catalyst interactions. Consequently, NTP-catalysis holds the potential to revolutionize NH₃ conversion and utilisation in the future. To date, there have been limited studies on NTP-assisted catalytic NH₃ decomposition. This review article compiles the latest NTP-assisted catalytic NH₃ decomposition methodologies for H₂ production. It delves into the basics of plasma-assisted NH3 decomposition, including adsorption, desorption, and the synergistic processes during plasma catalysis. Additionally, it examines the impact of NTP on the chemical states and properties of various catalysts and provides a comprehensive analysis of the factors influencing NH₃-plasma decomposition.

1. Introduction

Hydrogen (H₂) gas is increasingly employed as an alternative energy source in industrial operations. Therefore, large-scale H₂ generation is required. H₂ energy systems are an effective, eco-friendly, and sustainable solution for decarbonising a range of sectors where substantial reductions in carbon emissions are challenging. H₂ may be synthesized from water, fossil fuels biomass, or a combination of these three. The H₂ production techniques have been summarised in several review articles [1–6]. Most of the H₂ produced worldwide is from the methane steam reforming process. Also, H₂ produced using renewable energy sources, known as low-carbon H₂, is a clean energy vector. H₂ contains 2.5 times the energy by weight of any other standard fuel; therefore, it could be considered the energy vector for the future. However, the disadvantage of using methane steam reforming is that CO_2 , a greenhouse gas, is emitted as a co-product. Moreover, H_2 storage and distribution of H_2 is difficult, which considered a challenge. Therefore, H_2 must be produced on-site for various industrial applications [7–9]. Owing to the storage and distribution challenges of H_2 fuel, NH_3 is a carbon-free H_2 carrier that allows cost-effective storage and distribution.

NH₃ decomposition is an attractive H₂ supply strategy as NH₃ is a liquefiable fuel with a high density of H₂ [10–14]. NH₃ is simple to transport and store for the production of COx-free H₂, making it an appealing option for on-site H2 production. It is a term that defines H₂ generated without the accompanying emission of carbon oxides like carbon monoxide (CO) and carbon dioxide (CO₂). Most of the literature on NH₃ decomposition for H₂ production focuses on catalytic-assisted cracking (decomposition) using noble (Pt, Pd, Ru, etc.) and cost-efficient metal (Fe, Fi, etc.) catalysts. However, catalytic NH₃

https://doi.org/10.1016/j.ijhydene.2023.12.166

Received 1 October 2023; Received in revised form 12 December 2023; Accepted 16 December 2023 Available online 27 December 2023 0360-3199/© 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. E-mail address: zhoub3@sustech.edu.cn (B. Zhou).