RESEARCH PAPER

Fouling characteristics and cleaning approach of ultrafiltration membrane during xylose reductase separation

Santhana Krishnan¹ • Mohd Nasrullah² • Hesam Kamyab^{3,4} • Noor Suzana² • Mimi Sakinah Ab Munaim² • Zularisam Ab Wahid² • Ismat H. Ali⁵ • Reza Salehi¹ • Sumate Chaiprapat¹

Received: 26 December 2021 / Accepted: 1 April 2022 / Published online: 25 April 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Many operating parameters of ultrafiltration (UF) are playing a crucial role when using a polyethersulfone membrane to separate xylose reductase (XR) enzyme from reaction mixtures during xylitol synthesis. The present study focuses on the separation of XR enzyme using a cross-flow ultrafiltration (UF) membrane. The filtration process was analyzed using the three effective variables such as filtration time, cross-flow velocity (CFV), and the transmembrane pressure (TMP), which were ranging from 0 to 100 min, 0.52 to 1.2 cm/s and 1–1.6 bar, respectively. Then, using the resistance in series model, the hydraulic resistance for alkali chemical cleaning during XR separation was estimated. During separation, increased TMP showed a positive-flux effect as a driving force, however, fouling and polarized layer were more prominent under higher TMP. Increased CFV, on the other hand, was found more efficient in fouling control. In terms of the membrane cleaning techniques, an alkaline solution containing 0.1 M sodium hydroxide was shown to be the most effective substance in removing foulants from the membrane surface in this investigation. Cleaning with an alkaline solution resulted in a maximum flux recovery of 93% for xylose reductase separation. This work may serve as a useful guide to better understand the optimization parameters during XR separation and alleviating UF membrane fouling induced during XR separation.

Keywords Fouling · Membrane recovery · Resistance in series model · Ultrafiltration · Xylose reductase

		C_{f}	Feed concentration
		ĊFV	Cross-flow velocity
\bowtie	Mimi Sakinah Ab Munaim	C_p	Permeate concentration
	mimi@ump.edu.my	ÉMC	Electrophoretic membrane contactor
\bowtie	Sumate Chaiprapat	FTIR	Fourier transform infrared spectroscopy
	sumate.ch@psu.ac.th	HPTFF	High-performance tangential flow filtration
	Santhana Krishnan kcsanthana@utm.my	J	Flux
		LCB	Lignocellulose biomass
1	Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand	M	Molarity
		MF	Microfiltration
		MWCO	Membrane molecular weight cutoff
		NADPH	Nicotinamide adenine dinucleotide phosphate
2	Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Gambang, Malaysia	NaOH	Sodium hydroxide
		PEG	Polyethylene glycols
3	Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia	PVP	Polyvinylpyrrolidone
		R_m	Membrane hydraulic resistance
		TMP	Transmembrane pressure
4	Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India	TMP _{lim}	Transmembrane pressure-limiting value
		TOC	Total organic carbon
5		UF	Ultrafiltration
	Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia	XR	Xylose reductase

List of symbols