
Decision Analytics Journal 10 (2024) 100368

A
v
N
M
a

b

A

K
O
P
P
P
S
U

1

e
a
u
d
a
i
p
p
t
t
T
r
F
w

a
j
t

h
R
A
2
(

Contents lists available at ScienceDirect

Decision Analytics Journal

journal homepage: www.elsevier.com/locate/dajour

new optimisation framework based on Monte Carlo embedded hybrid
ariant mean–variance mapping considering uncertainties
orhafidzah Mohd Saad a, Muhamad Zahim Sujod a,∗, Mohd Ikhwan Muhammad Ridzuan a,
ohammad Fadhil Abas a, Mohd Shawal Jadin a, Mohd Fadzil Abdul Kadir b

Faculty of Electrical & Electronics Engineering Technology, Universiti MalaysiaPahang Al-Sultan Abdullah (UMPSA), 26600 Pekan Pahang, Malaysia
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kampus Besut, 22200 Besut, Terengganu, Malaysia

R T I C L E I N F O

eywords:
ptimisation
hotovoltaic distributed generation
ower loss minimisation
robabilistic power flow
iting and sizing
ncertainty energy management

A B S T R A C T

This study proposes a new optimisation framework based on Monte Carlo embedded hybrid variant mean–
variance mapping (MVMO-SH) optimisation for planning Photovoltaic Distributed Generation (PVDG) in the
urban Radial Distribution Network (RDN). The Active Power Loss (APL) index was calculated considering the
risk of uncertain photovoltaic generation and urban load distributions. The Monte Carlo Probability Density
Function method was initially used to manage uncertainties. The Monte Carlo-embedded MVMO-SH was then
used to optimise PVDG in the urban RDN. Simulations were run for several scenarios in three load cases based
on 288 segments: residential, commercial, and industrial urban loads. The MVMO-SH had the lowest APL
index compared to genetic algorithm and particle swarm optimisation when the probabilistic power flow with
PVDG was optimised under uncertainty. The APL indexes with three PVDG installations in the 33-bus RDN
for residential, commercial, and industrial urban load models were 0.4094, 0.4811, and 0.4655, respectively.
In the 69-bus RDN, the APL indexes with three PVDG installations for residential, commercial, and industrial
urban load models were 0.3403, 0.3570, and 0.3504, respectively. For all load models examined, there was a
significant reduction in the APL index for the case of three PVDGs compared to the system without PVDG. The
findings showed that uncertainty significantly impacted the optimal location and size of PVDG in the RDN.
. Introduction

The availability of solar resources is an unpredictable factor, influ-
nced by several environmental, meteorological, and weather-related
spects. Cloud cover, haze, fog, and rapid temperature changes create
ncertainty, leading to instability in energy output from photovoltaic
istributed generation (PVDG) [1]. The variation in load patterns poses
n additional challenge for the distribution system [2]. As a result,
t is crucial to consider these factors while incorporating PVDG into
ower systems. The use of probabilistic approaches for predicting solar
hotovoltaic generation and load uncertainties is essential to address
he impact of PVDG integration on the power system network. Uncer-
ainties are location-specific and influenced by geographical factors.
herefore, managing and characterising them using historical meteo-
ological data is vital for PVDG optimisation in the power system [3].
inally, the PVDG rating size depends on the network’s load condition,
hich must be carefully evaluated [4].

Numerous research papers have delved into the optimal location
nd size of photovoltaic distributed generation (PVDG). However, a ma-
ority of them employ deterministic methods. For instance, [5] employs
he Manta Ray Foraging optimisation algorithm (MRFO) to identify

∗ Corresponding author.
E-mail address: zahim@umpsa.edu.my (M.Z. Sujod).

the most suitable distributed generation type I locations and sizes.
Meanwhile, [6] proposes Nature-Inspired optimisation algorithms and
compares the results of the Moth Flame Optimisation (MFO) algorithm
with two other algorithms, the Grasshopper Optimisation Algorithm
(GOA) and Salp Swarm Algorithm (SSA). The study concludes that MFO
is more effective in selecting the distributed generation locations and
sizes than GOA and SSA.

Other novel methods have also been introduced, such as [7]’s
self-organising hierarchical binary particle swarm optimisation for de-
termining optimal PV unit size in RDN and [8]’s severity performance
index (SPI) to rank the most critical buses for PVDG allocation. Ad-
ditionally, [9] developed a weight factor method for optimal recon-
figuration of radial distribution systems with solar and wind energy
resources. The Moth–Flame Optimisation algorithm was used to de-
termine the best location and size for distributed generations. Finally,
the Bald Eagle Search algorithm was introduced in [10] for optimal
placement of distributed generation with shunt reactive compensators.

On the other hand, various studies have employed different op-
timisation algorithms in facing multiple challenges in power sectors.
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Abbreviations

APL index Active power loss index
BB-BC Bigbang-big crunch
BFSPF Backwards/forwardsweep power flow
DG Distributed generation
DE Differential evolution
DN Distribution network
𝑓 (𝑠) Beta distribution function of solar irradi-

ance
FA Firefly algorithm
G Incidentsolar irradiance (kW/m2)
GA Genetic algorithm
𝐺𝑟𝑒𝑓 Reference solar irradiance (kW/m2)
GSA Gravitational search algorithm
MCS Monte Carlo simulation
MINLP Mixed-integer non-linear programming
MILP Mixed-integer linear programming
MVMO-SH Hybridvariant mean–variance mapping op-

timisation
NOCT Nominal operating cell temperature (◦C)
𝑃 [𝑠] Probability of solar irradiance incident
PDF Probability density function
PEM Point estimate method
𝑃𝑖(𝑡) Active powers at bus 𝑖 at time segment (𝑡)
𝑃𝑖+1(𝑡) Active power at bus (i+1) at time segment

(𝑡)
𝑃𝑙𝑜𝑠𝑠,𝑖 Active power loss across branch 𝑖 without

photovoltaic
𝑃𝐿𝑘

(𝑡, 𝜇𝐿𝑘 ,𝜎𝐿𝑘
) Active load powers at bus 𝑘 (or i+1) with

mean and standard deviation at segment 𝑡
𝑃𝐿𝑜𝑠𝑠,𝑝𝑣 Active power loss for a system with photo-

voltaic
𝑃𝑃𝑉 Photovoltaic output power
𝑃𝑃𝑉

(

𝑡, 𝜇𝑃𝑝𝑣,𝑘 ,𝜎𝑃𝑝𝑣,𝑘
)

Capacity of PVDG with mean and standard
deviation at segment 𝑡

PSO Particleswarm optimisation
𝑃𝑆𝑇𝐶 Maximum output power at standard test

conditions
p.u. Per-unit
PV Photovoltaic
PVDG Photovoltaic distributed generation
𝑄𝑖(𝑡) Reactive powers at bus 𝑖 at time segment 𝑡
𝑄𝑖+1(𝑡) Reactive power at bus (i+1) at time segment

𝑡
𝑄𝐿𝑘

(𝑡, 𝜇𝐿𝑘 ,𝜎𝐿𝑘
) Reactive load powers at bus k (or i+1) with

mean and standard deviation at segment 𝑡
RDN Radial distribution network
RER Renewable energy resources
𝑅𝑖 Line resistance across the branch 𝑖
SFLA Shuffled frog leaping algorithm
𝑇𝑎𝑚𝑏 Ambient temperature (◦C)
𝑇𝑐𝑒𝑙𝑙 Photovoltaic cell temperature (◦C)
𝑇𝑟𝑒𝑓 Reference temperature at standard test

condition (◦C)
𝑉𝑚𝑎𝑥 Maximum voltage in per-unit
𝑉𝑚𝑖𝑛 Maximum voltage in per-unit
𝑋𝑖 Line reactance across the branch i
𝛾 Maximum power temperature coefficients

(%/◦C)
2

𝜇 Mean
𝜎 Standard deviation
𝛼 and 𝛽 Shape parameter of Beta PDF

For instance, [11] suggested a metaheuristics-based reactive power
planning model for transmission systems. A Teaching-learning based
optimisation method was employed by [12] for optimal power flow
problems with stochastic wind and photovoltaics power generation. In
another study, [13] used a linearised power flow model for optimal al-
location and sizing of energy storage in conjunction with PV generation
curtailment to meet the grid limitations and constraints.

The hybrid genetic dragonfly algorithm was utilised by [14] to
solve optimal distributed generation placement and sizing. In addi-
tion, [15] proposed an Adaptive Shuffled Frogs Leaping Algorithm
(ASFLA) to address network reconfiguration and distributed generation
placement challenges. Another study by [16] used radial network re-
configuration to develop an improved selective binary particle swarm
optimisation for power loss minimisation in 33-bus and 94-node sys-
tems. Moreover, [17] determined the best location and size of hybrid
solar/hydrogen systems for rural locations using an improved harmony
search and geographic information system (GIS). Lastly, [18] evaluated
the impact of optimal PVDG placement and size on various aspects such
as power flow, line losses, voltage profiles, and short-circuit currents.
The study concluded that excessive penetration of PVDGs could lead to
reverse power flow and increased power losses.

Conversely, optimal PVDG location and size can have positive im-
pacts on power quality, voltage profiles, system reliability, and the
ability to handle high loads, as indicated by studies [19,20]. To improve
voltage profiles and reduce power losses in distribution networks, a
multi-objective optimisation approach that combines binary particle
swarm optimisation and shuffled frog leap algorithms (BPSO-SLFA) was
proposed [21]. Furthermore, a multileader particle swarm optimisation
(MLPSO) model was developed to optimise distributed generation in
distribution networks [22]. Additionally, [23] employed the Firefly
algorithm to address the allocation and sizing problem of distributed
generation.

As mentioned previously, the optimal siting and sizing of PVDG
in distribution system planning can be uncertain. For instance, [2]
proposed an algorithm called the local particle swarm optimisation
variant (LPSOV) for minimising energy loss, based on multiple load
composition snapshots for the 33-bus distribution system. In another
study, [24] presented a method using D-S evidence theory and affine
arithmetic approaches to account for generation and load uncertainties.
Meanwhile, [25] investigated distributed generation in the face of
uncertainty and proposed a hybrid phasor particle swarm optimisation-
Gravitational Search algorithm (PSO-GSA) method to reduce total
energy loss in the distribution network. To optimise photovoltaic
and wind turbine distributed generations while accounting for uncer-
tainty, [26] presented a mixed technique using a probabilistic approach
embedded in genetic algorithm (GA). Furthermore, [27] developed
a GA algorithm for optimising Photovoltaic-battery system sizing for
homes, taking into account the time series of solar resources and the
time-of-use tariff structure to reduce energy costs. [28] construct a real
options analysis model for generation growth planning under uncertain
electricity demand. Finally, in a review of techniques to handle uncer-
tainties for power systems, [29] stochastically modelled the problems
associated with uncertainties, using Monte Carlo simulation, cumulant,
and 2n+1-point estimation methods.

In addition to the previous studies, optimal renewable distributed
generation planning in radial distribution networks was accomplished
by [30] using an advanced multi-objective particle swarm optimisation
method. This involved processing real-time data on wind speed and
solar irradiance in a 24-hour mathematical model to compute the
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Table 1
Systematic literature reviews for optimal siting and sizing of DGs in distribution system.

Article Methodology/Algorithm Consideration/Limitations of method

Considering
uncertainty

Metaheuristic Probabilistic Analytical
index

[15] Novel Adaptive Shuffled Frogs Leaping Algorithm (ASFLA) X ✓ X X
[39] Phasor PSO-GSA (PPSO-GSA) ✓ ✓ ✓ X
[40] Local PSO Variant (LPSOV) ✓ ✓ X X
[41] Analytical Hybrid PSO X ✓ X ✓

[42] Improved Gravitational Search Algorithm (IGSA) X ✓ X X
[43] Improved Grey Wolf Optimiser, PSO, dimension learning-based hunting X ✓ X X
[44] Multi-objective PSO (MOPSO) ✓ ✓ X X
[45] Mix-Integer optimisation by GA (MIOGA) X ✓ X X
[46] Mixed-integer conic programming (MICP) ✓ X ✓ ✓

[47] Honey-badger Algorithm, Combined Power Loss Sensitivity (CPLS) X ✓ X ✓

[48] Loss sensitivity index, Sine-cosine Algorithm X ✓ X ✓

[8] Severity performance index (SPI), Crow search (CS), PSO X ✓ X ✓

[49] Multi objective PSO X ✓ X X
[50] Mixed-integer linear programming (MILP), optimal power flow (OPF) ✓ X ✓ ✓

[51] Monte-Carlo, BAB, OPF ✓ ✓ ✓ X
[52] Alternative Direction Method of Multipliers (ADMM), OPF ✓ X X ✓

[26] Probabilistic method, GA ✓ ✓ ✓ X
[53] Binary PSO, Artificial Neural Network (ANN) ✓ ✓ X X
[35] Chance-constrained joint optimisation ✓ X ✓ X
[36] Chance-constrained optimisation, Gaussian copula ✓ X ✓ X
[37] Chance-constrained optimisation, GA, MINLP ✓ ✓ ✓ X
[54] Teaching-Learning based optimisation ✓ ✓ X X
[55] Stochastic-robust optimisation ✓ X ✓ X
[56] Hybrid Moth–Flame Algorithm with Particle Swarm Optimisation X ✓ X X
[57] Multi-objective thermal exchange optimisation model (MOTEO), OPF ✓ ✓ ✓ X
[58] Two-stage robust optimisation, column and constraint generation, ADMM, ✓ X ✓ X
Proposed Monte-Carlo, MVMO-SH, probabilistic BFSPF, APL Index ✓ ✓ ✓ ✓
precise power output from these distributed generations. [31] used
an Improved Whale optimisation algorithm (IWOA) to allocate hybrid
photovoltaic, wind turbine, and battery storage in a 33-bus radial
distribution network while also considering seasonal variations. The
findings suggested that the highest losses occurred in the summer
season, while the lowest losses were recorded in autumn. Solar panels,
due to their low radiation, contributed less to power generation in the
autumn and winter, with their most significant contribution observed
in the summer and spring seasons. Additionally, [32] proposed an op-
timisation approach based on multi-agent clustering for wind turbines
in distribution systems towards energy loss reduction. The clustering
problem was solved using a genetic algorithm (GA), after which agents
were assigned to each cluster, and GA was again utilised to determine
the optimal sizes and placements of distributed generation in each
cluster.

By contrast, power systems optimisation under uncertainty can
also be achieved through robust optimisation and chance-constrained
optimisation methods [33,34]. For instance, a joint optimisation algo-
rithm that considers uncertainties was proposed by [35] to minimise
power losses using network reconfigurations, capacitor banks, photo-
voltaics, and wind turbines in distribution networks. Meanwhile, [36]
employed chance-constrained optimisation to investigate the operation
of local integrated energy networks with correlated wind turbines
and utilised Gaussian copula to model the uncertainty. A two-layer
optimisation method was presented by [37] to determine the instal-
lation buses and sizes of electric and thermal energy storage units
in the distribution network with renewable energy resources, taking
into account uncertainties. The inner layer utilised chance-constrained
optimisation, while the outer layer was developed using the genetic
algorithm. Conversely, [38] solved the sizing capacities of renewable
energy resources and transmission systems with energy storage using
distributional robust optimisation.

Table 1 summarises the findings of the systematic literature as well
as their limitations.

The first challenge that must be addressed in optimal photovoltaic
distributed generation (PVDG) planning is the presence of uncertainties
related to geographical constraints, generation, and load variation.

However, there is a lack of research that explores the impact of these

3

uncertainties on PVDG placement and sizing in the radial distribution
network (RDN). Additionally, improper PVDG placement and sizing
can lead to negative effects on voltage profiles and increased power
losses [59], highlighting the need for an optimisation scheme that
reduces power losses in the power system network. Various optimisa-
tion schemes using metaheuristics algorithms, as well as analytical and
stochastic-based optimisation have been proposed by many researchers
to solve distribution system planning with distributed generations. The
approaches, however, were limited to dealing with constraint require-
ments and ignored addressing it with probabilistic variables. Further-
more, no research on the hybrid method of probabilistic–metaheuristic
optimisation for PVDG planning using the Monte Carlo embedded
MVMO-SH algorithm has been conducted to the authors’ knowledge.
The hybrid method will improve the PVDG optimisation scheme’s
search process. The algorithm optimises PVDG planning in an ra-
dial distribution network while considering photovoltaic generation
and load uncertainty. Thus, the authors propose a hybrid method of
probabilistic–metaheuristic optimisation for PVDG planning using the
Monte Carlo embedded MVMO-SH algorithm, which takes into account
photovoltaic generation and load uncertainty.

Another important issue is the effect of uncertainty on power flow
analysis. While deterministic power flow methods assume that input
variables have deterministic values, probabilistic power flow analysis
is needed to consider the impact of solar resource uncertainties on load
flow affected by PVDG output intermittency and load variations. The
authors propose a new probabilistic backward/forward sweep power
flow (BFSPF) method to evaluate fitness for optimisation and explain
the influence of uncertainty in power flow with PVDG.

Previous approaches to solving distribution system planning with
distributed generations have focused on constraint requirements and
have ignored addressing objective functions with probabilistic vari-
ables. In contrast, the proposed probability approach can handle prob-
abilistic variables in constraints and fitness evaluations, offering a
solution to deal with uncertainty factors.

As a result, the following are the study’s contributions:

1. For optimal PVDG siting and sizing in RDN considering uncer-

tainty, a new optimisation framework based on Monte-Carlo
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Fig. 1. Variance of solar irradiance data to determine maximum iteration in MCS.

embedded MVMO-SH is developed. The framework allows the
uncertainty of photovoltaic generations and urban load demands
to be emphasised based on their probability patterns.

2. PV generation uncertainty is stochastically modelled using Monte
Carlo in Beta PDF for 288 segments. For residential, commercial,
and industrial urban loads, the uncertainties are stochastically
modelled using Monte Carlo in the Gaussian probability density
function (PDF) for 288 segments. Monte Carlo allows the data to
be randomly sampled and segmented into 288 segments. Each
segment has its PDF patterns.

3. A new probabilistic BFSPF formulation is developed to em-
bed the probabilistic photovoltaic generation-load model into
the power flow input variables. The fitness evaluation allows
optimisation problems to be solved in the face of uncertainties.

4. The active power loss (APL) index evaluates the effects of pho-
tovoltaic generation uncertainty and load variations on PVDG
location and sizing.

This study investigates three (3) cases of probabilistic load models:

1. The probabilistic residential urban load model,
2. The probabilistic commercial urban load model, and
3. The probabilistic industrial urban load model.

The remaining sections are listed below. The second section goes
ver how to model photovoltaic generation-urban load uncertainties.
ection 3 contains the optimisation strategies and problem formula-
ions, which include mathematical models, objective functions, con-
traints, and the flowchart of the proposed algorithm. Finally, the
indings are discussed in Section 4 using 33-bus and 69-bus radial
istribution system. Finally, the discussions’ outcomes and conclusions
re presented.

. Modelling of PV generation – urban load uncertainties

The solar irradiance data is obtained by clustering the weather data
nto twelve months. There are multiple data points at the same minute
or every single day over a month. The Monte Carlo technique was
sed to select these weather data by randomly sampling and hourly
egmenting the data sets. Each month represented a 24-hour time
egment (hours) and was made up of combinational data points for the
ame minutes every day of the month. The data was divided into 288
egments for one year (24 h × 12 months). The variance of the data sets

was used to determine the maximum iterations needed for the Monte
Carlo simulation (MCS). Fig. 1 shows the variance for solar irradiance

data. It has become stable after 3000 iterations.

4

Table 2
PV module characteristics.

PV module characteristics Value

Maximum power, 𝑃𝑚𝑎𝑥 (W) 470
Nominal operating cell temperature, NOCT (◦C) 45
Maximum power current, 𝐼𝑚𝑝 (A) 10.86
Maximum power voltage, 𝑉𝑚𝑝 (V) 43.28
Short-circuit current, 𝐼𝑠𝑐 (A) 11.68
Open-circuit voltage, Voc (V) 52.14
Maximum power temperature coefficient, 𝐾𝑝 (%/ ◦C) −0.35
Current temperature coefficients, 𝐾𝑖 (%/ ◦C) 0.048
Voltage temperature coefficient, 𝐾𝑣 (%/ ◦C) −0.28

The Beta PDF for each hour is expressed using Eq. (1). The prob-
ability segmentation generated by the Monte-Carlo method will affect
the prediction of photovoltaic (PV) output power per panel at segment
t.

𝑓 (𝑠) =

⎧

⎪

⎨

⎪

⎩

𝛤 (𝛼 + 𝛽)
𝛤 (𝛼)𝛤 (𝛽)

⋅ 𝑠(𝛼−1) ⋅ (1 − 𝑠)(𝛽−1) 𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 1, 𝛼 ≥ 0, 𝛽 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

To determine the shape parameters of Beta PDF, the 𝜇, 𝜎, 𝛼 and 𝛽
re derived from the following equations:

= 1
𝑁𝑑

𝑁𝑑
∑

𝑗=1
𝑑𝑗 (2)

𝜎 =

√

1
𝑁𝑑

(

𝑑𝑗 − 𝜇
)2 (3)

𝛽 = (1 − 𝜇) .
(

𝜇 (1 + 𝜇)
𝜎2

− 1
)

(4)

𝛼 =
𝜇 × 𝛽
1 − 𝜇

(5)

The fractional probability of solar irradiance during any specific
hour is derived by:

𝑃 [𝑠] = ∫

𝑠𝑖,𝑚𝑎𝑥

𝑠𝑖,𝑚𝑖𝑛
𝑓 (𝑠) 𝑑𝑠 (6)

The PV module characteristics are tabulated in Table 2.
The cell temperature, 𝑇𝑐𝑒𝑙𝑙 derived from Eq. (7), is inserted into

Eq. (8) to calculate the expected PV output per panel at time segment
t, 𝑃𝑃𝑉 (𝑡).

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 + 𝐺
(𝑁𝑂𝐶𝑇 − 20

800

)

(7)

𝑃𝑃𝑉 = 𝑃𝑆𝑇𝐶

{

𝐺
𝐺𝑟𝑒𝑓

[

1 + 𝛾
(

𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑟𝑒𝑓
)]

}

(8)

Based on Eqs. (7) and (8), G is the incident solar irradiance, 𝐺𝑟𝑒𝑓 is
he reference solar irradiance (1 kW/m2), NOCT is the nominal oper-

ating cell temperature, 𝑇𝑟𝑒𝑓 is a reference temperature at standard test
conditions in (25 ◦C), 𝛾 is the maximum power temperature coefficient
in %/ ◦C, and 𝑃𝑆𝑇𝐶 is the maximum output power in Watts at standard
test conditions (STC).

Realistic urban load profiles were used to account for load un-
certainties. The data were obtained from Tenaga Nasional Berhad’s
Distribution Division, the electrical power company in Malaysia. The
model was simulated using the steps listed below. First, the urban
load profile data for one reference year were classified into industrial,
commercial, and residential loads. The data from 15-minute intervals
were divided into twelve months. For each month, there are multiple
data points for similar 15-minute intervals throughout each day of the
month. The Monte Carlo simulation (MCS) was performed by randomly
sampling and hourly segmenting the data, representing hourly loading
for each month to derive a new probabilistic load model. The data sets
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Fig. 2. Variance of urban load data to determine maximum iteration in MCS.

ere divided into 288 segments (24 h × 12 months). The maximum
teration for the simulation was determined based on the variance
f the data sets. Fig. 3 shows the variance became stable after 2000
terations. Thus, the MCS for probability load models was run for 2000
terations (see Fig. 2).

𝑃𝐿 (𝑡) is the load uncertainty, and it followed the normal distribu-
ions.

𝐿 (𝑡) ∼ 𝑁
(

𝜇𝐿, 𝜎
2
𝐿
)

(9)

The probability of each load distribution and the average urban load
at the t segment is predicted as per Eqs. (10) and (11):

𝑃
[

𝑝𝑙
]

= ∫

𝑝𝑙𝑖,𝑚𝑎𝑥

𝑝𝑙𝑖,𝑚𝑖𝑛

𝑓
(

𝑝𝑙
)

𝑑𝑙 (10)

𝑝𝑙𝑎𝑣𝑔 =
𝑝𝑙𝑖,𝑚𝑎𝑥
∑

𝑝𝑙𝑖,𝑚𝑖𝑛

𝑃
[

𝑝𝑙
]

× 𝑝𝑙𝑖 (11)

where 𝑝𝑙𝑖,𝑚𝑎𝑥 and 𝑝𝑙𝑖,𝑚𝑖𝑛 are the load demand limits that the probability of
the load needing to be performed while 𝑝𝑙𝑎𝑣𝑔 is the average load demand
at the t-time segment.

3. Optimisation strategies

3.1. Probabilistic backward forward sweep power flow

The probabilistic power flow is designed to account for the impact
of uncertainties in the input data. The equations for active and reactive
powers without PV penetration can be computed using the Monte
Carlo-probability density function (Monte Carlo-PDF) Monte Carlo-PDF
5

with active and reactive input load data affected by 𝜇 and 𝜎 at the
period t-segments based on the load models. A new set of probabilistic
power flow equations in the RDN system can be obtained by improving
the deterministic equations in backward/forward sweep power flow.
The input variables, in this case, PV generation and loads, vary in
288-segments based on the probability patterns. As a result, the in-
put variables’ characters are not deterministic numbers. It can be a
range of prediction values based on the probability pattern generated.
Fig. 3 derives the problem formulation.

The total active and reactive power at bus i+1 without PVDG
installation can be calculated as follows:

𝑃𝑖+1 (𝑡) = 𝑃𝑖(𝑡) − 𝑃𝐿𝑘
(𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡) −

(

𝑃𝑖(𝑡)
)2 +

(

𝑄𝑖(𝑡)
)2

|

|

𝑉𝑖(𝑡)||
2

𝑅𝑖 (12)

𝑄𝑖+1 (𝑡) = 𝑄𝑖(𝑡) −𝑄𝐿𝑘
(𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡) −

(

𝑃𝑖(𝑡)
)2 +

(

𝑄𝑖(𝑡)
)2

|

|

𝑉𝑖(𝑡)||
2

𝑋𝑖 (13)

here 𝑃𝐿𝑘
(𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡) and 𝑄𝐿𝑘

(𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡) make up the active and re-
ctive load powers at bus 𝑘 (or i+1) with mean and standard deviations,
and 𝜎 at segment 𝑡 based on probabilistic load models for various

customers in the load distribution. The notation t in this paper refers
to the time segment which is not continuous. It has 288-time segments
as explained in Section 2. Each segment has its 𝜇t and 𝜎t based on their
PDF values where t denotes the time segment being used.

The equations with load variability can be utilised for PVDG in-
tegrated into the distribution system accounting for solar irradiance
uncertainty. Active and reactive power outputs can be formulated using
a probabilistic model of PV generation and loads in Monte Carlo-PDF
based on 𝜇 and 𝜎 at segment 𝑡.

The total active and reactive powers with PVDG installation at bus
i+1 can be obtained as:

𝑃𝑖+1 (𝑡) = 𝑃𝑖 (𝑡) − 𝑃𝐿𝑘

(

𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡
)

− 𝑃𝐿𝑜𝑠𝑠,𝑝𝑣(𝑡)

+ 𝑃𝑝𝑣,𝑖+1

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

(14)

𝑖+1 (𝑡) = 𝑄𝑖 (𝑡) −𝑄𝐿𝑘

(

𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡
)

−𝑄𝐿𝑜𝑠𝑠,𝑝𝑣(𝑡)

+ 𝑄𝑝𝑣,𝑖+1

(

𝑡, 𝜇𝑄𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑄𝑝𝑣,𝑖+1 ,𝑡

)

(15)

𝐿𝑜𝑠𝑠,𝑝𝑣 (𝑡)

=

(

𝑃𝑖 (𝑡) − 𝑃𝑝𝑣,𝑘

(

𝑡, 𝜇𝑃𝑝𝑣,𝑘 ,𝑡,𝜎𝑃𝑝𝑣,𝑘 ,𝑡
))2

+
(

𝑄𝑖 (𝑡) −𝑄𝑝𝑣,𝑘

(

𝑡, 𝜇𝑃𝑝𝑣,𝑘 ,𝑡,𝜎𝑃𝑝𝑣,𝑘 ,𝑡
))2

|

|

𝑉𝑖 (𝑡)||
2

𝑅𝑖

(16)

𝐿𝑜𝑠𝑠,𝑝𝑣 (𝑡)

=

(

𝑃𝑖 (𝑡) − 𝑃𝑝𝑣,𝑘

(

𝑡, 𝜇𝑃𝑝𝑣,𝑘 ,𝑡,𝜎𝑃𝑝𝑣,𝑘 ,𝑡
))2

+
(

𝑄𝑖 (𝑡) −𝑄𝑝𝑣,𝑘

(

𝑡, 𝜇𝑃𝑝𝑣,𝑘 ,𝑡,𝜎𝑃𝑝𝑣,𝑘 ,𝑡
))2

|

|

𝑉𝑖 (𝑡)||
2

𝑋𝑖

(17)
Fig. 3. The RDN system with PVDG.
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𝑃𝐿𝑜𝑠𝑠, 𝑛𝑜 𝑝𝑣 (𝑡) =

(

𝑃𝑖(𝑡)
)2 +

(

𝑄𝑖(𝑡)
)2

|

|

𝑉𝑖(𝑡)||
2

𝑅𝑖 (18)

𝑄𝐿𝑜𝑠𝑠, 𝑛𝑜 𝑝𝑣 (𝑡) =

(

𝑃𝑖(𝑡)
)2 +

(

𝑄𝑖(𝑡)
)2

|

|

𝑉𝑖(𝑡)||
2

𝑋𝑖 (19)

In this work, the assumption was made with PVDGs can inject
just active power into the network. 𝑃𝑝𝑣,𝑘

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

and 𝑄𝑝𝑣,𝑘
(

𝑡, 𝜇𝑄𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑄𝑝𝑣,𝑖+1 ,𝑡

)

are obtained based on the probabilistic PV gener-
ation uncertainty model with mean and standard deviation, 𝜇 and 𝜎
at 𝑡 time segment, whereas 𝑃𝐿𝑘

(𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡) and 𝑄𝐿𝑘
(𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡) are

obtained based on the probabilistic load models in 288 segments.

3.2. Objective function and constraints

The objective function is to minimise the active power loss (APL)
index. The APL index can be written as in Eq. (20):

𝐴𝑃𝐿 𝑖𝑛𝑑𝑒𝑥 =

∑𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡=288
𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡=1

𝑃𝑙𝑜𝑠𝑠,𝑝𝑣(𝑡)

∑𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡=288
𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡=1

𝑃𝑙𝑜𝑠𝑠,𝑛𝑜 𝑝𝑣(𝑡)
(20)

To optimise this objective function, a probabilistic backward/
forward sweep power flow (BFSPF) analysis using Monte Carlo sim-
ulation is required to obtain the expected values of active power
losses at each time segment, while accounting for uncertainties in PV
distributed generations and loads for each time segment t. The MVMO-
SH approach is employed to locate the distributed generation at each
time segment that minimise the expected power loss index over the
288-time segments. Meanwhile, equality and inequality constraints can
be expressed as follows:

Network Power Balance:
The distribution power flow must satisfy the network power balance

based on the non-linear equality constraints below:

𝑃𝑖 (𝑡) + 𝑃𝑝𝑣,𝑖+1

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

= 𝑃𝑖+1 (𝑡) + 𝑃𝐿𝑘

(

𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡

)

+ 𝑃𝐿𝑜𝑠𝑠,𝑝𝑣(𝑡) (21)

𝑄𝑖 (𝑡) +𝑄𝑝𝑣,𝑖+1

(

𝑡, 𝜇𝑄𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑄𝑝𝑣,𝑖+1 ,𝑡

)

= 𝑄𝑖+1 (𝑡) +𝑄𝐿𝑘

(

𝑡, 𝜇𝐿𝑘 ,𝑡,𝜎𝐿𝑘 ,𝑡

)

+𝑄𝐿𝑜𝑠𝑠,𝑝𝑣(𝑡) (22)

Bus Voltage Boundaries:
The safe operation boundaries must be kept for voltage at the load

sites. Eq. (23) ensures the acceptable magnitude of voltages for each
bus. The lower bound of voltage magnitude, 𝑉𝑚𝑖𝑛 was set to be 0.95
p.u. whereas the upper bound, 𝑉𝑚𝑎𝑥 is set to be 1.05 p.u.

𝑉𝑚𝑖𝑛 ≤ |

|

𝑉𝑖|| ≤ 𝑉𝑚𝑎𝑥 𝑖 = 1, 2,… , 𝑛 𝑏𝑢𝑠 (23)

PVDG Operating Capacity:
The PVDG capacity limit is determined by the inequality constraint

listed below. 𝑃𝑚𝑖𝑛
𝑃𝑉 𝐷𝐺 capacity is equal to zero, whereas 𝑃𝑚𝑎𝑥

𝑃𝑉 𝐷𝐺 capacity
is determined by the probability t -segment of the total active load
demand. Thus, the capacity of 𝑃𝑚𝑎𝑥

𝑃𝑉 𝐷𝐺 for different customers will vary
depending on the total active power load for those customers.

𝑃𝑚𝑖𝑛
𝑃𝑉 𝐷𝐺

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡−𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

≤ 𝑃𝑃𝑉 𝐷𝐺

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

≤ 𝑃𝑚𝑎𝑥
𝑃𝑉 𝐷𝐺

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡+𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

(24)

The penetration limit of PVDG in the distribution system must
satisfy the following equation:
𝑛
∑

𝑖=1
𝑃𝑃𝑉 𝐷𝐺,𝑖

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

≤
𝑛
∑

𝑖=1
𝑃𝐿𝑜𝑎𝑑,𝑖

(

𝑡, 𝜇𝑃𝑝𝑣,𝑖+1 ,𝑡,𝜎𝑃𝑝𝑣,𝑖+1 ,𝑡
)

,

with 𝑖 = 1, 2,… , 𝑛 𝑏𝑢𝑠

(25)

PVDG Location:
6

The PVDG location can be linked to any bus in the system except at
the slack bus:

2 ≤ 𝑃𝑉 𝐷𝐺𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≤ max 𝑛𝑜.𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 (26)

Branch Current Limits:
The branch’s current limit is given by:

0 ≤ 𝐼𝑖𝑘(𝑡) =

√

√

√

√

(

𝑃 2
𝑖−1 (𝑡) +𝑄2

𝑖−1 (𝑡)
)

𝑉 2
𝑖−1 (𝑡)

≤ 𝐼𝑚𝑎𝑥𝑖𝑘 (𝑡) (27)

.3. Monte Carlo embedded MVMO-SH

The MVMO-SH algorithm is a hybrid of the swarm and stochastic
ptimisation methods. Based on the mean and variance of the n-best
opulation, the MVMO-SH algorithm was developed. The genes of the
ffspring generation are mutated using the n-best population’s strategic
ransformation of mean–variance mapping. MVMO-SH is an MVMO
warm operation composed of a group of NP particles carrying its
emory for global searching via an improved scheme of classic MVMO.
he variable searching space for optimisation is normalised to [0, 1]

nterval ranges, but the function evaluation uses its problem ranges.
he MVMO-SH algorithm’s basic principles can be found in [60–64].
he optimisation problem is solved using a new development of Monte-
arlo embedded MVMO-SH, and the fitness evaluation is generated
sing the probabilistic BFSPF algorithm. The number of particles for
he swarm operation was set to 50. The FS factor was set to 1, the
ncrement, 𝛥𝑑 was 0.05 and initial value, 𝑑i was 1. Given 𝑖 as fitness
valuation, 𝑘 as particle counters, 𝑚 as the maximum number of itera-
ion and 𝑁𝑝 as the number of particles. The maximum evaluation was
et to 100 iterations. The detailed procedure is as follows:

tep 1: Parameter initialisations.

tep 2: Data loading for solar irradiance and urban load distribution.

tep 3: The Monte Carlo probabilistic urban load models (288, 2000)
for residential, commercial, and industrial loads are generated.

tep 4: The probabilistic PV uncertainty model is generated using
Monte Carlo-Beta PDF (288, 3000). Steps 3 and 4 are depicted
in Fig. 4.

tep 5: Radial case system is loaded, and the feasibility of acquiring
active power losses using probabilistic BFSPF for the case with-
out PVDG penetrations is tested using Monte Carlo. The bus data
is being replaced with new load data which is the multiplication
of old load data and the probabilistic load model based on Monte
Carlo-PDF which is influenced by the 𝜇 and 𝜎 in 288 segments.

tep 6: MVMO-SH generates numbers at random based on the vari-
ables [0,1].

tep 7: To perform the fitness evaluations, the variables are
de-normalised from [0,1] to their original boundary.

tep 8: The PVDG location and size are specified by MVMO-SH, and
the probability is checked using Monte Carlo.

tep 9: The fitness values in the individual archive will be updated,
filled, and saved. The process for determining PVDG location
and size using Np particle classification and parent selection is
being updated. The parent archive is the best solution archive.
The archive’s mean and variance are computed. Mapping means
and variance value dimensions allow for cross-over and muta-
tion. The candidate solutions/fitness values will be updated/
filled/stored in the personal archive. The archive’s mean and
variance will be calculated. The solution archive will be updated
to include the best solutions so far in the first row. If the solution
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Fig. 4. Probabilistic PV generation-load model based on Monte Carlo – PDF method.
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archive’s table is full, the infeasible value is replaced with the
possible value. If there are two possible values, the best one is
chosen. If two infeasible values exist, the one with the lower
violation is chosen. The reproduction is then determined. The
parent archive is the best solution archive. Mapping the dimen-
sions based on the mean and variance allows for cross-over and
mutation.

tep 10: Steps 6 through 9 must be repeated for 𝑚 iterations. The
optimisation process is terminated if the termination criteria are
met. Otherwise, the procedures are repeated.

Step 11: Printed total power losses, an index of active power loss, and
voltage profiles with PVDG penetrations.

Step 12: The APL index with the lowest value indicates the best
location and size for PVDG integration in RDN. Fig. 5 de-
picts a flowchart for PVDG planning in an RDN system while
accounting for PV generation and urban load uncertainties.

3.4. Monte Carlo embedded GA (Monte Carlo-GA)

In the initialisation step, the GA was carried out to do the optimisa-
tion with a population size of 50 individuals. These individuals will be
classified and ranked based on the value of their fitness. The number
of variables was set to 2, the migration fraction was 0.2, and crossover
fraction was 0.8. Steps 1 through step 5 in Section 3.3 are the same for
Monte Carlo-GA’s procedures. After step 5, the proceeding is as follows:

Step 6: GA generates random chromosomes for each of the 50 indi-
viduals in the population.

Step 7: The chromosomes were validated and updated by checking
their constraints and computing the fitness function.

Step 8: The PVDG location and size are specified by GA, and the
probability is checked using Monte Carlo.

Step 9: The process for determining PVDG location and size using
parent selection is being updated. allow for cross-over and muta-
tion. GA will go through the steps of selecting, and reproducing
each chromosome, repeatedly updating them until the best so-
lution is found. The candidate solutions/fitness values will be
updated. High-fitness individuals are more likely to be chosen
for reproduction allows for cross-over and mutation. The process
for determining PVDG location and size is being updated.

Step 10: Steps 6 through 9 must be repeated until the population
has converged. The optimisation process is terminated if the
termination criteria are met.

Step 11: Printed total power losses, an index of active power loss, and
voltage values for all buses.

Step 12: The APL index with the lowest value indicates the best
location and size for PVDG integration in RDN.

3.5. Monte Carlo embedded PSO (Monte Carlo-PSO)

In the initialisation step, the PSO was carried out to do the optimi-
sation with a population size or swarm of 50. The inertia weight, 𝜔 is
randomly selected between 1.0 and 0.3. The PSO’s basic principles can
be found in [65]. For the Monte Carlo – PSO procedures, steps 1 until
5 in Section 3.3 are similar. After step 5, the proceeding is as follows:

Step 6: The particle population is initialised with randomly generated

positions and velocities to explore the solution space. i

8

Step 7: The fitness of each particle was validated. The personal best
(pbest) and global best (gbest) were determined to evaluate the
fitness function.

Step 8: The PVDG location and size are specified by PSO, and the
probability is checked using Monte Carlo.

Step 9: The process for determining PVDG location and size is updated
by updating the velocity and position: The velocity and position
of each particle are updated based on the current fitness and the
best fitness that has been found so far. The velocity update in-
volves combining the current velocity with the attraction to the
best position found by the particle and the best position found
by the entire swarm. The position update involves applying the
updated velocity to the current position of the particle.

Step 10: Steps 6 through 9 must be repeated until the value con-
verged. The optimisation process is terminated if the termina-
tion criteria are met.

tep 11: Printed total power losses, an index of active power loss, and
voltage values for all buses.

tep 12: The APL index with the lowest value indicates the best
location and size for PVDG integration in RDN.

. Results and discussion

.1. Probabilistic PV generation – urban load uncertainty model

Figs. 6 through 9 depict the probabilistic uncertainty model in 288
egments via Monte Carlo simulation (MCS) generated based on 𝜇 and
of each time segment.
From the Monte Carlo derivation, the 𝜇, 𝜎, 𝛼, and 𝛽 of the hourly

olar irradiance were calculated to derive the shape parameter of the
eta probability density function (Beta PDF). Fig. 10 shows the sample
f Beta PDF in segments 81, 84, 86 and 90. Since the data was split
nto 288 segments (24 h × 12 months), the sample of Beta PDF for
olar irradiance in segments 81, 84, 85, 88, and 90 represented April
t 9 a.m., 12 p.m., 1 p.m., 4 p.m., and 6 p.m.

The outcome demonstrated that intense solar radiation with a high
robability density of solar irradiance occurred during noon (segments
4 and 85). The Beta PDF plot for segments 84 and 85 (noon) showed
igher probability density with intense solar irradiance compared to the
esults for segment 81 (morning) and segments 88 and 90 (evening).
he results demonstrate the versatility of the Beta curve for modelling
olar irradiance uncertainty which allows it to represent the probability
ensity of the data shapes for all 288 segments.

Beta PDF was used to derive the probability of solar irradiance and
alculate the probabilistic uncertainty model of photovoltaic generation
or 288-segments. The PV generation output was based on the uncer-
ainty model of solar irradiance in 288 segments generated scenarios.
ince the historical weather data were based on the case study in Trop-
cal Climate conditions, the variations of ambient temperatures were
ot significant. Hence, the uncertainty of ambient temperature was
etermined based on the averaging method. The expected photovoltaic
utput per panel at each time segment was obtained based on Eq. (8).
he PV module characteristics were tabulated in Table 2. Accordingly,
he Beta PDF for PV output per panel can also be obtained. Fig. 11
epicts the sample of Beta PDF for photovoltaic output power per panel
n segments 81, 84, 85, 88, and 90 represented April at 9 a.m., 12
.m., 1 p.m., 4 p.m., and 6 p.m. The Beta PDF plot for segments 84
nd 85 (noon) showed higher PV-generated powers compared to the
esults for segments 81 (morning) and segments 88 and 90 (evening).
he curves vary according to the probability segmentation of solar
rradiance generated by Monte Carlo – Beta PDF.
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Fig. 5. Optimisation of PVDGs in RDN With 𝑖 is the iteration counters, 𝑘 is the particle counters, Np is the number of particles and 𝑚 is the number of the iterations.
The residential, commercial, and industrial urban load uncertainties
were modelled in almost the same procedures as the PV generation
model. Fig. 12 depicts the PDF curve of the urban load uncertainty
9

for residential, commercial, and industrial at segment 86. The residen-
tial, commercial, and industrial loads’ coefficients of variation (CV)
were 2.63%, 2.1308% and 2.5632%, respectively. It is reasonable to
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conclude that the illustrated PDF curves are characterised by Gaussian
probability density.

The results of the probabilistic PV generation-urban load uncer-
tainty model, which is affected by 𝜇 and 𝜎 at segment t for the
88 segments, will be embedded into Eqs. (12) to (27) for fitness
valuations of the optimisation problems.

.2. Optimal siting and sizing of PVDG

The simulations were carried out for a single PVDG unit and multi-
le PVDG units in the standard 33 bus and 69 bus RDN. Figs. 13 and 14
llustrate the topology. The 33 bus RDN has 3715 kW and 2300 kVar
oads. The 69 bus RDN has loads of 3800 kW and 2690 kVar.
10
Table 3 shows the impact of uncertainties in PVDG locations and
izes in the 33-bus RDN. The results for all load models namely res-
dential, commercial and industrial showed that the optimal PVDG
ocation was bus no. 6 for 1 PVDG unit. For two PVDG units, the
ptimal locations were bus nos. 6, and 14 in the residential load model,
nd bus nos. 6, and 16 for commercial and industrial load models,
espectively. For 3 PVDG units, the optimal locations were bus nos. 6,
4, and 25 in the residential load model, and bus nos. 6, 16, and 25
or the commercial and industrial load models. From the observations
f optimal PVDG sizes in 33-bus RDN, the PVDGs sites and sizes are
ifferent depending on the load patterns. The MVMO-SH method has
een employed successfully to optimise the PVDG size and location in
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Fig. 8. Probabilistic commercial urban load uncertainty model in 288 segments using MCS.
Fig. 9. Probabilistic industrial urban load uncertainty model in 288 segments using MCS.
the radial network with the smallest APL index compared to PSO and
GA.

Table 4 shows the comparison of APL index reduction in 33-bus
RDN considering uncertainties. Based on the results obtained, there
was a significant reduction in the APL index for the case of 3 PVDGs
compared to the system without PVDG for all load models examined.

The impact of uncertainties in PVDG optimal locations and sizes in
the 69-bus test system is shown in Table 5. The optimisations for 1 to 3
PVDG units produce comparable results for PVDG sites and sizes when
11
using MVMO-SH, PSO, and GA. For the case of a single PVDG unit, the
proposed PVDG location for all load models was bus no. 61. For the
case of two PVDGs, the optimal PVDG locations for commercial load
models were bus nos. 61 and 18, while the locations for residential and
industrial load models were bus nos. 61 and 17. For all optimisation
approaches, the optimal PVDG locations in residential urban load RDN
were bus nos. 61, 17, and 9. However, in terms of commercial urban
load, bus routes 61, 18, and 11 were the best. Furthermore, for all
optimisation approaches used, the optimal locations for the case of
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Fig. 10. PDF curve of solar irradiance at Segments 81, 84, 85, 88, and 90.

Fig. 11. PDF curve for PV output powers at segments 81, 84, 85, 88, and 90.

Fig. 12. PDF curve for residential, commercial, and industrial urban load at segment
84.
12
Fig. 13. The 33-bus RDN schematic.

Table 3
Comparison of optimal location and sizing considering uncertainties in PVDG generation
— Urban load models for 33-bus R.

Case Residential Urban Load Model

MVMO-SH PSO GA

PVDG Size (MW) and
Location (Bus)

1.9623 (6)
0.4910 (14)
0.5785 (25)

1.9685 (6)
0.4829 (14)
0.5822 (25)

1.9684 (6)
0.4829 (14)
0.5822 (25)

Total PVDG Size (MW) 3.0318 3.0336 3.0335

APL Index 0.4094 0.4095 0.4095

Case Commercial Urban Load Model

MVMO-SH PSO GA

PVDG Size (MW) and
Location (Bus)

2.9032 (6)
0.4289 (16)
0.3773 (25)

2.9046 (6)
0.4295 (16)
0.3809 (25)

2.9043 (6)
0.4294 (16)
0.3812 (25)

Total PVDG Size (MW) 3.7094 3.7150 3.7149

APL Index 0.4811 0.4812 0.4811

Case Industrial Urban Load Model

MVMO-SH PSO GA

PVDG Size (MW) and
Location (Bus)

2.7812 (6)
0.4324 (16)
0.5011 (25)

2.7809 (6)
0.4388 (16)
0.4953 (25)

2.7812 (6)
0.4386 (16)
0.4952 (25)

Total PVDG Size (MW) 3.7147 3.7150 3.7150

APL Index 0.4655 0.4659 0.4659

industrial urban load RDN were bus nos. 61, 17, and 11. According to
Table 5, the MVMO-SH method produces the smallest PVDG size when
compared to PSO and GA.

The findings also show that uncertainties affect the optimal location
and size of multiple PVDGs. The observations of optimal PVDG sizes
in 69-bus RDN for various load models show that PVDG penetration
levels vary according to load patterns. PVDG penetration levels are
highest in commercial loads, followed by industrial loads, and lowest
in residential loads.

Table 6 summarises the APL index comparison in the 69-bus RDN
considering the uncertainties. The results showed that the MVMO-SH
method produced the lowest APL index compared to PSO and GA. The
results also showed that the APL index in the RDN system with multiple
PVDGs was significantly lower than in the system without PVDGs.
For multiple PVDG planning, the APL index steadily decreased. The
reduction in the APL index for multiple PVDG planning is most likely
caused by increasing the injected active power by PVDGs connected
directly to distribution network loads, resulting in less current flowing



N. Mohd Saad, M.Z. Sujod, M.I. Muhammad Ridzuan et al. Decision Analytics Journal 10 (2024) 100368
Fig. 14. The 69-bus RDN schematic.
Table 4
Comparison of APL index considering uncertainties in PVDG generation — Urban load models for 33-bus RDN.

Case study Methods

MVMO-SH PSO GA

Residential APL Index % APL
Reduction

APL Index % APL
Reduction

APL Index % APL
Reduction

0 PVDG 1.0 – 1.0 – 1.0 –
1 PVDG 0.5652 43.48 0.5662 43.38 0.5661 43.39
2 PVDG 0.4582 54.18 0.4583 54.17 0.4583 54.17
3 PVDG 0.4094 59.06 0.4095 59.05 0.4095 59.05

Commercial APL Index % APL
Reduction

APL Index % APL
Reduction

APL Index % APL
Reduction

0 PVDG 1.0 – 1.0 – 1.0 –
1 PVDG 0.5540 44.60 0.5541 44.59 0.5541 44.59
2 PVDG 0.5058 49.42 0.5076 49.24 0.5076 49.24
3 PVDG 0.4811 51.89 0.4812 51.88 0.4811 51.89

Industrial APL Index % APL
Reduction

APL Index % APL
Reduction

APL Index % APL
Reduction

0 PVDG 1.0 – 1.0 – 1.0 –
1 PVDG 0.5501 44.99 0.5503 44.97 0.5503 44.97
2 PVDG 0.4954 50.46 0.4971 50.29 0.4971 50.29
3 PVDG 0.4655 53.45 0.4659 53.41 0.4659 53.41
through the branches and thus less total power loss in the network. The
optimal PVDGs planning in this work was limited to three PVDGs.

Tables 7 and 8 show the minimum voltage values in the presence
of uncertainties in 33-bus and 69-bus RDN, respectively. In the 33-bus
without PVDG, the critical voltage is located at bus no. 18, whereas in
the 69-bus without PVDG, the critical voltage is located at bus 65. The
voltage values in the case of 33-bus RDN are 0.9298 p.u. (residential
urban load), 0.9244 (commercial), and 0.9314 p.u. (industrial), respec-
tively; which fall below the desired minimum voltage level, which is set
to 0.95 p.u. Whereas, in the case of 69-bus RDN, the voltage values are
0.9330 p.u. (residential urban load), 0.9282 (commercial), and 0.9347
13
p.u. (industrial), respectively. The magnitude of the voltage improved
significantly within the permissible limits for the system connected to
multiple PVDGs. To avoid over-voltage due to oversized PV, the bus
voltage boundaries for safe operation limits must be kept for voltages
at the load sites for the system with PVDGs. The lower bound and
upper bound of voltage, in Eq. (23) ensures the acceptable magnitude
of voltages for each bus in the system with PVDGs.

Fig. 15 depicts the assessment of voltage fluctuations in 69-bus RDN
for the system without PVDG. The uncertainty could result in voltage
deviation and rapid voltage fluctuations, leading to voltage violations
and reduced power quality if it is not properly managed. To ensure
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Fig. 15. Impact of uncertainty on voltage Variations in 69-bus RDN.
Table 5
Comparison of optimal location and sizing considering uncertainties in PVDG generation
— Urban load models for 69-bus RDN.

Case Residential Urban Load Model

MVMO-SH PSO GA

PVDG Size (MW) and
Location (Bus)

1.4908 (61)
0.4552 (17)
0.5892 (9)

1.4571 (61)
0.4461 (17)
0.6347 (9)

1.4568 (61)
0.4462 (17)
0.6340 (9)

Total PVDG Size (MW) 2.5352 2.5379 2.5370

APL Index 0.3403 0.3409 0.3409

Case Commercial Urban Load Model

MVMO-SH PSO GA

PVDG Size (MW) and
Location (Bus)

2.0995 (61)
0.5426 (18)
0.2073 (11)

2.1383 (61)
0.5423 (18)
0.1658 (11)

2.1382 (61)
0.5423 (18)
0.1695 (11)

Total PVDG Size (MW) 2.8494 2.8464 2.8500

APL Index 0.3570 0.3619 0.3618

Case Industrial Urban Load Model

MVMO-SH PSO GA

PVDG Size (MW) and
Location (Bus)

2.0255 (61)
0.5319 (17)
0.2302 (11)

2.0500 (61)
0.5321 (17)
0.2133 (11)

2.0504 (61)
0.5333 (17)
0.2115 (11)

Total PVDG Size (MW) 2.7876 2.7954 2.7952

APL Index 0.3504 0.3530 0.3531

reliable, efficient, and safe operations of the power system, the impacts
of uncertainty need to be measured in the power system planning.

Figs. 16 to 18 show the convergence results for residential, com-
mercial, and industrial urban load models in 69-bus RDN. In terms of
convergence performance, the MVMO-SH algorithm outperforms PSO
and GA in solving the optimisation problem with a minimum APL index
at high convergence rates. Because of the algorithm’s generic features,
which can be easily embedded, MVMO-SH is more robust than PSO and
GA to integrate the routines into the probabilistic power flow scheme.
The performance speed of MVMO-SH, PSO and GA for DG optimisation
in 69-bus RDN without considering uncertainty was presented in our
work in [66]. MVMO-SH offers quick execution with total simulation
times of 0.55 s while PSO and GA are 13.87 s and 80.72 s, respectively.
To evaluate the performance speed of MVMO-SH, PSO, and GA for
14
PVDG optimisation in 69-bus RDN in the presence of uncertainty, the
total simulation times are increased due to the computational burden to
generate probabilistic uncertainty models and evaluate fitness functions
in 288 segments. In one trials of optimisation process, the simulation
times of MVMO-SH, PSO, and GA for 3 PVDGs installation in 69-bus
RDN for residential urban load model were 1155.67 s, 7501.05 s, and
9887.16 s, respectively; run on HP Victus laptop, AMD Ryzen 5 5600H
with Radeon Graphics 3.30 GHz, 16 GB RAM. The results show that
the MVMO-SH method provides the fastest convergence rate while
minimising the APL index.

In addition, metaheuristics optimisation provides accurate and reli-
able solutions for optimal PVDG size and placement in the distribution
network. Since this work involved making optimal decisions in the pres-
ence of uncertainty, Monte Carlo embedded MVMO-SH offers hybridi-
sation with the probabilistic method to deal with stochastic variables
in constraints and fitness evaluations. Thus, the impacts of uncertainty
can be measured. Monte Carlo simulation allows uncertain parame-
ters, which are load variability, photovoltaic generation outputs, and
distribution line parameters by creating multiple segmentations via
probability density functions. This allows for the optimisation process
to be conducted by MVMO-SH for different time segments, captur-
ing the variations over time. The Monte Carlo embedded MVMO-SH
algorithm can make accurate decisions and ensure that the solution
remains valid in a variety of potential operational conditions by taking
uncertainties and possible risks into the system, making it applicable to
a wide range of power system planning and operations.

Table 9 presents statistical assessments for three PVDGs in a 69-
bus RDN as additional evidence of MVMO- SH’s ability to deliver the
best solutions to the objective function. With the risk of uncertainties in
mind, the statistical analysis of the standard deviations (SD), best value
(BV), and worst value (WV) of the objective functions were evaluated in
20 trials for the optimisation process to validate the results and increase
accuracy in the optimal solutions. The BV and WV showed convergence
ability, whereas the SD showed method stability [67]. In comparison to
the GA and PSO methods, the MVMO-SH has the lowest BV and WV, as
shown in Table 5. In the residential case, the BVs were 0.3403 (MVMO-
SH) and 0.3409 (GA/PSO), while in the commercial case, the BVs were
0.3570 (MVMO-SH) and 0.3618 (GA/PSO). In the industrial sector,
the BVs were 0.3504 (MVM)-SH, 0.3531 (GA), and 0.3530 (PSO).
Furthermore, the WVs in the residential case were 0.3587 (MVMO-
SH) and 0.3588 (GA/PSO), whereas the WVs in the commercial case
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Table 6
Comparison of APL index considering uncertainties in PVDG generation — Urban load models for 69-bus RDN.

Case study Methods

MVMO-SH PSO GA

Residential APL Index APL
Reduction
(%)

APL Index APL
Reduction
(%)

APL Index APL
Reduction
(%)

0 PVDG 1.0 – 1.0 – 1.0 –
1 PVDG 0.4194 58.06 0.4197 58.03 0.4197 58.03
2 PVDG 0.3585 64.15 0.3587 64.13 0.3588 64.12
3 PVDG 0.3403 65.97 0.3409 65.91 0.3409 65.91

Commercial APL Index APL
Reduction
(%)

APL Index APL
Reduction
(%)

APL Index APL
Reduction
(%)

0 PVDG 1.0 – 1.0 – 1.0 –
1 PVDG 0.4057 59.43 0.4056 59.44 0.4056 59.44
2 PVDG 0.3625 63.75 0.3629 63.71 0.3629 63.71
3 PVDG 0.3570 64.30 0.3618 63.82 0.3618 63.82

Industrial APL Index APL
Reduction
(%)

APL Index APL
Reduction
(%)

APL Index APL
Reduction
(%)

0 PVDG 1.0 – 1.0 – 1.0 –
1 PVDG 0.3989 60.62 0.4007 59.93 0.4007 59.93
2 PVDG 0.3546 64.54 0.3551 64.49 0.3552 64.48
3 PVDG 0.3504 64.96 0.3530 64.70 0.3531 64.69
Table 7
Comparison of Minimum Voltage Values Considering Uncertainties in 33-bus RDN.

Case Residential Urban Load Model

Without PVDG 1 PVDG 2 PVDGs 3 PVDGs

Minimum voltage value
(p.u) and location (Bus)

0.9298
(18)

0.9580
(18)

0.9698
(33)

0.9716
(33)

Case Commercial Urban Load Model

Without PVDG 1 PVDG 2 PVDGs 3 PVDGs

Minimum voltage value
(p.u) and location (Bus)

0.9244
(18)

0.9636
(18)

0.9761
(33)

0.9772
(33)

Case Industrial Urban Load Model

Without PVDG 1 PVDG 2 PVDGs 3 PVDGs

Minimum voltage value
(p.u) and location (Bus)

0.9314
(18)

0.9662
(18)

0.9774
(33)

0.9787
(33)
Table 8
Comparison of minimum voltage values considering uncertainties PVDG generation — Urban load models in 69-bus RDN.

Case Residential Urban Load Model

Without PVDG 1 PVDG 2 PVDGs 3 PVDGs

Minimum voltage value
(p.u) and location (Bus)

0.9330
(65)

0.9773
(65)

0.9791
(65)

0.9821
(65)

Case Commercial Urban Load Model

Without PVDG 1 PVDG 2 PVDGs 3 PVDGs

Minimum voltage value
(p.u) and location (Bus)

0.9282
(65)

0.9792
(65)

0.9934
(65)

0.9940
(65)

Case Industrial Urban Load Model

Without PVDG 1 PVDG 2 PVDGs 3 PVDGs

Minimum voltage value
(p.u) and location (Bus)

0.9347
(65)

0.9808
(65)

0.9926
(65)

0.9931
(65)
were 0.3625 (MVMO-SH) and 0.3629 (GA/PSO). The WVs in the in-
dustrial load were 0.3521 (MVM)-SH and 0.3552 (GA/PSO). Again, the
statistical results showed that the MVMO-SH algorithm is superior.

5. Conclusion

A new optimisation framework, utilising the Monte Carlo embedded
MVMO-SH algorithm, was developed to address uncertainties and op-
timise PVDG placement and sizing in the RDN system network, with a
15
focus on minimising the APL index. The effectiveness of the proposed
framework was validated through testing on 33-bus and 69-bus RDN
systems. A new formulation of probabilistic BFSPF in 288-segmentation
was developed based on PV generation-load uncertainties at t-segments.
The proposed optimisation framework was tested in three urban load
cases, i.e., residential, commercial, and industrial, to assess the ef-
fectiveness of the proposed method with both single and multiple
PVDG units. The study revealed that uncertainties affect the optimal
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Fig. 16. Convergence performance for 3 PVDGs in 69-bus RDN based on residential urban load.
Fig. 17. Convergence performance for 3 PVDGs in 69-bus RDN based on commercial urban load.
planning of PVDG in the power system network, leading to varying
PVDG locations and sizes. Compared to the results of PSO and GA, the
Monte Carlo embedded MVMO-SH algorithm demonstrated better fit-
ness evaluation performance. The proposed method showed the fastest
convergence rate and lowest APL index. The MVMO-SH algorithm
demonstrated superior performance, with the highest PVDG penetra-
tions found in the industrial urban load model for the 33-bus RDN,
while the commercial urban load had the highest PVDG sizes for the
16
69-bus RDN. The residential urban load uncertainty case showed the
lowest PVDG penetrations. The significance of these findings showed
that incorporating uncertainty in the optimisation framework ensures
the proposed solutions become more robust and reflective of actual
conditions, hence maintaining acceptable performance across various
scenarios. For future directions, the energy storage system is suggested
to be taken into account by considering the statistical analysis of
uncertainty management in the photovoltaic generation-loads model.
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Fig. 18. Convergence performance for 3 PVDGs in 69-bus RDN based on industrial urban load.
Table 9
Statistical assessment for 3 PVDG’s in 69-Bus.

Method APL Index (Residential Urban Load Model)

Best Value Worst Value Average Std. Deviation

MVMO-SH 0.3403 0.3587 0.3409 0.0346
PSO 0.3409 0.3588 0.3413 0.0399
GA 0.3409 0.3588 0.3411 0.0369

Method APL Index (Commercial Urban Load Model)

Best Value Worst Value Average Std. Deviation

MVMO-SH 0.3570 0.3625 0.3574 0.0217
PSO 0.3618 0.3629 0.3618 0.0221
GA 0.3618 0.3629 0.3618 0.0245

Method APL Index (Industrial Urban Load Model)

Best Value Worst Value Average Std. Deviation

MVMO-SH 0.3504 0.3521 0.3509 0.0231
PSO 0.3530 0.3552 0.3532 0.0243
GA 0.3531 0.3552 0.3531 0.0235
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